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Abstract: Although there are many continuous distributions in the literature, only a handful take
advantage of the modeling power provided by trigonometric functions. To our knowledge, none of
them are based on the so-called secant function, defined as the reciprocal of the cosine function. The
secant function can go to large values whenever the cosine function goes to small values. The idea is to
profit from this trigonometric property to modify well-known distribution tails and overall skewness
features. With this in mind, in this paper, a new class of trigonometric distributions based on the secant
function is introduced. It is called the Sec-G class. We discuss the main mathematical characteristics
of this class, including series expansions of the corresponding cumulative distribution and probability
density functions, as well as several probabilistic measures and functions. In particular, we present
the moments, skewness, kurtosis, Lorenz, and Bonferroni curves, reliability coefficient, entropy
measure, and order statistics. Throughout the study, emphasis is placed on the unique four-parameter
continuous distribution of this class, defined with the Kumaraswamy-Weibull distribution as the
baseline. The estimation of the model parameters is performed using the maximum likelihood method.
We also carried out a numerical simulation study and present the results in graphic form. Three
referenced datasets were analyzed, and it is proved that the proposed secant Kumaraswamy-Weibull
model outperforms important competitors, including the Kumaraswamy-Weibull, Kumaraswamy-
Weibull geometric, Kumaraswamy-Weibull Poisson, Kumaraswamy Burr XII, and Weibull models.

Keywords: trigonometric class of distributions; secant function; Kumaraswamy-Weibull distribution;
maximum likelihood estimation

AMS Subject Classification: 60E05; 62E15; 62F10

1. Introduction

Standard (continuous) distributions do not provide enough modeling flexibility to
acceptably evaluate all types of data. It is especially true for data with unusual tails,
skewness, or kurtosis characteristics. To bridge that gap, researchers have proposed many
classes of distributions in recent literature, attempting to broaden the properties of existing
distributions. The majority are created by changing basic baseline distributions. The
most popular transformations are those that rely on analysis operators (power, integral,
composition, . . . ) and one or more tuning parameters. The unavoidable works in this regard
are those of [1], introducing the exp-G class, Reference [2], presenting the Kumaraswamy-G
class, Reference [3], introducing the Marshall–Olkin-G class, Reference [4], developing the
beta-G class, and [5] introducing the gamma-G class. We also refer the reader to Table 1
of [6], which provides an exhaustive list of the most useful ones, with the references therein.
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Even with the advancements of modern applied science experiments, there is still a growing
requirement for adaptable statistical models to adapt to all kinds of data, leading to the
development of new approaches based on novel analytical techniques.

On the other hand, trigonometric functions have examples in different areas, such
as mathematics, physics, biology, and engineering. The sine distribution was proposed
by [7] in the last century. The model’s creation arose from the need to calculate the
impact angles on the moon’s craters caused by the meteorite. In this context, Reference [8]
proposed a system of distributions where the two cumulative distribution functions (CDFs)
depend exclusively on tangent and sine functions, known as Burr type V and Burr type
XI distributions. Although these distributions are not the most preferred by researchers,
both distributions have numerous applications. Reference [9] proposed using the cosine
distribution to approximate the normal distribution. The Beta trigonometric distribution,
proposed by [10], can be used to model economic data. These famous circular distributions
can be used in many applications, such as insect life, widely applied in geology [11]. In
many phenomena, circular measurements, such as the movement direction of an animal
after a given stimulus, wind direction analysis, the arrival time of a patient in a hospital,
and insect visits in flowers, are also analyzed by these circular distributions.

As a result, logically, there is a growing interest in new distributions and classes of
distributions based on trigonometric functions sin(x), cos(x), tan(x), etc. Such classes take
advantage of the curvature properties of these trigonometric functions to produce flexible
distributions with desirable properties, in terms of modeling. In particular, greater power
is gained in the tails without including new parameters. We can point the reader to the
works of [12–20]. To the best of our knowledge, no class of distributions is centered on
the secant function, defined as the reciprocal of the cosine function sec(x) = 1/ cos(x).
When the cosine function takes small values, the secant function takes large values. This
characteristic could be useful for changing the tails and overall skewness of an existing
distribution. With this in mind, in this research, we aimed to develop and analyze the
secant generated (Sec-G) class of distributions, which are described by the following CDF:

H(x; ζ) = sec
(π

3
G(x; ζ)

)
− 1, x ∈ R, (1)

where G(x; ζ) is a CDF of a baseline (continuous) distribution depending on one or sev-
eral parameters represented by ζ. Further motivations behind the Sec-G class are the
following ones:

(a) Every chosen baseline distribution leads to a previously unstudied trigonometric
distribution.

(b) The corresponding CDF has a tractable expression, implying the same for all related
functions (such as the probability density, hazard rate, and quantile functions), and
there is no additional parameter to those of the baseline distribution.

(c) One can prove that the following first-order stochastic dominance property: for any
x ∈ R, we have

H(x; ζ) ≤ G(x; ζ).

It means that the Sec-G class stochastically dominates its baseline distribution; it
provides a real alternative model compared to the baseline model in the CDF sense.
For instance, the Sin-G class by [13,14] satisfies the exact reversed first-order stochastic
dominance property, which makes the Sec-G class a complementary solution.

(d) Thanks to the well-known series expansion function of the secant function, simple
series expansions of some important functions are feasible.

(e) More secondary, if we attempt to link the Sec-G class to the actual literature, we
remark that it belongs to the general classes of distributions proposed by [21,22].
Indeed, we have H(x; ζ) =

∫ G(x;ζ)
0 r(t)dt, where r(t) = (π/3) sec(πt/3) tan(πt/3)

defines a (new) generator probability density function (PDF).
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(f) The statistical models developed by the Sec-G class are manageable in terms of
computing. They may be employed effectively in a real-data analysis situation.

All of those points are developed and discussed throughout the rest of the study. We
emphasize the famous Kumaraswamy-Weibull (Kum-W) distribution introduced by [23] as
the baseline, intending to create an alternative trigonometric four-parameter distribution
with different levels of functionalities. This paper will show how the proposed distribution
can outperform the goodness-of-fit power of the Kum-W distribution in a concrete data
analysis scenario.

The paper is as follows: Section 2 provides the essential functions of the Sec-G class,
with a focus on the Kum-W distribution as the baseline. The main properties of the class are
discussed in Section 3. Applications to simulated and real-life data are given in Section 4.
Some concluding remarks are formulated in Section 5.

2. Basics on the Sec-G Class

Here, we complete the presentation of the Sec-G class, with a focus on its main
functions of interest.

