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Abstract: Oscillatory power is pervasive throughout the solar corona, and magnetohydrodynamic
(MHD) waves may carry a significant energy flux throughout the Sun’s atmosphere. As a result,
over much of the past century, these waves have attracted great interest in the context of the coronal
heating problem. They are a potential source of the energy required to maintain the high-temperature
plasma and may accelerate the fast solar wind. Despite many observations of coronal waves, large un-
certainties inhibit reliable estimates of their exact energy flux, and as such, it remains unclear whether
they can contribute significantly to the coronal energy budget. A related issue concerns whether the
wave energy can be dissipated over sufficiently short time scales to balance the atmospheric losses.
For typical coronal parameters, energy dissipation rates are very low and, thus, any heating model
must efficiently generate very small-length scales. As such, MHD turbulence is a promising plasma
phenomenon for dissipating large quantities of energy quickly and over a large volume. In recent
years, with advances in computational and observational power, much research has highlighted how
MHD waves can drive complex turbulent behaviour in the solar corona. In this review, we present
recent results that illuminate the energetics of these oscillatory processes and discuss how transverse
waves may cause instability and turbulence in the Sun’s atmosphere.

Keywords: MHD oscillations; coronal heating; MHD turbulence

1. Introduction
1.1. Background

In the decades since Hannes Alfvén published their pioneering analysis on magneto-
hydrodynamic (MHD) wave modes [1], the Sun’s atmosphere has been extensively used as
a laboratory for observing, describing and understanding oscillatory behaviour in mag-
netised fluids. Dissimilar to many other astrophysical plasmas, the Sun is relatively close
to Earth and, thus, its atmosphere can be studied in high detail with both ground- and
space-based telescopes. Indeed, results provided by contemporary observing facilities con-
sistently highlight the abundance of oscillatory power throughout all regions of the Sun’s
atmosphere. Continuous monitoring with a high cadence and high resolution, imaging and
spectroscopy has identified a plethora of different wave modes permeating the photosphere
(e.g., [2,3]), the chromosphere (e.g., [4,5]), the corona (e.g., [6,7]) and solar wind (e.g., [8,9]).
The ubiquity of this periodic behaviour provides a range of questions for solar physicists,
including:

1. How is wave power transmitted through the atmosphere?
2. To what extent does wave energy contribute to maintaining the atmospheric tempera-

ture profile and to accelerating solar wind?
3. Can wave behaviour provide information about the nature of the atmosphere through

a seismological analysis?

Each of these questions have been extensively investigated through a range of obser-
vational, numerical and theoretical studies. However, due to a range of difficulties, such
as observational uncertainties and the inherent complexity of MHD wave behaviour in
a dynamic atmosphere, our understanding of these problems remains incomplete. This

Symmetry 2022, 14, 384. https://doi.org/10.3390/sym14020384 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020384
https://doi.org/10.3390/sym14020384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4895-6277
https://doi.org/10.3390/sym14020384
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020384?type=check_update&version=2


Symmetry 2022, 14, 384 2 of 23

review focuses on one key aspect of oscillatory behaviour, which is pertinent to all three of
these points; namely, to what extent do transverse MHD waves drive turbulent behaviour
in the solar corona?

1.2. Context

The solar corona contains low-density plasma that is maintained at temperatures in
excess of 1 million K, despite energy losses due to thermal conduction (to the chromosphere),
optically thin radiation and solar wind (which carries energy and mass into Space). The
exact processes which maintain these surprisingly high temperatures remain unclear and
are the focus of one of the greatest unsolved questions in solar physics; the coronal heating
problem (see reviews by [10–17]).

Historically, proposed models for coronal heating have been classified into two broad
groups; alternating current (AC) heating and direct current (DC) heating. This dichotomy
arises from the characteristic time scales, τD, of the photospheric flows that inject energy into
the solar atmosphere. For any given coronal structure that has two foot points embedded
within the lower atmosphere, the Alfvén travel time, τA, is the time taken for a perturbation
propagating at the local Alfvén speed to travel along the structure’s length, from one foot
point to the other. If the characteristic time scales of the photospheric velocities are short
in comparison to the travel time (τA < τD), we typically find DC heating. However, if
τD > τA, we typically find AC heating. Classically, DC heating has become synonymous
with magnetic reconnection and impulsive heating events, whereas AC heating has been
assumed to result in a steadier Ohmic and viscous energy release. However, high-resolution
numerical modelling shows that this traditional viewpoint is not so clear cut. This review
focuses on this aspect of AC heating, where energy release is intermittent, bursty and
driven by turbulent reconnection events (e.g., [18–20]).

Since the launch of the Transition Region and Coronal Explorer (TRACE) instru-
ment [21] in 1998, a range of observational datasets (e.g., [6,7,22–28]) have revealed the
proliferation of transverse waves throughout the corona. These were reviewed by [29–32].
Historically, observations of coronal loops have shown rapid damping that is consistent,
with energy being transferred from the global mode to local modes in the loop boundary
through resonant absorption (see [33] and Section 3). As the wave behaviour and the rate
of this damping are well predicted by the linear theory (e.g., [34]), these observations can
be used to estimate coronal parameters (such as the magnetic field strength) through seis-
mological techniques [30,35–38]. Whilst the damping process is not necessarily indicative
of energy dissipation (as resonant absorption is fundamentally an ideal process [34,39,40]),
it does localise energy in small scales, where it is more easily dissipated (e.g., [41–44]).
Following this mode conversion, a cross-field gradient in the Alfvén speed also allows
phase mixing [45] to occur in the boundary of coronal loops, generating even smaller scales
and allowing a more efficient energy dissipation (e.g., [46–50]).

