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Abstract: In this article, we employ a version of some fixed point theory (FPT) to obtain stability
results for the symmetric functional equation (FE) of g-Wright affine functions in non-Archimedean
(n, B)-Banach spaces (nArch(n, §)-BS). Furthermore, we give some interesting consequences of our
results. In this way, we generalize several earlier outcomes.

Keywords: ulam stability; g-Wright affine functions; fixed point theorem; functional equation; non-
Archimedean (#, §)-Banach spaces

MSC: 39B82; 39B05

1. Introduction

Stability of FEs in the sense of Ulam (see, e.g., [1-13]) plays an essential role in many
applications. It provides close to exact solutions for many kinds of equations where
the exact solutions are unreachable. An equation is called stable, in the sense of Ulam
or Ulam-Hyers, provided, roughly speaking, that each function satisfying our equation
approximately (in some sense) is near (in some way) to its exact solution.

The concept of the nearness of two functions can be obviously understood in various
ways. Some of such ways are 2-norm, nArch norm, and n-norm. S. Géhler [14] in the
mid 1960s seems to be among the first who developed the theory of 2-normed spaces.
That of 2-BS was studied later by S. Gahler [15], see also [16,17]. nArch spaces have many
important applications (see, e.g., [18-20]). In particular, they have applications in biology,
economics, physics, and engineering (see [21] for more details).

The stability problem emerged as a consequence of the famous question asked by
Ulam at a conference in Wisconsin University in the fall of 1940 (see [8]). The stability
problem of Ulam can be rewritten as follows.

Given two groups G* and a metric group (G**,7), is it true that for € > 0, there exists
0 > 0, such that, if 7 : G* — G** satisfies

(T (titz), T ()T (t2)) < 6, forevery ty,t, € G¥,
then a homomorphism M : G* — G** exists such that
1(T(h), M(t)) <e

for all t,t, € G*?
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In 1941, D.H. Hyers provided a positive answer to Ulam’s question in case of BS.
Since then, the stability problem has been known as the Ulam-Hyers or Hyers-Ulam stability
problem. In 1950, Aoki (see [1]) generalized the result of Hyers for approximate additive
mapping. In 1978, Rassias (see [10]) introduced a general form of the result of Hyers by
investigating the stability in case of unbounded Cauchy differences. The famous result of
Rassias can be rewritten as follows (see [10]):

Theorem 1. Assume BS By, By, and a continuous mapping F : By — By from R into By. Suppose
that there exists ¢ > 0, and ¢, € [0,1), such that

1F (b1 + b2) = F(br) = F(b2) | < c(lba|l™ + [[b2]|™), b1, b2 € By \ {0} ©)
Then, a unique solution T : By — By of the Cauchy FE exists with

2c||by ||

[ F(b1) — T (b1)| < 12— 201]"

bl € B \ {0} (2)

The theorem above is known as the Ulam-Hyers-Rassias or the Hyers-Ulam-Rassias
stability. Further interesting recent results in stability can be found in the following [22-25].

Fix a real number 0 < g < 1. A function H : I — R (with I some real nonempty
interval) is g—Wright convex provided (see, e.g., [26-28])

H(guu + (1 —g)»n) + H(1—g)v1 + qva) < H(v1) + H(v2), vy, v2 € 1.
If H satisfies the FE
H(qu1 + (1 —q)v2) + H((1 — q)v1 +qv2) = H(v1) + H(v2), 3)

then we say that it is g-Wright affine. Solutions of (3) are called the g-Wright affine functions,
which are both g-Wright convex and concave see, e.g., [26-30]. Equation (3) is interesting
because of the following.

e  Equation (3) becomes the Jensen’s FE (When g =1/2)

H(Vl 42-1/2) _ H(Vl)";H(VZ)

e  Equation (3) takes the form (whengq =1/3)
H(ZV] + 1/2) + H(V1 + 21/2) = H(3V1) + H(31/2),

which has been studied in [31].

It should be remarked that the cases of more arbitrary q were studied in [27] (see
also [32]). The stability of some classes of generalizing Equation (3) have been investigated
in [33]. Note also that some interesting hyperstability results have been obtained by the
first author in [34]. The first author investigated (3) in 2-BS (see [35]) and also in (2, «)-BS
(see [36]). As far as we know;, stability results for (3) in nArch(n, )-BS do not exist; so, the
current article fills this gap. Moreover, the current results can be seen as a generalization
of the results obtained in [35,36] in (1, B)-nArch spaces. Furthermore, our results are
improvements and generalizations of the results obtained in [26] on nArch (n, §)-BS.