2.1. Main Functions

First, we recall that the Sec-G class is defined by the CDF H(x; ζ), given by Equa-
tion (1). Clearly, by the definition of H(x; ζ), the support of the corresponding distribution
corresponds to the support of the baseline distribution. In addition, it is worth noting that
the Sec-G class is identifiable if and only if the baseline distribution is identifiable. That is,
the equality H(x; ζ1) = H(x; ζ2) is equivalent to G(x; ζ1) = G(x; ζ2), which is equivalent
to ζ1 = ζ2.

As another important function of the Sec-G class, the survival function, is given by
S(x; ζ) = 1− H(x; ζ), that is

S(x; ζ) = 2− sec
(π

3
G(x; ζ)

)
, x ∈ R.

Upon differentiation of H(x; ζ) with respect to x, the corresponding PDF is given by

h(x; ζ) =
π

3
g(x; ζ) sec

(π

3
G(x; ζ)

)
tan
(π

3
G(x; ζ)

)
, x ∈ R, (2)

where g(x; ζ) denotes the PDF corresponding to G(x; ζ).
Moreover, the cumulative hazard rate function of the Sec-G class can be expressed as

Ω(x; ζ) = − log[S(x; ζ)]; that is

Ω(x; ζ) = − log
[
2− sec

(π

3
G(x; ζ)

)]
, x ∈ R.

The corresponding hazard rate function (HRF) is obtained upon differentiation of
Ω(x; ζ) with respect to x; that is

R(x; ζ) =

π

3
g(x; ζ) sec

(π

3
G(x; ζ)

)
tan
(π

3
G(x; ζ)

)
2− sec

(π

3
G(x; ζ)

) , x ∈ R.

These functions are essential for analyzing all possibilities of the Sec-G class in a
practical setting. In particular, functions h(x; ζ) and R(x; ζ) are very informative about
the modeling properties of the related distributions; the more they show various forms
of shapes, the more the flexibility of the related distribution is desirable from a statistical
point of view.
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Another important function is the quantile function, defined as the inverse function of
H(x; ζ). After some algebra, we get

Q(u; ζ) = Q∗

(
3
π

arcsec(u + 1); ζ

)
, u ∈ (0, 1),

where Q∗(u; ζ) denotes the quantile function corresponding to G(x; ζ) and arcsec(x)
denotes the arcsecant function, defined as the inverse function of sec(x), i.e.,
arcsec(x) = arcos(1/x). To our knowledge, the Sec-G class is the first one with a quantile
function depending on the arcsecant function. Then, we can express the three quartiles,
including the median, as M = Q(0.5; ζ). We can also define some measures of skewness
and kurtosis, such as the MacGillivray skewness proposed by [24] and the Moors kurtosis
introduced by [25]. Finally, by considering a random variable U following the uniform
distribution over (0, 1), we can generate values from the Sec-G class from generated val-
ues from U, by using the fact that Q(U; ζ) has the CDF of the Sec-G class as defined by
Equation (1).

2.2. On the Shapes of the PDF and HRF

Here, we derive the basics on the shapes of the PDF and HRF of the Sec-G class. First,
the derivative of log[h(x; ζ)] with respect to x is

{log[h(x; ζ)]}′ = g(x; ζ)′

g(x; ζ)
+

π

3
g(x; ζ) tan

(π

3
G(x; ζ)

)
+

π

3
g(x; ζ)

[
sec
(π

3
G(x; ζ)

)]2

tan
(π

3
G(x; ζ)

) .

Thus, the critical point(s) of h(x; ζ) is (are) the root(s) of the following non-linear
equation: {log[h(x; ζ)]}′ = 0. Such a critical point, say xo, corresponds to a local maximum,
a local minimum, or a point of inflection, depending on whether κ < 0, κ > 0 or κ = 0,
where κ = {log[h(x; ζ)]}′′ |x=xo .

The same methodology holds for the HRF of the Sec-G class. Indeed, the derivative of
log[R(x; ζ)] with respect to x is

{log[R(x; ζ)]}′ = g(x; ζ)′

g(x; ζ)
+

π

3
g(x; ζ)

[
sec
(π

3
G(x; ζ)

)]2

tan
(π

3
G(x; ζ)

) +
2π

3
g(x; ζ)

tan
(π

3
G(x; ζ)

)
2− sec

(π

3
G(x; ζ)

) .

Thus, the critical point(s) of R(x; ζ) is(are) the root(s) of the following non-linear
equation: {log[R(x; ζ)]}′ = 0. Again, such a critical point, say x∗, corresponds to a local
maximum, a local minimum or a point of inflection, depending on whether υ < 0, υ > 0 or
υ = 0, where υ = {log[R(x; ζ)]}′′ |x=x∗ .

Let us now derive some asymptotic results on these functions. First, we recall that:
when y → 0, sec((π/3)y) − 1 ∼ (π2/18)y2 and tan((π/3)y) ∼ (π/3)y, and, when
y → 1, sec((π/3)y)− 1 ∼ 1− (2π/

√
3)(1− y) and tan((π/3)y) ∼

√
3− (4π/3)(1− y).

Therefore, when G(x; ζ)→ 0, we have the following equivalences:

H(x; ζ) ∼ π2

18
G(x; ζ)2, h(x; ζ) ∼ π2

9
g(x; ζ)G(x; ζ), R(x; ζ) ∼ π2

9
g(x; ζ)G(x; ζ).

Moreover, when G(x; ζ)→ 1, we have the following equivalences:

H(x; ζ) ∼ 1− 2π√
3
(1− G(x; ζ)), h(x; ζ) ∼ 2π√

3
g(x; ζ), R(x; ζ) ∼ g(x; ζ)

1− G(x; ζ)
.

For a given baseline CDF G(x; ζ), these results are helpful in determining the asymp-
totic comportments of the PDF and HRF of the corresponding distribution. This point is
illustrated in the next subsection by considering a special member of the Sec-G class.
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2.3. The Sec-Kum-W Distribution

The Sec-G class, due to its original definition, contains many new trigonometric
distributions. Here, a promising one is presented. The Kum-W distribution defined it as
the baseline. As a brief description, the Kum-W distribution was introduced by [23] with
the CDF given by

G(x; ζ) = 1−
{

1− [1− exp(−(λx)c)]a
}b, x > 0,

where ζ = (a, b, c, λ), λ > 0 is a scale parameter, and a, b, c > 0 are shape parameters, and
the PDF is given by

g(x; ζ) = abcλcxc−1 exp(−(λx)c)[1− exp(−(λx)c)]a−1{1− [1− exp(−(λx)c)]a
}b−1.