The combined action of resonant absorption and phase mixing in the boundary of
coronal density structures results in the formation of large, localised gradients in the velocity
fields. This shear can become unstable to the magnetic Kelvin–Helmholtz instability (KHI,
e.g., [51]), which disrupts the velocity field through the development of a series of vortices.
The oscillatory nature of the system complicates the analysis and reduces the time-averaged
shear (compared to a steady flow), but needs not prevent the formation of the instability
(e.g., [52–55]). Even in systems which are stable to the KHI, a parametric instability caused
by resonance between wave perturbations and the oscillatory forcing (driver) is able to
generate small scales, particularly along the magnetic field [56]. For cases where Kelvin–
Helmholtz vortices are able to form, a continued instability generates secondary vortices
and progressively passes energy to increasingly large wave numbers. This drives an
energy cascade towards the dissipation length scale, where mechanical energy is inevitably
converted to heat. As such, this process (and any other wave behaviour which forms
turbulent-like regimes) is of significant interest to proponents of wave heating in the solar
corona.
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In addition to observations of rapidly damped oscillations, more recently, there have
been many reports of apparently decayless oscillations (e.g., [57–62]), with amplitudes
that persist (or sometimes even grow, e.g., [57]) over many wave periods. Typically, these
waves are not excited by an external trigger (for example, by a nearby flare), but instead
may be driven continuously (e.g., by foot-point velocities). In this case, there is a steady
supply of energy to the oscillating structure, which can power continued oscillation and
drive wave heating. On the other hand, the analysis of synthetic emission derived from
numerical simulations has suggested that these observations could be an apparent effect of
the resonant absorption, phase mixing and KHI within the waveguide [63]. The details of
these oscillations are discussed in more detail in Section 3.3.

In this review, we consider the latest studies investigating transverse wave-driven
turbulence and discuss the implications in terms of plasma heating, the fundamental nature
of the solar atmosphere and coronal seismology. In Section 2, we begin with a simple
consideration of the energetics of transverse waves, particularly in regard to numerical
simulations. Then, in Sections 3 and 4, we discuss models of small-scale generation by
standing and propagating waves, respectively. Finally, in Section 5, we present a brief
discussion of outstanding questions and problems in this area.

2. Poynting Flux

Due to inherent observational uncertainties, such as the Line of Sight (LoS) integration
effects and errors in density measurements, estimates of the wave energy flux in the corona
are not well constrained (for example, see different findings in [7,26,64]). Additionally,
using non-thermal line widths to appraise the effects of multiple different flows along the
LoS can be very unreliable [65,66]. Further, variation between coronal regions (e.g., see
Table 1 in [16]) and different energy requirements across the corona [67], makes it difficult
to evaluate whether the wave energy flux is sufficient enough to provide significant heating.
In practice, whilst the wave energy content may be sufficient to heat the quiet Sun (where
energy requirements are relatively low), it seems unlikely that it can balance the losses
expected in active region loops or generate the very high temperatures observed here.

Numerical models of coronal heating often assume an imposed velocity driver that
moves the foot points of magnetic field lines. This is designed to mimic some aspect of
the buffeting motions at the solar surface and can inject energy into the computational
domain, which may ultimately be dissipated as heat. We briefly analysed the rate of energy
injection. For the following simple arguments, we assumed an initial, uniform magnetic
field, B = (0, 0, B0), was aligned in the z direction. Each field line had a length of L/2
(distance between the upper and lower z boundaries) and the upper z boundary acted
as a mirror. Thus, we really considered the field lines of length L that were symmetric
about their respective apex. The density, ρ, was uniform. A schematic of this setup is
shown in panel (a) of Figure 1. We considered a simple sinusoidal wave driver of the form
v(t) = (0, vy(t), 0), where:

vy = v0 sin ωt. (1)

Here, v0 is the wave amplitude and ω is the wave frequency. This velocity profile is
shown in panel (b) of Figure 1 (solid line). The dashed line was obtained from Equation (6)
(see below). This imposed velocity excited the Alfvén waves, which propagated along the
magnetic field lines with a wavelength of λ = 2πvA/ω (assuming that λ < L/2), where
vA = B0/

√
µ0ρ was the Alfvén speed. If the frequency was too low (and, consequently, the

wavelength too large), the wave front reached the upper z boundary before a complete wave
cycle was injected. Upon reaching the reflecting boundary, the waves changed direction
and began propagating downwards. At the reflected boundary, waves had the form:

vy = v0 sin{ωt− φ}, (2)
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where φ = ωL/2vA and was associated with a phase shift caused by the travel time
along the field lines. The counter-propagating waves then experienced a constructive and
destructive interference (according to the local phase shift). At a particular height, z = z0,
the upward and downward propagating waves were defined using φ1 and φ2, respectively.
These satisfied:

φ1

ω
=

z0

vA
, (3)

φ2

ω
=

L− 2z0

2vA
. (4)

Thus, in the linear, undamped regime, the superimposed wave velocity was given by:

vy = v0 sin
{

ω

(
t− z0

vA

)}
− v0 sin

{
ω

(
t− L− 2z0

vA

)}
. (5)

Once the downward-propagating wave reached the driven boundary, it then reflected
again, ensuring there was an ever-increasing number of reflections as time progressed.
As such, the superposition of an increasing number of waves had to be accounted for to
provide:

vy(z, t) = v0

m

∑
n=0

(−1)n Hn(z, t) sin{ωt− φn(z)}. (6)

Here, m is the number of wave reflections that occurred by time, t, Hn(z, t) is 1 if the
nth reflection reached a height of z by time, t, and 0 otherwise, and φn(z) is the phase shift
associated with the nth wave reflection at a height of z. This can be expressed as:

φn(z)
ω

=
Ln

2vA
+

z
vA

=
Ln + 2z

2vA
, if n is even, (7)

φn(z)
ω

=
Ln

2vA
+

L/2− z
vA

=
L(n + 1)− 2z

2vA
, if n is odd. (8)

In a similar way, for this Alfvén wave, the magnetic field perturbation was given by:

by(z, t) =
−B0v0

vA

m

∑
n=0

Hn(z, t) sin{ωt− φn(z)}. (9)

In panel (c) of Figure 1, we show some results from this setup with ω ≈ 6.37ω0, where
ω0 is the fundamental frequency of the system. As this was not an integer multiple of ω0,
this represented non-resonant driving. In panel (c), we show the temporal evolution of the
perturbed velocity (black) and magnetic fields (red) at z = L/4. The solid line shows the
results from a numerical simulation and the dashed lines were obtained using Equations (6)
and (9). More thorough analyses of similar equations relating to Alfvén waves in a variety
of media were presented in (e.g., [68–72]).