Throughout the paper, we denote the sets of all positive integers by N, R the real
numbers, Ny := NU {0}, R} = [0,00), and B4 the family of all functions from a nonempty
set A into a nonempty set 3. The article is organized as follows: In Section 2, we recall
some basic notions and the main tool which is a version of an FPT. In Section 3, we apply
the FPT to investigate the stability of (3) in nArch (#, §)-BS, and in Section 4 we introduce
some consequences of our analysis.
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2. Preliminaries

Here, we recall some basic notions concerning the nArch (1, f)-normed space. We
start with the notion of an nArch field.

Definition 1. By an nArch field, we mean a field F equipped with a function (valuation) | - |, :
F — [0,00): for all ky, ky € F, the following hold:

(CD |kl =0k =0;

(C2) |kika|s = |ka|«[kol+;

(C3) |k1 + ka|« < max(|kq]|«, [ka|«) for every ki, k, € F.

The function | - |« is called the trivial valuation, if |k1|« = 1, for all ky € F, k; # 0,
and |0]. = 0. Now, we recall the concept of an nArch space.

Definition 2. Suppose that V is a vector space acting on some field F with an nArch nontrivial

valuation | - |.. A function || - ||« : V — Ry is called an nArch norm if:
1. HZ)1||*IO<:>‘01:0,‘

2. |lav1||« = |al«||v1||«, foralla € F and vy € V;

3. o + 2|« < max(||v1]]«, ||v2]«), for all v, v, € V.

Then, (V, || - ||+) is called an nArch space (or an ultrametric normed space). A {xy} is Cauchy
in an nArch normed space, if and only if {x,, 41 — xn } converges to zero in the space. In a complete
nArch space, every Cauchy sequence is convergent.

For some examples of an nArch norm, the reader is advised to see, e.g., [9,37]. The fol-
lowing is the definition of the nArch (n, §)-norm.

Definition 3. Assume a real vector space X with dimension at least n over some scalar field F
with an nArch nontrivial valuation | - |, n € N, B € (0,1] is some fixed number. A function
- s llsp : X" — Ry is said to be an nArch (n, B)-norm on X <« it satisfies:

(1) |lv1,u,... ,unH*,ﬁ =0 <v, Uy, ..., Uy are linearly dependent;

(2) |lv1,up,..., U, H*ﬁ is unchanged under permutations of vy, Uy, . .., Up;

(3) H/\V]/ u2/ cecy uﬂ ||*‘B == |)\|’fk3 ||V1/ uZI cecy ui’l ||*,ﬁ/

(4) Hvl + Vo, Ug,..., Uy H*,ﬁ S max { ||Vlr Up,..., Uy ||*,‘Br ||V2/ U,..., Uy ||*ﬁ}

for all vi,vp,up,...,uy, € X, A € K. Then, (X,]-,..., ||*5) is called an nArch (n,B)-
normed space.

A famous example of an nArch (2, f)-norm is given as follows.
Example 1. Assume K is an nArch field with a valuation | - |, that is nontrivial. Forn =2, A € K,

x = (x1,%2), y = (y1,y2) € X = R2withx +y = (x1 +y1,x2 +v2), Ax = (Axy, Axp), the
nArch (2, B)-norm on X is defined by

*B = |x1y2 — x2y1|f,

|x,y

and B € (0,1] is some fixed number. In general, it is not easy to find examples for any n > 2,
see, e.g., [37,38].

It is now clear from the above definition that the nArch (n, )-normed space is an
nArch n-normed space if § = 1 and is an nArch S-normed space if n = 1, respectively.
The following is an essential lemma (see [39]).

Lemma 1. Let (X, |, ...,-
1. Then,

(L1) ifvy € X4, [jva,u2,..., uy

+,q) be an nArch (n,x)-normed space, such that n > 2,0 < x <

«x = 0 foreveryuy,..., u, € Xy, then vy = 0;
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(L2) a sequence {xy} in an nArch (n, x)-normed space X is a Cauchy sequence < {xy 41 — X}
converges to zero in X7.