The Kum-W distribution contains many well-referenced distributions. The most
notable ones are the Weibull, exponentiated Weibull, and exponentiated exponential distri-
butions (see [26]). Other examples are provided in Table 1 of [23]. The Kum-W distribution
supports all five major HRF shapes: constant, increasing, decreasing, bathtub, and uni-
modal. In the last decade, the Kum-W distribution proved to be one of the more efficient
lifetime distributions for data analysis. For further information, see, for instance [27–29].

Thus, in this part, we propose an extension of the Kum-W distribution that first-
order stochastically dominates it, with a similar level of flexibility. We define the Sec-
Kum-W distribution by the CDF given by Equation (1) with G(x; ζ) as the CDF of the
Kumaraswamy-Weibull distribution; that is

H(x; ζ) = sec
(π

3

(
1−

{
1− [1− exp(−(λx)c)]a

}b
))
− 1, x > 0. (3)

It thus satisfies the following first-order stochastic dominance property: H(x; ζ) ≤
G(x; ζ) for any x ∈ R. Then, all of the functions presented in the previous section can be
expressed. In particular, the corresponding PDF and HRF are, respectively, obtained as

h(x; ζ) =
π

3
abcλcxc−1 exp(−(λx)c)[1− exp(−(λx)c)]a−1{1− [1− exp(−(λx)c)]a

}b−1

× sec
(π

3

(
1−

{
1− [1− exp(−(λx)c)]a

}b
))

tan
(π

3

(
1−

{
1− [1− exp(−(λx)c)]a

}b
))

, (4)

x > 0

and

R(x; ζ) =
π

3
abcλcxc−1 exp(−(λx)c)[1− exp(−(λx)c)]a−1{1− [1− exp(−(λx)c)]a

}b−1

×
sec
(π

3

(
1−

{
1− [1− exp(−(λx)c)]a

}b
))

tan
(π

3

(
1−

{
1− [1− exp(−(λx)c)]a

}b
))

2− sec
(π

3

(
1−

{
1− [1− exp(−(λx)c)]a

}b
)) ,

x > 0.
Moreover, the quantile function of the Sec-Kum-W distribution is specified by

Q(u; ζ) =
1
λ

− log

1−
[

1−
(

1− 3
π

arcsec(u + 1)
)1/b

]1/a

1/c

, u ∈ (0, 1).

In particular, this analytical expression allows us the simulation of random values
from the Sec-Kum-W distribution.

The critical points and asymptotic properties of h(x; ζ) and R(x; ζ) can be determined
by using the non-linear equations presented in the above section. Due to their analytical
complexity, a mathematical software can help to obtain precise calculations of the critical
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points. On the other hand, by using Section 3 of [23], we arrive at the following equivalences.
When x → 0, we get

H(x; ζ) ∼ π2

18
b2λ2acx2ac, h(x; ζ) ∼ π2

9
ab2cλ2acx2ac−1, R(x; ζ) ∼ π2

9
ab2cλ2acx2ac−1.

Moreover, when x → +∞, we have the following equivalences:

H(x; ζ) ∼ 1− 2π√
3

ab exp(−b(λx)c), h(x; ζ) ∼ 2π√
3

abbcλcxc−1 exp(−b(λx)c), R(x; ζ) ∼ bcλcxc−1.

As a consequence, when x → 0, h(x; ζ) → 0 for 2ac > 1, h(x; ζ) → (π2/18)b2λ
for 2ac = 1, and h(x; ζ) → +∞ for 2ac < 1. The same asymptotes hold for R(x; ζ).
Moreover, when x → +∞, h(x; ζ)→ 0 in all circumstances, whereas R(x; ζ)→ 0 for c < 1,
R(x; ζ) → bλ for c = 1, and R(x; ζ) → +∞ for c > 1. One can remark that, as for the
former Kumaraswamy-Weibull distribution, the (asymptotic) tails of h(x; ζ) are of different
nature: the upper tail is of exponential type whereas the lower tail is of polynomial type.

The main interest of the Sec-Kum-W distribution is to possess very flexible PDF and
HRF. This aspect is difficult to reveal from an analytical approach, which motivates us to
provide graphic evidence. Thus, Figures 1 and 2 present some curves of these two functions
for selected values of the parameters, respectively.
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Figure 1. Plots of the PDF of the Sec-Kum-W distribution for some selected values of the parameters.

We see in Figure 1 that the PDF of the Sec-Kum-W distribution presents great flexibility
in the central and dispersion parameters (mean, modes, variance. . . ), skewness, and kurto-
sis, observing highly-right skewed as well as near-symmetrical curves. Comparatively, the
Sec-Kum-W distribution’s PDF is more flexible in the right tail and kurtosis level than the
PDF of the Kum-W distribution. However, it appears less likely to modulate the left tail
(see Figure 1 of [23]).

From Figure 2, we see that the corresponding HRF can have constant, increasing, de-
creasing, bathtub, and unimodal shapes. Moreover, different levels of convexity–concavity
are observed. From the statistical modeling point of view, these are very desirable prop-
erties. Comparatively, we can observe that the HRF of the Sec-Kum-W distribution can
be increasing and concave (for (a, b, c, λ) = (3.5, 0.3, 0.4, 1.9), for instance), which is less
immediate for the HRF of the Kum-W distribution (see Figure 2 of [23]).
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Figure 2. Plots of the HRF of the Sec-Kum-W distribution for some selected values of the parameters.

3. Mathematical Properties

Here, the main mathematical properties of the Sec-G class are derived, with applica-
tions to the Sec-Kum-W distribution when appropriate.

3.1. Useful Series Expansions

The following result presents useful series expansions for the CDF and PDF of the
Sec-G class in terms of CDFs and PDFs of the exp-G class introduced by [1].

Theorem 1. The CDF and PDF of the Sec-G class given by Equations (1) and (2) can be expressed as

H(x; ζ) =
+∞

∑
k=1

ωkG2k(x; ζ), h(x; ζ) =
+∞

∑
k=1

ωkg2k(x; ζ),

respectively, where

ωk =
(π

3

)2k (−1)kE2k
(2k)!

,

E2k is the Euler number, G2k(x; ζ) = G(x; ζ)2k and g2k(x; ζ) = 2kg(x; ζ)G(x; ζ)2k−1,
which are the CDF and PDF of the exp-G class with a power parameter of 2k, respectively.

Proof. The proof is centered around the following well-established result. For any y ∈
(−π/2, π/2), the secant function has the following series expansion:

sec(y) =
+∞

∑
k=0

(−1)kE2k
(2k)!

y2k.

We may refer the reader to [30], and the references therein. Therefore, since (π/3)G(x; ζ)
∈ (0, π/3), we can express the CDF of the Sec-G class as

H(x; ζ) =
+∞

∑
k=1

(−1)kE2k
(2k)!