At the driven boundary (z = 0), once a downward-propagating wave reached this
height, a new reflection was created instantaneously. Therefore, for odd n, Hn(0, t) =
Hn+1(0, t). As such, by isolating the n = 0 term (driver) and defining M = bm/2c, the
upward (n was even) and downward (n was odd)-propagating waves could be separated.
Consequently, we could rewrite Equation (6) as:

vy(0, t) = v0 sin(ωt) + v0

M

∑
n=1

[sin{ωt− φ2n(0)} − sin{ωt− φ2n−1(0)}]. (10)

As φ2n = φ2n−1 = ωln/vA, all terms in the summation were zero. Reassuringly, this
expression reduced to the imposed boundary condition at the lower z boundary. Using
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Equation (9), and again considering even and odd n separately, the perturbed component
of the magnetic field at z = 0 could be expressed as:

by(0, t) =
−B0v0

vA

m

∑
n=0

sin{ω(t− φn(0))} (11)

=
−B0v0

vA

[
sin ωt + 2

M

∑
n=1

sin
{

ω

(
t− Ln

vA

)}]
. (12)

The amplitude of vy was set by the imposed driving; however, the amplitude of by
was modified by the reflected waves. It is important to note that, after t = L/vA, when
the first of the return waves reached the driven boundary, by, and, therefore, the energy
injection rate (see below), they were sensitive to both the imposed driver and the nature of
the reflected waves. Due to the interference of wave modes, the amplitude of by remained
bound (for M→ ∞), except in the case where the reflected waves were in phase with the
wave driving (resonance). This occurred for:

ω =
2πkvA

L
. (13)

for any integer k. For such a frequency, a resonant standing mode would be excited with an
amplitude which increased in time, until the linear analysis broke down.

Figure 1. (a) Schematic of a simple Alfvén wave excited by an imposed velocity driver and propa-
gating towards a reflecting boundary. (b) Imposed wave driver from Equation (2) (solid line) and
from Equation (6) (dashed line) (c). Perturbed velocity (black) and magnetic fields at z = L/4. The
solid line shows simulation results and the dashed line was obtained from Equation (9). The case
considered here was non-resonant driving with ω ≈ 6.37ω0.
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As a result of the law of energy conservation, the total, volume-integrated energy, E,
satisfied:

dE
dt

+
∫

S
F · dS = 0. (14)

Here, the integration was calculated over the boundary, S, of the given volume, and F
was the energy flux. This could be decomposed as:

F =
ρv2v

2
+

γPv
γ− 1

+ ρΦv +
E× B

µ0
. (15)

Here, we neglected any thermal conductive flux and the terms on the right-hand side
represent the kinetic energy flux, the enthalpy flux, the gravitational potential energy flux
and the Poynting flux, respectively. For our given boundary conditions, the perpendicular
velocities were zero (or cancelled out across periodic boundaries) and, thus, v · dS = 0. As
such, the change in total energy reduced to:

dE
dt

=− 1
µ0

∫
S

E× B · dS (16)

=− 1
µ0

∫
S
{η(∇× B)× B− (v× B)× B} · dS. (17)

In the ideal limit (η → 0), this would reduce further to leave:

dE
dt

=
1

µ0

∫
S
(v× B)× B · dS (18)

=
1

µ0

∫
S
{(B · v)B− (B · B)v) · dS. (19)

Here, the first term represents the driving of the existing flux by the imposed velocity
and the second term represents the emergence/submergence of the new flux. Again, since
v · dS = 0, the second term vanished, and for the current geometry and wave driver, we
were left with:

dE
dt

=
−1
µ0

∫
S

ByvyBz dxdy, (20)

where the integral was calculated over the surface of the driven boundary [12]. The
implications of this equation are shown in Figure 2. When the velocity driver increased
the angle between the magnetic field and the surface’s normal vector, the energy would be
injected. Otherwise, energy would be removed from the system.

Figure 2. Schematic of the Poynting flux associated with velocity driving on magnetic foot points.
Details in Equation (20). Adapted from Figure 5 in [73].
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For the wave described above, we could evaluate the Poynting flux using
Equations (10) and (12), and taking Bz = B0, the initial field strength. We found:

dE
dt

=
AB0v2

0
√

ρ0

2
√

µ0

[
sin2 ωt + 2

M

∑
n=1

sin ωt sin
{

ω

(
t− Ln

vA

)}]
, (21)

where A is the area of the driven boundary and we used vA = B0/
√

µ0ρ0. The first term
in the square brackets was always positive and represented the energy injected before
any reflections reached the lower boundary. The second term was associated with the
complex interaction between the driver and the reflected waves. It was always positive for
resonant driving (see Equation (13)), but otherwise, the time averaged contribution (over
long times) was 0. The implications of Equation (21) are outlined in Figure 3. We showed
the instantaneous (left-hand column) and cumulative Poynting flux (right-hand column)
for non-resonant (upper row) and resonant (lower row) driving. In the right-hand panels,
we compared the results of simulations (solid lines) with the predictions from the time
integral of Equation (21) (dashed lines). In panel (a), we saw that the Poynting flux could
be both positive and negative (above or below the dashed horizontal line) for non-resonant
driving, resulting in a much lower average rate of energy injection than for the resonant
case. In panel (c), we saw that the resonant driving led to an approximately linear increase
in the instantaneous Poynting flux as time progressed. This resulted in the quasi-quadratic
evolution in panel (d).

Figure 3. (a,c) Evolution of the instantaneous Poynting flux for ω ≈ 6.37ω0 (non-resonant driving)
and ω = 6ω0 (resonant driving), respectively. The solid dashed line in (a) shows an energy injection
rate of 0. (b,d) The cumulative energy injection for non-resonant and resonant driving, respectively.
Solid lines show simulation results and dashed lines were obtained using the time integral of
Equation (21).