Proof. See [39]. O
Definition 4. (a) The sequence {x;},i € N in an nArch (n,r)-normed space X is said to be a

convergent sequence if there exists an element vi € X: lim; oo ||X; — V1, U2, ..., Un||+,r = 0 for all
Up,..., uy € X. In this case, we write lim;_,,, X; := 17,

lim Hxi/ U, oo Un||xr = H Lim x;, up, ..., Uy ||y
i—o0 i—o0

foralluy,...,u, € X.
(b) If every Cauchy sequence in the nArch (n,r)-normed space X converges, then X is called
an nArch (n,r)-BS.

The following theorem is the basic tool in our analysis. It is a version of an FPT
introduced by Brzdek and Ciepliriski in nArch metric spaces (see ([3], Theorem 1)).

Fixed Point Theorem

We use this section to recall the FPT ([3], Theorem 1) in nArch (n, B)-BS, see also other
fixed point results [40,41]. For this purpose, we need the following hypothesis.

(A1) W is anonempty set, j,n € N, X is anArch (n, B)-BS.

(A2)f1,...,fj :W — Wand Ky, ..., Kj: WX X" 5 R, are given maps.

(A3) A R WX RKVXXYH is a non-decreasing operator defined by

(AS)(x,up, ... uy) = 1rr<1?<iji(x, Uy, ..., un)o(fi(x),ug, ... uy)

forall § € RYXX}H, (x,up, ..., uy) € Wx X" 1,
(A4 T : X — X" is an operator that satisfies

ITE(x) — Tu(x), up,. ~-r“nH*,/5 < lrrgl?gj{K,'(x, Up, ..., Uy)
1E(fi(x)) = u(fi(x)),uz, .. unll, g}

forall & u € X" and (x,uy, ..., uy) € W x X" 1,

From the definition of the stability, one can deduce that stability implies the existence,
and the converse is not always true. This means that stability guarantees the existence of a
solution. The basic tool in our analysis is the following FPT (see [39]).

Theorem 2. Let assumptions (A1)-(A4) be satisfied. Consider functionse : W x X"~1 — R,
p:W—= X

|To(x) — (p(x),uz,...,unH*,ﬁ <elx,up, ... un), (Xu...,u;) €EWxX"L,  (4)
and

Jim AMe(x,up, ... un) =0, (x,u2,...,1un) €W x X1, (5)

Then, for all x € W, the limit ¥(x) = limy e (I™¢)(x) exists, the function ¥ €
X" is a fixed point of T with

lo(x) —p(x),uy,.. .,un||*,/3 < sug (A"e)(x,up, ..., uy) (6)
melNg
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forall (x,uy,...,uy) € W x X"~1. Moreover, if

A( sup (A"e))(x,up, ..., up) < sup (A" le) (x,up, ..., uy)

meNy meNy
forall (x,uy,...,uy) € W x X"~ 1, then, ¢ is the unique fixed point of T satisfying (6).
Proof. The proof is illustrated in [39]. O
Now, we present the stability of (3) in nArch (n, B)-BS.

3. Main Results

We assume that Y is a normed space over some field F € {R, C}, and X is an nArch
(n, B)-Banach space. The theorem below is our main theorem by which we show that,
under certain conditions, functions that satisfy (3) approximately (in some sense) are close
(in some way) to the exact solutions of (3) in nArch (n, B)-BS.

Theorem 3. Let H : Y — X, 0 : Y x Y x X" — Ry and ¢ : (0,1) — Ry be functions
satisfying:
M :={g€(0,1)|a; :=max{c(q),c(1—-q)} <1} # O, (7)

O(tvy, tvo, i, ... uy) < c(£)0(vy, v, 1., un), t € {g,1—q},n €N 8)

and

[H(qui + (1 = q)v2) + H(1 = q)v1 +qv2) — H(v1) — H(v2), g, .. g )

S 6(1/1/1/2/ u2/ ey ul’l)
forallvi,vo € Y, uy,...,uy € X. Then, there exists a unique solution F : Y — X of (3):

I|H(v1) — F(vl),uz,...,unH*,ﬁ <min{6(vy,0,uz,...,uy),0(0,v1,uz,...,uy)},
1 €Y, upy,...,u, € X. (10)

Moreover, F is the unique solution of (3): there exists a constant C € (0, co0) with