(π

3
G(x; ζ)

)2k
=

+∞

∑
k=1

ωkG(x; ζ)2k. (5)

Upon differentiation of the above function with respect to x, the desired series expan-
sion for h(x; ζ) follows. This ends the proof of Theorem 1.
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As an example, let us consider the Sec-Kum-W distribution, defined by the CDF
and PDF given by Equations (3) and (4), respectively. Then, the CDF of the Sec-Kum-W
distribution can be expressed as

H(x; ζ) =
+∞

∑
k=1

ωkG2k(x; ζ),

with, by applying the (standard and generalized) binomial formula three times in a row,

G2k(x; ζ) =
[
1−

{
1− [1− exp(−(λx)c)]a

}b
]2k

=
2k

∑
j=0

+∞

∑
l=0

+∞

∑
s=0

(
2k
j

)(
bj
l

)(
al
s

)
(−1)j+l+s exp(−s(λx)c).

Moreover, the corresponding PDF can be expressed as

h(x; ζ) =
+∞

∑
k=1

ωkg2k(x; ζ), (6)

where

g2k(x; ζ) =
2k

∑
j=0

+∞

∑
l=0

+∞

∑
s=1

(
2k
j

)(
bj
l

)(
al
s

)
(−1)j+l+s+1qs(x; ζ), (7)

and qs(x; ζ) = csλcxc−1 exp(−s(λx)c), corresponding to the PDF of the Weibull distribution
with scale parameter of s1/cλ and shape parameter of c.

We can notice that G2k(x; ζ) and g2k(x; ζ) correspond to the CDF and PDF of the expo-
nentiated Kumaraswamy-Weibull distribution with a power parameter of 2k, respectively,
which was studied in [27]. Thus, some results in [27] can be transposed in the context of
the Sec-Kum-W distribution.

3.2. Moments

We now investigate some exploitable expressions for various moments or deriva-
tions. Let X be a random variable having the CDF and PDF of the Sec-G class given by
Equations (1) and (2), respectively. Then, for any function ψ(x) providing that the coming
integral term exists, we have

Υψ(X) = E[ψ(X)] =
∫ +∞

−∞
ψ(x)h(x; ζ)dx.

In most cases, the integral term can be calculated numerically by the use of a math-
ematical software. A tractable series expansion is also available based on Theorem 1;
we have

Υψ(X) =
+∞

∑
k=1

ωk

∫ +∞

−∞
ψ(x)g2k(x; ζ)dx. (8)

According to the complexity of g2k(x; ζ), the integral term can have an analytical
expression. Thus, for a large integer K, the following finite sum can provide a suitable
approximation for Υψ(X):

Υψ(X) ≈
K

∑
k=1

ωk

∫ +∞

−∞
ψ(x)g2k(x; ζ)dx.
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Table 1 lists several well-known measures or functions related to the concept of
moments based on specific choices for ψ(x), including the mean, raw moments, variance,
central moments, moment generating function, characteristic functions, and incomplete
moments.

Table 1. Well-known measures or functions related to the concept of moments.

Υψ(X) ψ(x) Notation

mean x µ

mth raw moment xm µ′m

variance (x− µ)2 σ2

mth central moment
(x− µ)m =

m

∑
q=0

(
m
q

)
(−1)qµqxm−q

µm

mth descending factorial
moment

x(x− 1)(x− 2) . . . (x−m + 1) µ′(m)

moment generating function
in t etx M(t)

characteristic function in t eitx ϕ(t)

mth incomplete moment in t xm if x ≤ t, 0 if x > t µm(t)

The result below illustrates the interest of Equation (8) by determining a tractable
series expansion for the mth raw moment of a random variable following the Sec-Kum-W
distribution.

Proposition 1. Let X be a random following the Sec-Kum-W distribution, i.e., with CDF and PDF
given by Equations (3) and (4), respectively. Then, the mth raw moment of X is given by

µ′m = λ−mΓ
(m

c
+ 1
) +∞

∑
k=1

2k

∑
j=0

+∞

∑
l=0

+∞

∑
s=1

ωk

(
2k
j

)(
bj
l

)(
al
s

)
(−1)j+l+s+1s−m/c,

where Γ(x) =
∫ +∞

0 tx−1e−tdt is the so-called gamma function.

Proof. Owing to Equations (8) with ψ(x) = xm, (7) and (6), we have

µ′m = E(Xm) =
+∞

∑
k=1

ωk

∫ +∞

−∞
xmg2k(x; ζ)dx

=
+∞

∑
k=1

2k

∑
j=0

+∞

∑
l=0

+∞

∑
s=1

ωk

(
2k
j

)(
bj
l

)(
al
s

)
(−1)j+l+s+1

∫ +∞

0
xmqs(x; ζ)dx.

Now, by applying the change of variable y = s(λx)c, we get∫ +∞

0
xmqs(x; ζ)dx = csλc

∫ +∞

0
xm+c−1 exp(−s(λx)c)dx = λ−ms−m/cΓ

(m
c
+ 1
)

.

This ends the proof of Proposition 1.

With a slight modification, the mth incomplete moment of a random variable following
the Sec-Kum-W distribution is given in the next result.
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Proposition 2. Let X be a random following the Sec-Kum-W distribution, i.e., with CDF and PDF
given by Equations (3) and (4), respectively. Then, the mth incomplete moment of X with respect to
t is given by

µm(t) = λ−m
+∞

∑
k=1

2k

∑
j=0

+∞

∑
l=0

+∞

∑
s=1

ωk

(
2k
j

)(
bj
l

)(
al
s

)
(−1)j+l+s+1s−m/cΓL

(m
c
+ 1, s(λt)c

)
,

where ΓL(x, y) =
∫ y

0 tx−1e−tdt is the lower incomplete gamma function.

The proof of Proposition 2 follows the one of Proposition 1. It is thus omitted.
For measuring and visualizing income inequalities, the Bonferroni and Lorenz curves

are commonly used. The Lorenz curve, denoted by L(p), is the proportion of total income
volume accumulated by those units with an income less than or equal to a certain volume,
and the Bonferroni curve, denoted by B(p), is the scaled conditional mean curve; that is,
the population’s ratio of group mean income. In the setting of the Sec-G class, L(p) and
B(p) are defined by

L(p) =
µ1[Q(p; ζ)]

µ
, B(p) =

µ1[Q(p; ζ)]

pµ
, p ∈ (0, 1),

respectively. The plots of these two kinds of curve in the case of the Sec-Kum-W distribution
are given in Figure 3 for b = 1, c = 1, and λ = 0.5, and selected values for a.
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Figure 3. Plots of L(p) and B(p) for the Sec-Kum-W distribution for b = 1, c = 1, and λ = 0.5, and
selected values for a, and varying p.