It is important to note that Equation (21) only applies for undamped, sinusoidal waves
with a perfect reflection at the upper z boundary. If any of these conditions were broken,
then the wave driver was able to inject more energy into the system. For example, AC
driving, which forces the evolution of the background field, was able to sustain a larger
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Poynting flux (e.g., [74]). Additionally, if the downward propagating wave had a lower
amplitude than the driver, a long-term positive influx of energy was permitted. This may
be associated with wave energy dissipation or would be the case in open-field regions,
where only a partial reflection due to longitudinal stratification is possible. As such, it
is clearly important to understand the wave dynamics away from a driven boundary. It
is not sufficient to merely observe wave amplitudes at the base of the corona in order to
determine the efficacy of wave heating. Indeed, the interaction with wave energy already
in the corona could have significant effects on the energy flux (e.g., [10]).

3. Standing Modes

The magnetically closed corona consisted of field lines which were connected to the
lower layers of the solar atmosphere at two distinct foot points. This meant that each
foot point could be driven independently, which could have important consequences for
the wave behaviour on these field lines. The density structures observed in the corona
were typically assumed to outline the structure of the magnetic field, and in the closed
corona, would often form coronal loops. These approximately semi-circular structures are
important in the context of MHD wave dynamics, as they act as wave guides for oscillatory
phenomena. These waves can be trapped within the coronal volume of a loop due to the
large density gradients that exist close to the magnetic foot points in the transition region.
As a result, standing wave modes are often observed in the Sun’s corona and these can be
particularly adept at driving MHD turbulence.

Some of the first coronal waves observed in the corona were large scale, transverse
motions that displaced the central axis of a coronal loop [6,22]. As the displacement at
the loop apex was much larger than at the loop foot points, these were interpreted as
standing waves, and, in particular, standing kink waves. These waves are often described
by assuming a long, thin, azimuthally invariant cylindrical tube with a relatively high
density, embedded in a lower-density plasma (e.g., [30]).

The kink speed, ck, of a wave in this tube could be expressed as a density-weighted
geometric average of the interior and exterior Alfvén speeds. It was given by:

ck =

√
ρic2

Ai
+ ρec2

Ae

ρi + ρe
, (22)

where cAi,e is the local Alfvén speed, ρi,e is the density and the subscripts i and e refer to
interior and exterior quantities, respectively, (e.g., [32,75]). We noted that for ρe < ρi then
cAe > ck > cAi . Therefore, if we assumed the density varied smoothly across the boundary
of the magnetic cylinder, then on some radial shell, the local Alfvén speed would equal the
kink speed of the flux tube. As such, a natural resonance would exist, which would allow
the transfer of energy from the global, large-scale kink mode, to smaller-scale azimuthal
Alfvén waves, which were oscillate on this radial shell. This process is known as mode
coupling (for propagating modes) or resonant absorption (for standing modes), and has
been well studied with both analytical and numerical treatments (e.g., [33,34,39,40,76–78]).
Additionally, this process is very robust and occurs in both curved and straight loops,
structures with elliptical cross-sections, various magnetic topologies and with or without
the presence of gravity (e.g., [79–84]).

As the azimuthal waves form preferentially on a narrow shell in the cylindrical struc-
ture, they are typically associated with relatively large gradients (in cylindrical geometry:
∂vφ/∂r). Additionally, as there is a cross-field gradient in the natural Alfvén frequency,
phase mixing would further enhance these radial gradients. For standing modes in cylin-
ders with a uniform magnetic field, these gradients could become unstable to the magnetic
Kelvin–Helmholtz instability [51]. This velocity shear instability led to the formation of
vortices in the velocity field and, ultimately, the large-scale deformation of the density
structure. A schematic of this process is shown in Figure 4.
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This process was considered analytically in the context of wave heating and phase
mixing by [53]. More recently, further analytic work presented in [56] described the
instability criteria for a discontinuous oscillatory shear in Cartesian geometry (similar to
panel d in Figure 4). The analysis assumed a density of ρ+ on one side of the shear layer
and ρ− on the other. For equal wave frequencies on either side of the velocity shear, the
system was unstable would be (reworked from [56]):

(∆v)2 >
4k2

z(ρ+ + ρ−)v2
A,+

ρ−k2
y

, (23)

where ∆v is the difference in the amplitude of the Alfvén waves and v2
A,+ is the background

Alfvén speed in the ρ = ρ+ region. The wave numbers ky and kz were in the direction of the
Alfvén wave polarisation and parallel to the background field, respectively. Ultimately, the
system was unstable if the velocity shear was large enough to overcome the suppressive
effects of magnetic tension. In the case kz → 0 (increasingly long wave lengths along the
field), the tension force changed to zero and the system was always unstable (e.g., [55]).
The results of a numerical simulation showing the KHI developing across an oscillatory
shear layer are shown in Figure 5. The panels show the disruption of the density profile as
the instability developed.

Figure 4. Schematic of KHI formation in transverse standing mode oscillations. (a,b) Transverse
motions observed in coronal loops were interpreted as standing kink modes. (c) Resonant absorption
led to the localisation of wave energy in the boundary of the coronal loop. (d) Phase mixing led to
out-of-phase azimuthal Alfvén waves in the loop boundary. (e) The velocity shear could become
unstable to the KHI. Adapted from Figure 1 in [85].

Many authors have described the development of the instability using numerical
simulations with three-dimensional MHD codes. For the case of coronal kink waves, the
first numerical simulations were presented by [54]. The authors found that the development
of the instability was sensitive to the thickness of the tube boundary between the interior
and exterior plasma and to the amplitude of the transverse wave motions. In many
subsequent studies, this process has been shown to be robust across a wide parameter
space. In particular, it can occur in a variety of atmospheric features such as coronal loops
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(e.g., [86]), prominences [87] and spicules [88], in multi-stranded loops [89], in radiatively
cooling loops (e.g., [90]) and in gravitationally stratified structures (e.g., [91]).

Figure 5. Disruption of the density profile during the formation of the magnetic Kelvin–Helmholtz
instability.