I|H(vq) — F(vl),uz,...,unH*,ﬁ < Cmin{0(vy,0,up,...,uy),0(0,v1,up,...,u,)},

1 €Y, uy,...,u; € X. (11)
Proof. Plugging into (9) first v = 0 and next v; = 0, we obtain

[H(qv1) + H((1 — q)v1) — H(v1) — H(0), uz, ..., unl|, g < 0(v1,0,u,..., un)
IH((1 = q)v1) + H(qu1) — H(0) — H(v1),u2, ..., unll, g < 0(0, 11,12, un)

forevery vy € Y, up,u3,- -+ ,u, € X. Then,

[H(qv1) + H((1 — q)v1) — H(v1) — H(0),u2, ..., unll, 4
< min{6(v1,0,uy,...,un),0(0,v1,us,...,un)} (13)

=:e(vy, up, ... Uy)
forallvy € Y, up,...,u, € X. Introducing
h(v1) = H(v1) — H(0), n €Y;
then, (13) takes the form

|h(qv1) +h((1 —q)v1) — h(vl),uz,...,unH*,ﬁ <e(vy,up, ..., uUuy). (14)
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Now, a basic role in the proof is played by the operator I' : X¥ — XY defined by
TE(v1) == () +5((1—gm), €X', neY.
Then, inequality (13) takes the form
[Th(vy) —h(v1),uz, ... unllwp < e(vi,uz, ... un)

forallvy € Y, up,...,u, € X.
n—1 n—1
Now, let A, : R¥*X" — RY*X™ be an operator of the form

Ngo(vi,up, ... uy) = max{d(quy, ua, ..., un),0((1 —q)vy,uy, ..., un)},

forall§ € RIXX'H, v1 € Yand uy, ..., u, € X; then, it is easily seen that, for each g € (0,1),
the operator A := A, has the form (A3), with j =2, W =Y, and

filvr) = qu1, fo(v1) = (1—q)1y, Ki(vy,up, ... un) = Ka(vy,up, ..., uy) =1

forallv; € Yand uy,...,u, € X.
Moreover, for all ¢, u € XY, 11 €Y, uy,...,u, € X, we obtain

ITE(x) = Tp(va),uz, - ], 4

= [18(qv1) = (A = qv1) — ulqur) + p((1 = 1), uz, ... unll, g
mmax{ 801 (12)) — ()t et g [0 00)) — (oot e )
= max K;(vy,up, ..., un)|| (& — y)(fi(vl)),uz,...,unH*,l3

1<i<2

IN

where (¢ —p)(v1) = ¢(v1) — u(x). So, (A4) is valid for I'. Note that, from (8), and employing
the definition of A; we obtain

Nge(vi,up, ... uy) = max{e(quy, up, ..., uy),e((1 —q)vi, U, ..., un)}
= max{min{6(qv1,0,uz, - ,u),0(0,quy,up, - -+ ,un)},
min{6((1 — q)v1,0,up,- -+ , 1), 000, (1 —q)vy,up, -+, un)}} (15)
< max{c(q)e(vy, ua, ..., un);c(1 —q)e(vy, un, ..., uy)}
= age(vi,up, ... up),v1 € Y, up,uz, - ,uy € X.
By using induction, we will prove that forall vy € Y, u,...,u, € X, we have

Ags(qvl,uz,...,un) < ass(vl,m,...,un) (16)

forall / € N, g € M. From (15), (16) holds when ¢ = 1. Next, assume that (16) holds for
¢ =r,r € N. Then, by the definition of A4 and (15), we have
A;*ls(vl, Uy, ..., Up) =N (A;s(vl, Us,..., un)>
= max{Ags(qvl, ug, ... un), Age((1 —q)vy,uz, ..., un)}

< agmax{e(quy, uz, ..., un), e((1 — q)vy, uz, ..., un)}
= a;Aqe(qvl,uz, e, Up).

1
< aﬁ e(vy,up, ... un),v1 €Y, up, -+ ,uy € X.