We see that, for the considered values of the parameters, L(p) is increasing and convex,
whereas B(p) is increasing with a tilde shape (concave, then convex, then concave).

For the special Sec-Kum-W distribution, the moment measures µ and µ1(t) can be
derived from Proposition 1 and Proposition 2, respectively.

We can express the central moments, moment generating function, and characteristic
function in a similar manner. In addition, from the central moments and variance of X, we
can define the mth general coefficient of the Sec-G class as

C(m) =
µm

σm/2 .
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Then, C(3) and C(4) are used to calculate skewness and kurtosis. Thus, depending
on C(3) < 0, C(3) = 0, or C(3) > 0, the sign of C(3) informs on the distribution’s left,
symmetric, or right skewed nature, whereas the value of C(4) informs on its tailedness.
In order to see the numerical capabilities of these measures, some graphics are provided.
For some parameter values of b, c, and λ, the skewness and kurtosis coefficients for the
Sec-Kum-W distribution are plotted as functions of a in Figure 4, and as functions of b in
Figure 5. In addition, for some parameter values of a, b, and λ, they are plotted as functions
of c in Figure 6.

From Figures 5 and 6, we can see that the Sec-Kum-W is mainly a right skewed lifetime
distribution. For a distribution of this kind, we observe the enormous flexibility that this
new distribution presents in its asymmetry and kurtosis curves.
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Figure 4. Plots of skewness and kurtosis coefficients of the Sec-Kum-W distribution as functions of a
for b = 1.5, λ = 2.5, and selected values of c.
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Figure 5. Plots of skewness and kurtosis coefficients of the Sec-Kum-W distribution as functions of b
for c = 1.47, λ = 2.4, and selected values of a.
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Figure 6. Plots of skewness and kurtosis coefficients of the Sec-Kum-W distribution as functions of c,
for b = 1.50, λ = 2.5, and selected values of a.

3.3. Coefficient of Reliability

We are now studying the coefficient of reliability of the Sec-G class via the concept
described in [31]. Mathematically, it is expressed as

R =
∫
R

h1(x)H2(x)dx,

where h1(x) denotes the PDF of the Sec-G class as in Equation (2) with a baseline CDF
given by G(x; ζ1), and H2(x) denotes the CDF of the Sec-G class as in Equation (1) with
a baseline CDF given by G(x; ζ2). Hence, it is assumed that ζ1 and ζ2 are two parameter
vectors, possibly different. The integral expression of R can be complicated to determine
due to the complexity of the involved functions. However, a series expansion is possible
thanks to the expansion of h1(x) and H2(x). From Equations (5) and (6), as well as the
interchanged integral and sum signs, it follows that

R =
∫
R

[
+∞

∑
k=1

ωkg2k(x; ζ1)

]
×
[
+∞

∑
`=1

ω`G2`(x; ζ2)

]
dx =

+∞

∑
k=1

+∞

∑
`=1

ωkω`

∫
R

g2k(x; ζ1)G2`(x; ζ2)dx.

In an expanded form, we obtain

R = 2
+∞

∑
k=1

+∞

∑
`=1

ωkω`k
∫
R

g(x; ζ1)G(x; ζ1)
2k−1G(x; ζ2)

2`dx.

For given G(x; ζ1) and G(x; ζ2), this integral can be computed numerically.
As a consequence, if one can assume the existence of υ > 0 such that G(x; ζ2) =

G(x; ζ1)
υ, then we have the following simple series expansion:

R =
+∞

∑
k=1

+∞

∑
`=1

ωkω`
k

k + `υ

For υ = 1, we get the expected R = 1/2.
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3.4. Entropy Measure

The entropy of a distribution can be presented as a measure of uncertainty; the higher
the entropy, the higher the disorder and the lower the chance of seeing a specific event. This
part focuses on the Rényi entropy of the Sec-G class, as defined in a general way in [32].
Let γ > 0 and γ 6= 1. Then, the Rényi entropy of the Sec-G class is specified by

I(γ) =
1

1− γ
log
[∫

R
h(x; ζ)γdx

]
=

1
1− γ

log
[∫

R

(π

3

)γ
g(x; ζ)γ sec

(π

3
G(x; ζ)

)γ
tan
(π

3
G(x; ζ)

)γ
dx
]

.

The calculus of I(γ) is still possible with mathematical software. We propose
here a series expansion approach. By virtue of the Taylor series of the function
sec((π/3)u)γ tan((π/3)u)γ at a given point u = u0, we can write

sec
(π

3
u
)γ

tan
(π

3
u
)γ

=
+∞

∑
k=0

k

∑
r=0

ak

(
k
r

)
(−1)k−ruk−r

0 ur,

where ak =
[
sec((π/3)u)γ tan((π/3)u)γ](k) |u=u0 /k!.

We get the following result after some algebra and the swapping of the integral and
sum signs:

I(γ) =
1

1− γ

{
γ log

(π

3

)
+ log

[
+∞

∑
k=0

k

∑
r=0

ak

(
k
r

)
(−1)k−ruk−r

0

∫
R

g(x; ζ)γG(x; ζ)rdx

]}
.

In the vast majority of cases, I(γ) can be computed numerically. This can be done for
the Sec-Kum-W distribution, for instance. As a side note, the famous Shannon entropy is
given by S = −

∫
R log[h(x; ζ)]h(x; ζ)dx. It corresponds to the limit case of I(γ) when γ

tends to 1. Figure 7 presents some plots of the Rényi entropy for the Sec-Kum-W distribution
with selected parameter values and varying γ.

Figure 7 reveals a wide panel of shapes for the Rényi entropy of the Sec-Kum-W
distribution, illustrating an undeniable entropy flexibility.

3.5. Order Statistics

Order statistics can be used in a variety of mathematical theories and applications.
Here, we look at some of the distributional properties of the ith order statistic from the
Sec-G class. Let X1, . . . , Xn be n random variables from a random sample of the Sec-G class.
Then, the PDF of the ith order statistic, say Xi:n, is given by

hi:n(x; ζ) = i
(

n
i

)
h(x; ζ)H(x; ζ)i−1[1− H(x; ζ)]n−i, x ∈ R.

That is, in an expanded form, we have

hi:n(x; ζ) = i
(

n
i

)
π

3
g(x; ζ) sec

(π

3
G(x; ζ)

)
tan
(π

3
G(x; ζ)

)[
sec
(π

3
G(x; ζ)

)
− 1
]i−1
×[

2− sec
(π

3
G(x; ζ)

)]n−i
, x ∈ R.