For a fundamental standing kink mode (with wave nodes at the two foot points and
an antinode at the loop apex), the velocity shear which drives the instability is largest
at the loop apex. As such, the deformation in the density cross-section is greatest in the
apex plane, and is typically very small close to the foot points. However, the Kelvin–
Helmholtz vortices stretch longitudinally along much of the length of the oscillating flux
tubes and, thus, a large fraction of the loop volume can be disrupted by the instability.
The characteristic vortices that form as the instability develops have been named in the
literature as TWIKH (transverse wave-induced Kelvin–Helmholtz) rolls, and are associated
with small scales in both the velocity and magnetic fields (as the field is approximately
frozen into the plasma). The generation of these small scales can be tracked using the
vorticity (for the velocity field) and the current density (for the magnetic field) and, in
non-ideal regimes, they lead to viscous and Ohmic heating. Since the perturbed velocity
field is largest at the wave antinodes, viscous wave heating occurs, preferentially, at the
loop apex (for a fundamental standing mode). Equally, the perturbed magnetic field is
largest at the loop foot points (wave nodes) and, thus, Ohmic heating rates tend to be largest
here (e.g., [83,92,93]). For the case of the KHI in standing kink modes, ref. [94] presented
detailed results showing that the instability generated more Ohmic than viscous heating,
but any irreversible temperature increase could be masked by the mixing of non-isothermal
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plasma within the Kelvin–Helmholtz vortices. More recently, ref. [85] quantified the rates
of magnetic reconnection that is able to occur across an oscillatory shear layer as a result
of the onset of the KHI. This was found to be largest when the instability growth rate was
greatest, e.g., for long field lines with no shear in the magnetic field (twist in the case of
cylindrical geometry).

3.1. Wave Excitation

During the development of the instability, energy cascades to increasingly small scales,
until it, inevitably, dissipates (in non-ideal plasmas). As such, the KHI is interesting in
the context of coronal wave heating as it enhances the energy dissipation rate. However,
the energy content in standing kink modes can be quite small and may, therefore, be
insufficient to significantly contribute to the coronal energy budget. This is especially true
for impulsively driven waves such as standing kink modes that are excited by a nearby
impulsive event (e.g., solar flare). Numerical models of such a case typically provide an
initial perturbation which contains all of the wave energy. Not only is this initial energy
unable to provide substantial heating, ref. [95] showed that if the instability forms at the
boundary of a prominence, the mixing of cold, dense plasma with much hotter and more
tenuous coronal plasma can cause an increase in the radiative losses and, thus, lead to
enhanced cooling. This increase in the energy loss rate is much larger than the energy
dissipation that could be obtained due to the relatively low wave energy content.

On the other hand, kink waves can be driven by continuous foot-point driving, which
provides a persistent source of energy to the system (e.g., [93,94]). For such models,
transverse modes are often excited by an oscillatory driver with a frequency that matches
the natural fundamental kink frequency of the system (e.g., [96]). This resonant driving
efficiently injects energy into the coronal volume and, thus, provides a greater chance of
substantial plasma heating (see Section 2). In this way, for the first time, ref. [97] presented
a wave heating model which was able to balance the radiative losses from the loop once
the instability developed. Despite this positive numerical result, ref. [98] presented analytic
arguments to show that, for the amplitude of kink modes observed in the corona, there is
insufficient energy to balance the expected energy losses.

A simple, continuous sinusoidal driver of the form described in Equation (1), or those
used for resonantly exciting standing kink modes, is unlikely to be particularly repre-
sentative of the complex motions that are observed at the solar surface. Consequently, it
remains unclear whether systems driven continuously with a sinusoidal velocity profile are
really applicable to the corona. In response to this criticism, recent work has focussed on
determining how standing kink modes can be excited by other means. For example, ref. [99]
showed how an imposed driving consisting of a range of different frequencies could excite
a standing kink mode due to preferential energy injection at resonant frequencies. More
recently, this work was extended in [99] to show how random driving could produce a
similar effect. Further possibilities have since been described by [100,101], which show
how steady flows in the photosphere and corona, respectively, can excite kink oscillations.
Regardless of the excitation mechanism, in all of these cases, the Kelvin–Helmholtz in-
stability and the associated cascade of energy to small scales were able to develop. The
damping time of a fundamental standing kink mode is strongly affected by the rate at
which energy is transferred to azimuthal Alfvén waves in the boundary of the oscillating
flux tube (resonant absorption [33]). This is an ideal process which progresses with or
without the development of the Kelvin–Helmholtz instability. The linear theory provides
expressions for the damping time of the global kink mode, which can be used to derive
seismological estimates from coronal observations. However, ref. [102] showed that the
onset of the KHI changes the kink mode damping time by modifying the resonant shell
in the loop boundary. As such, this raises questions about the validity of seismological
estimates if the instability develops in the corona.

In the absence of a smooth density transition across the boundary of an oscillating flux
tube, resonant absorption is unable to progress (at least initially, there is no resonant layer of
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field lines). The authors of ref. [103] exploited this to determine how the KHI develops both
with and without the simultaneous progression of resonant absorption. The authors found
that the instability could develop in either case; however, the nature of the vortices was
modified when resonant absorption was not permitted. In the classical case (with resonant
absorption), small azimuthal wave numbers (large vortices) had the fastest growth rates
and, thus, formed before higher wave number modes (smaller vortices). However, when
no smooth boundary layer was included, an apparent inverse energy cascade developed
with smaller vortices forming first before larger vortices, caused widespread disruption
to the loop cross-section. In this case, the formation of the K–H vortices allows resonant
absorption to commence, with energy being localised within the mixing layer. As such,
even in the case where no resonant absorption is initially possible, the instability generates
an evolving resonant layer which allows the energy transfer to occur. The authors showed
that resonant absorption is an important process that promotes the spread of wave-driven
turbulence throughout an oscillating structure.