This proves (16) when £ = r 4 1.
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Now, we can conclude that (16) holds for all £ € N. Therefore, by (16), we obtain

lim Afls(vl,uz, e uy) =0
{—o0

forallv; € Y, up,--- ,uy € X and for some g € M. Further, for every ¢ € Ny, g € M,
11 € Yand uy,...,u, € X, we have

sup Ags(vl, Up, ..., Up) =e(vy,up, ..., Uy),
leNy

and

sup Ag“e(vl,uz, coty) = Nge(vy, g, . uy).
LeNy

In view of Theorem 2 (with W = Y and ¢ = f), for every g4 € M, the mapping
B:Y — X, givenby B(vy) = lim/_,, T*g(v1) for v; € Y, is a fixed point of T, i.e.,

B(v1) = B(qv1) +B((1 —q)v1), v €Y.
Moreover,

|h(ve) — B(Vl)f“Zf”’f”nH*,,g < sup Ale(vy,ug, ..., uy)
EGNO

forallvy € Y, up,...,u, € X.
Next, we prove

Hl"éh(qvl +(1—q)v)+ l"gh((l —q)v1 +qva) — th(vl) - l"fh(vz),uz, e Un

*p
< agf(vi,va g, - -, i) (17)

forevery vy, v2 € Y, up,...,uy € X, € Ng,and g € M.

Clearly, if £ = 0, then (17) is simply (9). So, fix £ € Ny, and suppose that (17) holds for
n,every v,y € Y,and uy, ..., u, € X. Then, for every v, € Yand uy, ..., u, € X,

| T h(qur + (1= )va) + T (1 = v+ qua) = T h(vr) =T Mh(wa)

= ||rr(atqv + A = g)u2) ) + TR ((1 = ) (g1 + (1 = q)u2) )
+ T8 (a((1 = va + q2) ) + T'((1 = ) (1= ) + qua) )
+Th(quy) = Th((1 — q)v1) — T'h(qva) — T'h(1 — q)va), ua, . . ., Uy op

*p

< max { Hl"fh (q(qv1 +(1- q)vz)) + I’éh(q((l —q)v + qv2)> —T'n (qm)

=~ (qva) ]| 0RO ) v+ (1= )

7
*,

- rfh((1 — )+ (1 - q)vz) —T'h((1 = q)v1) = Th((1 = q)va), ua, . ..ty

)

< max {aé@(qvl,qu, Uy, ..., un),af,G((l —q)vy, (1 —q)vp, uy, .. .,un)}

/+1
ga,f’ 0(v1,vp, 1, ..., Uy).

Thus, by induction, we prove that (17) holds for every v1,v» € Y, up,...,u, € X, forall
¢ € Ny. Now, letting ¢ — oo in (17), we obtain

B(qui + (1 —q)v2) + B((1 —q)v1 + qu2) = B(v1) + B(12), v1,1n €Y. (18)
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So, we have proved that the existence of F : Y — X satisfies (3) for v1, v € Y, such that

|h(11) = B(11),ua, .. "””H*,/ﬂ < gsuRI;) Ae(viug, ... uy) =e(vi,ua, ..., uy)  (19)
€Np

forallv; € Y, up,...,u, € X.
Write F(v;) := B(v1) + H(0). Then (10) holds, and

F(qu1 + (1 = g)va) + F(1 = q)v1 +qu2) = F(v1) + F(v2), (20)

forall vy, 1, € Y. It remains to prove the uniqueness of F. So, let C € (0, c0), and Fl:Yy—=X
be a solution of (3) with

|f(v1) — F’(vl),uz,...,unH*’ﬁ < Ce(vy,up, ..., upy)

1 €Y, upy, - ,uy, € X. (21)
Then,
{val) +P((1 = q)v1) = F(v1) + F(0), vy € Y )
F'(qu1) + F' (1 —q)v1) = F'(11) + F'(0), v1 €Y,
and by (10),
[F(v1) = F'(v1),u2, .. ], 4
< max{||F(v1) — f(v1), 2, .., unllsg; |1 f(v1) = F'(vi),uz, ..., ttn| s p} 23)

< max{e(vy,up, ..., uy),Ce(vy, tp,..., uy)}
=max{1,C}e(vy,uy, ..., uy),

forallv; € Y,and uy,...,u, € X. Further, by (8), 6(0,0,uy,...,u,) =0forall up,...,u, €
X;s0,€(0,up,...,uy) =0forall uy,...,u, € X. This and (23) yield