It follows from the binomial formula applied two times that

hi:n(x; ζ) =
i−1

∑
k=0

n−i

∑
`=0

bk,`g(x; ζ) tan
(π

3
G(x; ζ)

)
sec
(π

3
G(x; ζ)

)k+`+1
, x ∈ R,

where bk,` = (π/3)i(n
i )(

i−1
k )(n−i

` )(−1)i−1−k+`2n−i−`.
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As a result, for any function ψ(x) providing that the coming integral term exists,
we have

E[ψ(Xi:n)] =
∫
R

ψ(x)hi:n(x; ζ)dx

=
i−1

∑
k=0

n−i

∑
`=0

bk,`

∫
R

ψ(x)g(x; ζ) tan
(π

3
G(x; ζ)

)
sec
(π

3
G(x; ζ)

)k+`+1
dx.
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Figure 7. Plots of the Rényi entropy of the Sec-Kum-W distribution as functions of γ for selected
parameter values.

In most cases, the integral term can be calculated numerically by the use of mathemat-
ical software. This is the case for all the functions ψ(x) listed in Table 1 and the setting of
the Sec-Kum-W distribution. In Figure 8, we plotted the PDFs of the order statistics for a
sample of size n = 5 from a Sec-Kum-W distribution with the parameters equal to a = 1,
b = 1, c = 1 and λ = 1.
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Figure 8. Plots of PDFs of order statistics for a sample of size n = 5 of the Sec-Kum-W distribution,
with parameters a = 1, b = 1, c = 1 and λ = 1.

From Figure 8, we see that the value of i mainly affects the skewness and kurtosis
nature of the distributions.

3.6. Maximum Likelihood Method

Let ζ = (ζ1, . . . , ζp) be a vector with p parameters and x = (x1, . . . , xn) be a vector of
n values from the Sec-G class. Then, we can estimate ζ by maximum likelihood method,
which suggests the estimate

ζ̂ = argmax L(ζ),

where L(ζ) denotes the likelihood function defined as

L(ζ) =
n

∏
i=1

h(xi; ζ) =
(π

3

)n
{

n

∏
i=1

g(xi; ζ)

}{
n

∏
i=1

sec
(π

3
G(xi; ζ)

)}{ n

∏
i=1

tan
(π

3
G(xi; ζ)

)}
.

Thus defined, ζ̂ is called the maximum likelihood estimate (MLE) of ζ. We also have
ζ̂ = argmax `(ζ), where `(ζ) denotes the log-likelihood function defined as
`(ζ) = log[L(ζ)], i.e.,

`(ζ) = n log
(π

3

)
+

n

∑
i=1

log[g(xi; ζ)] +
n

∑
i=1

log
[
sec
(π

3
G(xi; ζ)

)]
+

n

∏
i=1

log
[
tan
(π

3
G(xi; ζ)

)]
.

Assuming that `(ζ) is differentiable with respect to ζ, ζ̂ is the simultaneous solution
of the following non-linear equations: ∂`(ζ)/∂ζ j = 0, for j = 1, . . . , p, with

∂`(ζ)

∂ζ j
=

n

∑
i=1

∂g(xi; ζ)

∂ζ j

1
g(xi; ζ)

+
π

3

n

∑
i=1

∂G(xi; ζ)

∂ζ j
tan
(π

3
G(xi; ζ)

)

+
π

3

n

∑
i=1

∂G(xi; ζ)

∂ζ j

[
sec
(π

3
G(xi; ζ)

)]2

tan
(π

3
G(xi; ζ)

) .
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Under some well-known regularity conditions, the asymptotic distribution of ζ̂ − ζ
can be approximated by a well-identified multivariate normal distribution (with covariance
matrix defined from the observed Fisher information matrix). Then, from this result, we
can construct approximate confidence intervals as well as likelihood ratio tests. More
basically, we can derive the estimated PDF by the substitution technique; f (x; ẑeta) is an
estimated function of f (x; ζ). The same idea can be applied to any other functions of the
Sec-Kum-W distribution.

In the context of the Sec-Kum-W distribution, the expression of (∂g(xi; ζ)/∂ζ j)(1/g(xi; ζ))
can be found in Equations (27)–(30) of [23].

4. Numerical Study

Here, we turn out the Sec-Kum-W distribution as a statistical model, and illustrate its
applicability with simulated data and real-life data.

4.1. Simulation

First, we operate a simulation study to show the efficiency of the MLEs of the Sec-
Kum-W model parameters. To this aim, the seckw R package is used, developed by [33].
The parameter configuration is: a = 0.3, b = 2.2, c = 0.15 and λ = 0.05. We choose samples
of moderate sizes, between 1 and 250, and we run 1000 replicas for each sample size.
Figures 9–12 show the biases and mean squared errors (MSEs) for a, b, c and λ considered
as functions of n, respectively.

From Figures 9–12, we observe that the curves of the bias tend to 0 when n increases.
In addition, as anticipated, the curves of the MSEs decrease to 0 when n increases.

Table 2 summarizes the simulation results, given the means of MLEs, biases and MSEs
for n = 25, 50 and 250.

Table 2 is just a numerical illustration of what we have observed in Figures 9–12; both
biases and MSEs tend to 0 when n increases. It is expected to have lower values for these
biases and MSEs for greater values of n, such as n = 1000 or 5000.
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Figure 9. Plots of the biases and MSEs of the parameter a of the Sec-Kum-W distribution.
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Figure 10. Plots of the biases and MSEs of the parameter b of the Sec-Kum-W distribution.
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Figure 11. Plots of the biases and MSEs of the parameter c of the Sec-Kum-W distribution.

Table 2. Values of the MLEs, biases and MSEs for the parameters of the Sec-Kum-W distribution
taken at a = 0.3, b = 2.2, c = 0.15, and λ = 0.05.

Sample Size (n) Parameters MLEs Biases MSEs

25

a 0.2403 -0.0597 0.2554
b 2.6175 0.4175 1.7041
c 0.1230 -0.0270 0.0179
λ 1.4511 1.4011 39.5084

50

a 0.1843 -0.1157 0.0371
b 2.5378 0.3378 1.3015
c 0.1084 -0.0416 0.0139
λ 0.7695 0.7195 18.6445

250

a 0.1694 -0.1306 0.0268
b 2.4463 0.2463 1.0778
c 0.1063 -0.0437 0.0122
λ 0.4470 0.3970 9.0962



Symmetry 2022, 14, 299 18 of 25

0 50 100 150 200 250

0
2

4
6

8
1
0

Sample sizes (n)

B
ia

s
 (

la
m

b
d
a
)

0 50 100 150 200 250

5
0

1
0

0
1

5
0

Sample sizes (n)

M
S

E
 (

la
m

b
d

a
)

Figure 12. Plots of the biases and MSEs of the parameter λ of the Sec-Kum-W distribution.

4.2. Real-Life Data Analysis

A real-life data analysis via the Sec-Kum-W model is now being considered. Three
different datasets showing diverse characteristics are used.