3.2. Instability Growth Rate

The growth rate of the KHI in MHD simulations is sensitive to a variety of physical
(as shown in Equation (23)) and numerical factors. Firstly, the magnitude of the wave
perturbation is significant, with larger amplitude waves generating TWIKH rolls sooner
and leading to an increased loop disruption (e.g., [54,90]). Indeed, for continuous resonant
driving, the entire loop cross-section is readily deformed by the instability (e.g., [93]).
Secondly, the loop-aligned wave number is an important property that can modify the
growth rate of the instability through the action of the magnetic tension force (e.g., [56,85]).
Given the large length of coronal loops, this is typically a low number, and the magnetic
tension is small. Indeed, the assumption k‖ → 0 is often determined for simplicity (e.g., in
the analysis presented by [52]). However, the magnetic tension force is able to delay the
onset of the KHI (in terms of wave periods) and reduce the density disruption for shorter
loops (e.g., [85]). We note that, as the period of fundamental mode is reduced for shorter
field lines, the instability can actually happen sooner for shorter field lines, and it is only
delayed in terms of the number of wave periods.

Additionally, as energy dissipation extracts energy from the wave and reduces the
velocity shear which drives the instability, increasing the resistivity and/or viscosity reduces
the growth rate of the instability. Indeed, for particularly large values, the instability can
be suppressed entirely [104]. Due to computational constraints, the magnetic and viscous
Reynolds numbers that can be obtained in 3D MHD numerical simulations are typically
many orders of magnitude larger than expected for coronal plasmas. As such, the instability
growth rate in the corona may be much higher than is obtained in simulations. To this
end, as accurate modelling of the non-linear development of the KHI demands extremely
high spatial resolution, it is important to note that the instability is likely to be artificially
suppressed in a range of numerical simulations.

One further effect that can significantly reduce the growth rate of the instability is twist
in the magnetic field [85,105–107]. This effect is particularly profound for loops with thick
boundary layers [106]. Classical TWIKH rolls form longitudinal structures that run parallel
to the loop axis. For a twisted field, such a formation is restricted as twisted magnetic field
lines pass through multiple K–H vortices. This would generate large magnetic tension
forces, preventing the independent evolution of each vortex. The TWIKH rolls that manage
to form are aligned with the twisted field; however, even for a relatively low twist, they can
be much smaller than the vortices that form in corresponding, untwisted cases (e.g., [105]).
As such, the density deformation is significantly reduced in twisted loops, which reduces
the likelihood of being able to observationally identify the instability in the solar corona
(see below).

Whilst a simple azimuthal component in the magnetic field can reduce the growth rate
of the instability, it remains unclear whether more complex magnetic fields have a similar
(or even more restrictive) effect. The coronal field is very difficult to measure directly and,
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as such, its exact nature remains poorly constrained. Despite this, the constant motions
observed at the solar surface, coupled with the very low dissipation, suggest that the
coronal field should exist in a highly stressed state (e.g., [108]). If this is the case, and if this
complex field acts in a similar way to the simply twisted magnetic field, then it is possible
that KHI-driven turbulence is not as widespread in the corona as many numerical models
might suggest. As an example, in [109], the authors simulated transverse waves injected
into a complex and highly inhomogeneous magnetic field. Despite high-amplitude waves
forming as a result of localised resonances, no evidence of TWIKH rolls was detected.

3.3. Observational Considerations

Despite the large number of numerical studies predicting the development of KHI-
driven turbulence in transversely oscillating coronal loops, direct observational evidence
of this mechanism remains lacking. Indeed, a recent study of large amplitude oscillations
found no clear evidence of KHI development [110]. Whilst there are undoubtedly several
reasons for this, the most pressing probably concerns the spatial resolution afforded by con-
temporary telescopes. In MHD simulations of the KHI, the smallest scales are determined
by the numerical grid size and/or the magnitude of dissipation terms. For the Sun, the
smallest scales are bound by the dissipation length scale, which is likely much smaller than
the smallest lengths seen in simulations. More pertinently, it remains much smaller than
the resolution attained by even the most state-of-the-art telescopes.

In [63,111], the authors generated a synthetic emission from the results of high-
resolution numerical simulations of the KHI forming in transversely oscillating structures.
By degrading the spatial resolution of the emission to the levels obtained by high-resolution
missions (e.g., Hi-C; Figure 11 in [111]), the authors showed that it can be difficult to
definitively identify the TWIKH rolls in the imaging data. Given this result was derived
from simulations with relatively low Reynolds numbers (in comparison to coronal values),
which artificially restrict the cascade to small scales, for real coronal observations, this
issue is likely to be exacerbated. Not only is the spatial resolution a significant issue, but
LoS effects (due to the optically thin plasma) can mean the emission is integrated across
several K–H vortices. This further obfuscates observations and can lead to different results
from different LoS, according to the angle between the oscillation polarisation and the
viewing direction.

Despite these difficulties, the authors point out there are some characteristic signatures
of the wave dynamics which could be detected with the highest resolution instruments (e.g.,
Hi-C). These include out-of-phase behaviour between the intensity and Doppler velocity
oscillations, periodic loop broadening (at twice the oscillation frequency) and an increase in
line-broadening as the KHI develops, particularly in the loop boundary where the effects
are greatest. For coronal loops that have a cross-field temperature structure, the different
dynamics between the loop core and the loop boundary may be detected by considering
different spectral lines. In [63], the authors demonstrate that the evolution of resonant
absorption, phase mixing and KHI can match the appearance of decayless oscillations in
the corona. Additionally, the authors show that the localisation of energy at small scales
along with LoS integration effects, can lead to a significant underestimation of the total
wave energy from an observational analysis. As such, there may be as much as an order of
magnitude more energy than can be measured directly.

More recently [112] presented results which confirmed the difficulty in accurately
estimating the wave energy flux from synthetic observations derived from simulations
of the KHI induced by transverse oscillations. Once again, the authors demonstrated
that the complex wave dynamics produce signatures of decayless oscillations. However,
the observed amplitude of these oscillations only showed a weak correlation with the
strength of the wave driving. An extra complication for interpreting observations (either
synthetic or real) arises from the effects of background emission, as investigated in [113].
In order to compare with real observations, the authors transformed simulations of trans-
verse oscillations in a straight loop into semi-circular structures. In this geometry, they
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found that the contribution from the background emission could drastically decrease the
measured Doppler velocities and, thus, lead to significant errors in estimates of the wave
energy content.