F(0) = F’(O) = H(0). (24)
Now, we show that, for each j € Ny,

|E(v1) — F'(n1), ua, . "'”"H*,ﬁ < max{1,C}e(vy,u,...,uy) sup(aé), (25)
1>

forallv; € Y, uy,...,u, € X and for some g € M. The case j = 0 is just (23). So fix m € N,
and assume (25) holds for j = m. Then, from (22), (24), and (15), we obtain

| F(v1) — F’(Vl)zuzl-n,unH*,/g
= ||[F(qu1) + F((1 = q)v1) — F(0) — F'(qu1) — F'((1 — q)v1) — F’(0>,uz,...,un||*,,5
< max{||F(qu1) — F'(qu1),uz, . -, tnlls p, IF((1 = q)v1) — F'((1 = q)v1),uz, .., nl s p}

< max{max{1,C}e(qui, ua, ..., uy) sup(aé),max{l,C}e((l —q)vy, Uy, ..., Up) sup(ai,)}
I>m 1>m

= max{1,C} sup(aé) max{e(qui, Uy, ..., un), (1 —q)v1,up, ... un)}
I>m

< max{1,C} sup(aé)aq e(vi,up, ... up), V1 €Y, Uy, - ,uy € X
>m

=max{1,C} sup (a;)s(vl,uz,...,un), vi €Y, uy, - ,uy € X.
I>m+1

Thus, we have shown (25). So, letting j — o0 in (25), we obtain F = F/. [
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4. Some Consequences

Using Theorem 3, we provide four natural examples of functions 0, c satisfying (7)
and (8). Namely,

() 0(v1,va, 1y, ..., un) = ellvr|"|Jvall*llz, uz, - - -, tnlls g,

w
Gi) O(vy,vo,u, ..., uy) ::e(max{||v1|\’,|]1/2||s}) 2 uz, - - unllsp,
i) O(v1,va 112, ... 1ty) = e(||u1\|r||u2\|s + s + ||u2||r+s) X ||z, -+ ttnl| g,
w
) 0(v1, 2,1, tn) 1= € (wn|[va ]| + @allval) ¢ 1z, w2, o

for every vy,1p € Y, up,- -+ ,uy € X, forsome z € X, and a;,€,1,5,w € (0,00),i =1,2.

Corollary 1. Assume a normed space Y, an nArch (n, B)—BS X, and let €,r,5 € (0,0), q €
(0,1). IfH: Y — X satisfies

[H(qui+ (1= q)v2) + H((1 = q)vi +qu2) = H(v1) = H(v2) || < ellva[["llvall*llz w2, -, unll s,

foreveryvi,vo €Y, uy, -+ ,uy € X, for some arbitrary element z € X; then, H is a solution of
B)onY.

Proof. Assume that

O(v1, v, U2, ..., Uy) = e||1/1|\r||1/2|]5||u2,...,un||*,lg,
and c(t) = '+ in Theorem 3 for every vy, € Y, u,...,u, € X and for some z € X, where
t€(0,1),and ¢, 1,5 € (0,00). So, conditions (7) and (8) are valid, i.e., 2; = max{q"**, (1 —
q) "} < 1, and 0(tvy, tva, uy, ..., uy) = c(t)0(v1, v, Uz, ..., uy) for every vy, v2 € Y, and
Uy, ..., Uy € X, wheret € {q, 1-— q}. Furthermore, we have

min{6(0,vy,up,...,uy),0(v1,0,up, ..., uy)} =0.

So that, by Theorem 3, we obtain H(v;1) = F(v7) for every v; € Y, i.e., H is a solution
of 3)onY. O

Corollary 2. Suppose a normed space Y, an nArch (n, B)—BS X, and let €,r,s € (0,00), and
g€ (0,1). IfH:Y — X satisfies

[H(qu1 + (1= q)v2) + H((1 = q)vi + qva) — H(v1) — H(v2) [+

< e( Il vall* + a2 + ol ™) 1z 2, il

for every vi,vy € Y, uy,...,uy € X and for some z € X; then, there exists a unigue solution
F:Y — Xof (3):

|H(v1) — F(v1),u, ..., un

*,B S €|‘V1||T+SHZ/ Up,- - /u}’l”*,ﬂ
foreveryvy € Y, up, ..., u, € X and for some z € X.