4.2.1. Data: Lifetime of Devices

The considered data are from [34] and represent the lifetimes of 50 devices. They are
collected in Table 3.

Table 3. Lifetime of 50 devices.

0.1 0.2 1 1 1 1 1 2 3 6

7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83

84 84 84 85 85 85 85 85 86 86

Some descriptive statistics about the data are provided in Table 4.

Table 4. Descriptive statistics for the lifetime of devices.

Min. First
Quart. Median Mean Third

Quart. Max. Var.

0.10 13.50 48.50 45.69 81.25 86.00 1078.153

Then, we compare the quality of the Sec-Kum-W model fit with those of the Kumaraswamy-
Weibull geometric (Kum-WG) model proposed by [28], Kumaraswamy-Weibull Poisson
(Kum-WP) model introduced by [35], Kum-W model proposed by [23], Kumaraswamy
Burr XII (Kum-BXII) model created by [36], and, when of interest, the simple Weibull (W)
model (see [26]). For all of them, the maximum likelihood method is used to estimate
the model parameters. In order to compare the fit, we consider the following criteria:
Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent Akaike
information criterion (CAIC), and Hannan–Quinn information criterion (HQIC). The model
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with minimum values for these criteria may be considered as the best model to fit the data.
The numerical results are collected in Table 5.

Table 5. MLEs of the parameters of the Sec-Kum-W, Kum-WG, Kum-WP, Kum-W, and Kum-BXII
models with standard errors in parentheses, and AIC, BIC, CAIC, and HQIC values for the lifetimes
of devices.

Distributions Estimates AIC BIC CAIC HQIC

Sec-Kum-W(a, b, c, λ) 0.38 0.41 0.70 0.13 (-) 422.52 430.17 423.41 425.43
(0.14) (0.03) (0.04) (0.00) (-)

Kum-WG(a, b, c, λ, p) 0.07 0.31 5.26 0.02 0.44 455.20 464.76 456.56 458.84
(0.02) (0.09) (0.15) (0.00) (0.40)

Kum-WP(a, b, c, λ, β) 0.06 0.17 5.29 0.44 0.02 455.66 465.22 457.02 459.30
(0.02) (0.06) (0.02) (1.31) (0.00)

Kum-W(a, b, c, λ) 0.07 0.31 4.06 0.02 (-) 456.89 464.54 457.78 459.81
(0.03) (0.12) (0.73) (0.00) (-)

Kum-BXII(a, b, c, k, s) 0.08 0.31 3.90 187.24 214.27 458.92 468.48 460.28 462.56
(0.02) (0.08) (0.42) (15.24) (10.83)

We can see that the Sec-Kum-W model, when compared to the others, proved to get
the minimum values for the considered criteria. Thus, we conclude that the Sec-Kum-W
distribution is quite flexible in the modeling of the proposed data. In order to visualize the
obtained fit, Figure 13 displays the plots of the estimated PDFs of the considered models.
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Figure 13. Plots of the estimated fitted PDFs, including one of the Sec-Kum-W model (solid line) for
the lifetimes of devices.

In Figure 13, we observe an excellent fit to the data for the estimated probability
functions of the Sec-Kum-W distribution; the corresponding estimated PDF fits well with
the histogram of the data.
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4.2.2. Data: Failure Data of 6061-T6 Aluminum

The second dataset is given by [37] on the fatigue life of 6061-T6 aluminum coupons
cut parallel to the direction of rolling and oscillated at 18 cycles per second. The dataset
Table 6 consists of 101 observations with maximum stress per cycle 31,000 psi.

Table 6. Failure data of 6061-T6 aluminum.

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109 109 112

112 113 114 114 114 116 119 120 120 120 121 121 123 124 124 124 124

124 128 128 129 129 130 130 130 131 131 131 131 131 132 132 132 133

134 134 134 134 136 136 137 138 138 138 139 139 141 141 142 142 142

142 142 142 144 144 145 146 148 148 149 151 151 152 155 156 157 157

157 157 158 159 162 163 163 164 166 166 168 170 174 201 212

We adopt the same methodology as that developed in Section 4.2.1. First, some
descriptive statistics about the data are provided in Table 7.

Table 7. Descriptive statistics for the failure data of 6061-T6 aluminum.

Min. First
Quart. Median Mean Third

Quart. Max. Var.

70.0 120.0 132.5 133.8 146.5 212.0 511.4

A simple histogram analysis shows that the data are almost symmetrical, which is
a case covered by the Sec-Kum-W distribution, as shown in Figure 1. The MLEs of the
parameters of the considered models, along with the AIC, BIC, CAIC, and HQIC values,
are given in Table 8.

Table 8. MLEs of the parameters of the Sec-Kum-W, Kum-WP, Kum-WG, Kum-W, and Kum-BXII
models with standard errors in parentheses, and AIC, BIC, CAIC, and HQIC values for the failure
data of 6061-T6 aluminum.

Distributions Estimates AIC BIC CAIC HQIC

Sec-Kum-W(a, b, c, λ) 14.48 10.54 0.97 0.02 (-) 912.59 923.01 913.01 916.80
(1.39) (0.59) (0.01) (0.00) (-)

Kum-WP(a, b, c, λ, β) 1.04 5.62 6.69 1.63 (0.01) 923.09 936.11 923.72 928.36
(1.18) (8.75) (9.47) (7.58) (0.00)

Kum-WG(a, b, c, λ, p) 2.18 7.17 2.98 0.01 0.25 927.64 940.67 928.28 932.91
(0.53) (5.02) (1.00) (0.00) (1.12)

Kum-W(a, b, c, λ) 0.86 14.59 6.63 0.02 (0.00) 927.83 938.26 928.26 932.06
(0.23) (7.23) (1.29) (0.00) (0.00)

Kum-BXII(a, b, c, k, s) 23.36 19.61 4.45 0.27 24.49 944.44 957.47 945.07 949.71
(8.87) (4.46) (0.57) (0.03) (6.68)

The obtained values of the AIC, BIC, CAIC, and HQIC statistics reveal that the Sec-
Kum-W is the best model in terms of fitting behavior. This can be observed in a more direct
manner in Figure 14, where the estimated PDFs of the considered models are plotted.

In Figure 14, we see that the estimated PDF of the Sec-Kum-W model has captured the
symmetric shape of the histogram, including its upper stick. This is not the case for the
competitors.
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Figure 14. Plots of the estimated fitted PDFs, including one of the Sec-Kum-W model (solid line) for
the failure data of 6061-T6 aluminum.

4.2.3. Data: Sums of Skin Folds

As a third data set [38], data from 100 Australian female athletes were collected at the
Australian Institute of Sport (AIS). We consider the data sum of skin folds for athletes in
Table 9.