In [114], the authors considered an additional effect of TWIKH rolls on observational
data. In particular, they showed that the differential emission measure (DEM) is broadened
when a coronal loop is driven continuously and significantly deformed by wave-driven
turbulence. Broad DEMs have been identified in observational data and had previously
been assumed to be associated with multi-stranded loops (e.g., [115,116]). This result is
particularly important in the context of recent studies, which show that multi-stranded
loops can be unstable to any transverse oscillation and, thus, may not be able to persist in
the corona (see [117] and Section 4).

In a pair of articles, [87,118] presented observational results of transverse oscillations
in a prominence together with the numerical modelling of this scenario. With a sophisti-
cated combination of observational and numerical works, the authors interpreted phase
differences between plane-of-sky motions and LoS Doppler velocities as evidence of the
wave behaviour described in this review (e.g., resonant absorption, phase mixing and KHI
evolution). The authors also observed a general shift from emission in cooler chromospheric
spectral lines to hotter coronal lines. At the time, this was posited as evidence for wave
heating in action. However, a later study by [95] argued this was not a result of energy
dissipation, but was instead caused by the mixing of hot coronal plasma with a cooler
prominence material. This leads to an average temperature increase in the prominence
boundary, causing the transfer of emission from cooler to hotter lines. Despite this, the
observations remain of significant interest, as they potentially provide evidence of the
instability developing in the solar corona.

4. Propagating Waves

Hitherto, we restricted our attention to the case of standing transverse oscillations. How-
ever, propagating modes are also very important in the solar atmosphere (e.g., [27,28,119,120]).
Clearly, this is particularly true for open-field regions, where there is no second foot point to
aid wave reflection or generate counter-propagating modes from oscillatory driving. However,
propagating transverse waves have also been observed in closed structures. Indeed, an analy-
sis of the wave power observed in closed-field regions, showed a disparity between the power
associated with the inward (Sun-ward) and outward-propagating waves (e.g., [121,122]). In
particular, results showed a greater power for the outwardly propagating oscillations. This
is indicative of energy being lost by the wave mode as it travels along field lines. Whilst
this could be evidence of energy dissipation, it could also represent a transfer of energy to
difficult-to-observe modes (e.g., through resonant absorption [121]) and, thus, not directly
showing wave heating.

As coronal loops have two magnetic foot points, different wave modes can be excited at
both ends. If these different wave modes each propagate along the loop, at some point they
encounter one another. In the linear wave regime, these waves can experience constructive
and destructive interference, depending on the relative phase shifts (see Section 2), but the
full wave behaviour simply remains the sum of the two individual wave modes. However,
in the non-linear regime, the wave modes are able to interact in a complex manner, leading
to a cascade of energy to increasingly small scales. It has long been established that this
non-linear interaction can induce the development of MHD turbulence (e.g., [123–126])
and, thus, generate the transfer of energy to small scales. For closed coronal field lines, it
is clear how the required propagating modes can be generated. Simply exciting different
non-linear wave modes from each of the two magnetic foot points is sufficient to set this
process in motion (e.g., [127–129]). Although counter-propagating modes may be trivial to
generate within closed structures, they are perhaps more frequently studied in open-field
topologies. In these cases, given the absence of a second foot point, counter-propagating
wave modes must be generated within the structure. Many studies (e.g., [130–132]) have
shown that this is possible due to the reflections caused by longitudinal density structuring
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(e.g., associated with gravitational stratification). As a result, the decay of propagating
Alfvén waves into turbulent-like regimes has been shown to be a promising mechanism for
accelerating and heating solar wind (e.g., [128,133–139]). In particular, ref. [140] showed
that longitudinal variations in the density can generate an energy cascade that may sustain
the temperature of open-field regions if the fluctuations are sufficiently large. The authors
found that variations in the density of the order, 24% were sufficient. The role of MHD
waves in open-field regions are explored more thoroughly in reviews by [141–143].

Solar wind is a particularly useful laboratory for testing and confirming theories
in MHD wave behaviour (e.g., see review by [144]). This is because, unlike closed-field
regions, it is accessible for in situ monitoring by near-Earth satellites at 1AU and, more
recently, in the inner heliosphere by the Parker Solar Probe and Solar Orbiter, for example.
This has allowed models of solar wind to be constrained by measurements at different
radial distances to the Sun. In particular, the characteristics of MHD turbulence in solar
wind are continuously being investigated (e.g., [145–149]), and very recent results show
signatures of wave-driven turbulence extending much closer to the Sun [9,150–152].

In the context of this review, it is important to note that propagating modes are
typically stable to the KHI (e.g., [53]). As such, this avenue to wave-driven turbulence is not
available to propagating waves. Therefore, propagating Alfvén waves in a homogeneous
medium do not drive an energy cascade to small scales. However, in an inhomogeneous
medium, the wave dynamics are not so straightforward. The Alfvén fast and slow modes
are no longer decoupled and waves can have mixed properties (for example, the kink mode
has mixed wave properties, e.g., [153]). One consequence of this increased complexity is
that unidirectional waves are able to drive turbulence in non-uniform media.

This was demonstrated using numerical simulations by [117,154]. The authors mod-
elled an inhomogeneous corona that was perturbed by transverse, unidirectional and
propagating waves. Within a few hundred seconds, the initial prescribed density profiles
were completely deformed by the wave behaviour. As with the standing modes (discussed
in Section 3), this led to a proliferation of current sheets throughout the waveguide. This
process, which has since been referred to as uniturbulence, may be important for wave
heating in the corona, as it significantly expands the set of conditions which permit tur-
bulent development. As transverse waves permeate the solar atmosphere, this suggests
that multi-stranded loops may not exist in the corona as they would quickly be disrupted
by wave-induced turbulence [117]. An example of this principle is shown in Figure 6.
However, it remains possible that sub-strands within a coronal loop are stabilised by a
structure within the magnetic field (e.g., [109]).

Figure 6. Disruption of the coronal loop strands as a result of uniturbulence (e.g., [117]).