Proof. Let

O(v,v2, 00 w) o= €l o a7+ el ) e g

and c(t) = '+ in Theorem 3 for every vy, 1 € Y, u,...,u, € X and for some z € X, where
t € (0,1)ande,r,s € (0,00). Then, (7) and (8) are valid, i.e., a; = max{q""*, (1 —q)" "} < 1,
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and 0(tvy, tvy, Uy, ..., up) = c(t)0(v1,va,up, - -+ ,uy) forall vy, 1, € Y and uy,...,u, € X,
where t € {g,1 — g}. In addition, we have

min{6(0, vy, ua, ..., un),0(v1,0,us, ..., un)} = €llvi||" ||z, ua, . .., un

*,B7

so, by Theorem 3, we obtain the desired results. O

Corollary 3. Suppose a normed space Y, X an nArch (n, B)—BS, and let €,1,5,w € (0,0),
g€ (0,1). IfH:Y — X satisfies

[H(qu1 + (1 —q)v2) + H((1 —q)v1 +quv2) — H(v1) — H(v2) s 5 <

w
e (max{lualls lvall}) " Nzl

forall vi,vp € Y, uy,...,uy, € X and for some z € X. Then, there exists a unique solution
F:Y — Xof (3):

w
IH() = F(vr), 1z, yttnllp < €(mindllva s v2l}) Nz w2l
foreveryvy € Y, up,...,uy € X and for some z € X.

Proof. Let

w
0(v1,va, U2, ..., Uy) ::e(max{Hler;Hvsz}) Iz, uz, ..., un Y

w
and c(t) = (max{tr, ts}) in Theorem 3 for all vi,v» € Y, us,...,u, € X and for some

z € X,wheret € (0,1) and ¢,r,s,w € (0,0). Therefore, conditions (7) and (8) are satisfied.
Thus, by Theorem 3, we obtain the desired results. O

Corollary 4. Assume a normed space Y, an nArch (n, B)—BS X, and let €,1,s,w, a; € (0,00) for
i=12andqg e (0,1). IfH:Y — X satisfies:

[H(qu1 + (1= q)v2) + H((1 = q)vi +qvz2) — H(v1) — H(v2)[|lip <
e (aalnll" + aallvall*) x Nz, il

forevery vi,vo € Y, up,...,uy € X and for some z € X. Then, there exists a unique solution
F:Y — Xof (3), such that

w
IH() = F(n), 12, il p < € min{an [ur |7, aallval}) 1z, w2, sl g
foreveryvy € Y, uy, ..., u, € X and for some z € X.
Proof. Let
w
00, v 0z, 1tn) 1= € (wa|[vall” + aallval) " x 2 w2, il

and ¢(t) = fomin{rs} in Theorem 3 for every v1,v2 € Y, up,- -+ ,uy € X and for some z € X,
where t € (0,1), €,7,5,w,a; € (0,00), fori = 1,2. So, conditions (7) and (8) are satisfied.
Hence, by Theorem 3, we obtain the desired results. [

5. Conclusions

We studied the stability of the FE of the g-Wright affine functions in nArch (n, B)-
BS by using some recent FPT. In other words, using a version of an FPT and based on
some assumptions, we obtain functions that satisfy the given FE approximately in nArch
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(n, B)-BS. The results obtained are useful, because it means that we obtain estimates for the
difference between the exact and approximate solutions of the equation of interest. Our
results bridged the gap that exists in the literature concerning the stability results of the
equation of interest in nArch (n, )-BS. We also presented some important consequences of
our results. In this way, we improve several earlier outcomes. Potential future work could
be to investigate the stability of the given FE in some other spaces such as dg-metric spaces.
Author Contributions: Conceptualization, E.-S.E.-H., I.-i.E.-F.; methodology, E.-S.E. L.
software, E.-S.E.-H., L-i.E.-F; validation, E.-S.E.-H., I.-i.E.-F; formal analysis, E.-S.E. I
investigation, E.-S.E.-H., I.-i.E.-F,; resources, E.-S.E.-H., L.-i.E.-F,; data curation, E.-S.E.-H., .
writing—original draft preparation, E.-S.E.-H.; writing—review and editing, E.-S.E.-H., L.-
visualization, E.-S.E.-H., I.-i.E.-F,; supervision, E.-S.E.-H., L.-i.E.-F,; project administration, E.-S.E.-
L-i.E.-F. All authors have read and agreed to the published version of the manuscript.
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