Uniturbulence has since been studied in more depth with analytic treatments [155,156]
involving a description of the perturbations with Elsässer variables [157]. These studies
have emphasised the importance of the perpendicular structuring on the energy cascade
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and, thus, the wave heating rate. This analytic approach has also been extended to compute
the damping rates for standing modes accounting for the non-linear evolution of the
KHI [158]. In this study, the authors showed that the wave damping time is inversely
proportional to the amplitude of the kink mode. This is in agreement with observational
results showing that high-amplitude coronal kink waves dampen at a faster rate than
low-amplitude oscillations [159–161].

Further numerical simulations of propagating transverse waves excited by continuous
boundary motions also show that wave driving can significantly disrupt a pre-existing
density structure [162]. In this case, the evolution of the density profile permits wave
energy dissipation over a large cross-sectional area, and not just the initial boundary of the
loop. This is a positive result in view of the criticism outlined in [163], that wave heating is
not able to dissipate energy throughout the loop nor sustain the assumed density profile.
However, whilst the heating in such simulations can be significant for some configurations,
it has not been able to balance radiative losses in a dense flux tube [50,162], even for highly
enhanced dissipation coefficients. Further, it remains unclear whether similar wave driving
can support any form of density structure in a fully stratified atmosphere (e.g., [163,164]).

5. Discussion

In a range of physical fluids, high Reynolds number regimes often encourage the
formation of turbulence. As such, it may be of little surprise that recent modelling, alongside
previous analytical results, has suggested that coronal loops need little encouragement to
become turbulent. This review presented a series of studies in which transverse waves
drove an energy cascade to small scales in various atmospheric structures, such as loops,
prominences and spicules. These results consistently show that, even for the relatively
low Reynolds numbers that can be attained in large-scale numerical simulations, it is
remarkably easy to encourage the formation of MHD turbulence, e.g., due to the onset
of the Kelvin–Helmholtz instability. In the low dissipation corona, we can only expect
these non-linear effects to be even more significant, further promoting the development of
turbulence in the plasma. If this is indeed the case, there are implications across a wide
range of solar physics, not least for wave heating and coronal seismology.

Three substantial and outstanding problems for wave heating models are:

1. Are coronal waves associated with sufficient energy to heat the atmospheric plasma
and power solar wind?

2. Can wave heating self-consistently create and sustain the density profile assumed in
wave heating models?

3. Are heating rates too low in very high Reynolds number regimes?

As we have seen, wave-driven turbulence has significance for each of these questions.
Firstly, LoS integration effects through a turbulent region can lead to large uncertainties
in observational measurements. This ensures that estimating the wave energy flux is
particularly difficult if the coronal plasma is in a turbulent state. The second question is a
major problem with wave heating models highlighted in [163]. However, the disruption
of any pre-defined density profile by turbulent flows ensures that wave heating can occur
throughout the cross-section of a coronal structure and is not confined to the boundary
where Alfvén speed gradients are largest (e.g., for more efficient phase mixing). This is
positive in terms of the second question, although it remains to be seen if wave heating is
ever able to sustain coronal density structures in a stratified atmosphere. Thirdly, due to
computational constraints, investigating high Reynolds numbers coronal plasmas remains
very challenging. However, the onset of turbulence enhances energy dissipation rates
and, thus, is certainly promising for wave heating. The energy cascade to small scales
that develops as a result of these processes is an essential component of many wave
heating models. In closed coronal loops, unless waves are driven resonantly, or strongly
dissipated, simple sinusoidal drivers do not inject sufficient Poynting flux to balance the
expected energy losses (e.g., [71]). As resonant driving quickly excites large-amplitude
flows, even in this case, significant damping (and ultimately dissipation) must occur, as
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very large-amplitude waves have not been observed. For non-resonant sinusoidal driving,
it is important to note that the imposed velocity removes, on average, reflected wave energy
at the same rate as new energy is injected, unless the reflected waves have lower amplitudes
(e.g., due to dissipation) than the imposed velocity. As such, the rate of energy injection
(Poynting flux) is very sensitive to the rate of energy dissipation [10]. Whilst resonant
absorption [33] and phase mixing [45] can enhance dissipation rates by localising wave
energy, in the classical regimes, they do not typically provide sufficient energy to balance
radiative losses (e.g., [49,164]). As such, the onset of wave-driven turbulence is likely to be
essential for any significant oscillatory-powered heating in the corona.

The physical processes that produce wave-driven turbulence are robust in a large
variety of situations, such as different types of structures, different field line lengths, propa-
gating and standing waves, etc. Despite this, observational evidence for the formation of
TWIKH rolls in the corona remains very limited. A probable cause for this is due to the
technological constraints of current observational facilities, and, in particular, limitations on
the spatial resolution. With state-of-the-art instruments, high-resolution imaging is increas-
ing in availability (e.g., DKIST, Solar Orbiter and Hi-C sounding rocket flights). However,
even now, spatial scales approaching the dissipation length scale are well beyond reach.
Indirect indicators of turbulence (e.g., non-thermal line broadening) and/or interpretations
of decayless oscillations, as evidence of transverse wave-driven turbulence, are providing
some insight, but the nature of turbulence (or non-existence) in coronal plasma remains
uncertain. Indeed, ref. [165] recently argued that the corona is not in a turbulent state.

A potential inhibitor of wave-driven turbulence in the corona is the tension force
associated with the magnetic field. In particular, a component of the field parallel (or anti-
parallel) to the velocity shear flow can provide a large stabilising force that significantly
reduces the instability growth rate and, thus, greatly reduces plasma mixing. The exact
nature of the coronal field remains unclear but a large group of coronal heating models
require a proliferation of current sheets which must be associated with a complex and
convoluted field. It remains uncertain whether the instabilities discussed above are able to
fully develop in a much more inhomogeneous field. Certainly, in this state, wave processes
such as phase-mixing can still enhance the rate of wave dissipation. However, for observed
wave amplitudes, this enhancement may still be insufficient to generate high heating
rates [109]. As the development of wave-driven turbulence is associated with significant
consequences for wave energy estimates and seismological inversions, it is imperative to
determine whether it is ubiquitous in the corona.
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