Table 9. Sums of skin folds.

33.8 36.8 38.2 41.1 41.6 42.3 43.5 43.5 46.1 46.2

46.3 47.5 47.6 48.4 49.0 49.9 50.0 52.5 52.6 54.6

54.6 55.6 56.8 57.9 58.9 59.4 61.9 62.6 62.9 65.1

67.0 68.3 68.9 69.9 70.0 71.3 71.6 73.9 74.7 74.9

75.1 75.2 76.2 76.8 77.0 80.1 80.3 80.3 80.3 80.6

83.0 87.2 88.2 89.0 90.2 90.4 91.0 91.2 95.4 96.8

97.2 97.9 98.0 98.1 98.3 98.5 99.8 99.9 101.1 102.8

102.8 103.6 103.6 104.6 106.9 109.0 109.1 109.5 109.6 110.2

110.7 111.1 113.5 114.0 115.9 117.8 122.1 123.6 125.9 126.4

126.4 131.9 136.3 143.5 148.9 156.6 156.6 171.1 181.7 200.8

Again, we adopt the same methodology as that developed in Section 4.2.1. Some
descriptive statistics about the data are provided in Table 10.

Table 10. Descriptive statistics for the sums of skin folds.

Min. First
Quart. Median Mean Third

Quart. Max. Var.

33.8 59.3 81.8 86.9 107.4 200.8 1145.9

A histogram analysis shows that the data are moderately right skewed, which is a case
covered by the Sec-Kum-W distribution, as shown in Figure 1. The MLEs of the parameters
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of the considered models, along with the AIC, BIC, CAIC and HQIC values, are given in
Table 10.

From Table 11, we see that the Sec-Kum-W model is the best; it has the smallest AIC,
BIC, CAIC, and HQIC values. Thus, the Sec-Kum-W model presents a good fit to the data.
We illustrate this claim in Figure 15.

Table 11. MLEs of the parameters of the Sec-Kum-W, Kum-WG, Kum-WP, Kum-BXII, and W models
with standard errors in parentheses, and AIC, BIC, CAIC, and HQIC values for the sums of skin folds.

Distributions Estimates AIC BIC CAIC HQIC

Sec-Kum-W(a, b, c, λ) 3.42 1.19 1.35 0.02 (-) 969.26 979.68 969.67 973.48
(0.97) (0.22) (0.16) (0.00) (-)

Kum-WG(a, b, c, λ, p) 3.95 0.58 2.23 0.01 0.74 983.40 996.43 984.04 988.67
(1.57) (0.67) (0.59) (0.01) (0.15)

Kum-BXII(a, b, c, k, s) 13.79 10.25 1.46 0.72 16.71 984.90 997.93 985.54 990.17
(43.23) (8.68) (2.19) (1.43) (20.14)

W(α, λ) 2.78 0.01 (-) (-) (-) 986.22 991.43 986.34 988.33
(0.21) (0.00) (-) (-) (-)

Kum-WP(a, b, c, λ, β) 1.72 0.66 2.32 0.83 0.01 986.40 999.43 987.04 991.67
(0.71) (0.44) (0.59) (1.45) (0.00)
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Figure 15. Plots of the estimated fitted PDFs, including one of the Sec-Kum-W model (solid line) for
the sums of skin folds.

From Figure 15, we see that the estimated PDF of the Sec-Kum-W distribution has
captured the form of the histogram in a better manner than those of the competitor models.

5. Concluding Remarks

In this study, we introduced a new class of distributions, with properties based on
the secant function. It is called the Sec-G class. The idea is to use the functionality of the
secant function to create new trigonometric distributions based on baseline distributions. It
is proved that the new class first-order stochastically dominates its corresponding baseline
distribution, opening new horizons of modeling. Within this class, a new trigonometric



Symmetry 2022, 14, 299 23 of 25

distribution, the Sec-Kum-W distribution, has been thoroughly investigated. Here, we
obtained the corresponding cumulative distribution and probability density functions
and their expansions, and provide discussions of various types of moments and related
functions. Moreover, the model parameters were checked via maximum likelihood estima-
tion. We applied the new distribution to three real datasets: a lifetime of devices dataset,
failure data of the 6061-T6 aluminum dataset, and a sum of the skin folds dataset. It is
proved that the proposed secant Kumaraswamy-Weibull model outperforms important
competitors, including the Kumaraswamy-Weibull, Kumaraswamy-Weibull geometric,
Kumaraswamy-Weibull Poisson, Kumaraswamy Burr XII, and Weibull models. Hence, the
practical part brought evidence that the proposed model can help in the analysis of survival
data, material fatigue, among others, and we conjectured that it can also be applied to other
areas of knowledge.
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Nomenclature

Symbols
ζ vector of parameters of the continuous baseline distribution
G(x; ζ) cumulative distribution function of the continuous baseline distribution
g(x; ζ) probability density function of the continuous baseline distribution
H(x; ζ) cumulative distribution function of the Sec-G class
h(x; ζ) probability density function of the Sec-G class
S(x; ζ) survival function of the Sec-G class
Ω(x; ζ) cumulative hazard rate function of the Sec-G class
R(x; ζ) hazard rate function of the Sec-G class
Q∗(x; ζ) quantile function of the continuous baseline distribution
Q(u; ζ) quantile function of the Sec-G class
(a, b, c, λ) parameters of the Sec-Kum-W distribution
X random variable with a distribution into the Sec-G class
Υψ(X) moments of the random variable ψ(X)

E expectation operator
µ mean of X
µ′m mth moment of X
σ2 variance of X
µm mth central moment of X
M(t) moment generating function of X
ϕ(t) characteristic function of X
µm(t) mth incomplete moment of X
Γ(x) gamma function
ΓL(x, y) lower incomplete gamma function
L(p) Lorenz curve
B(p) Bonferroni curve
C(m) mth general coefficient of X
C(3) skewness of X
C(4) kurtosis of X
R coefficient of reliability of X
I(γ) Rényi entropy of X
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hi:n(x; ζ) PDF of the ith order statistic of the Sec-G class
xi value representing the ith data
L(ζ) likelihood function of the Sec-G class
`(ζ) log-likelihood function of the Sec-G class
ζ̂ maximum likelihood estimate of ζ

Abbreviations
exp-G exponentiated generated
Kumaraswamy-G Kumaraswamy generated
Marshall–Olkin-G Marshall–Olkin generated
beta-G beta generated
gamma-G gamma generated
CDF cumulative distribution function
Sec-G secant generated
PDF probability density function
HRF hazard rate function
Kum-W Kumaraswamy-Weibull
Sec-Kum-W secant Kumaraswamy-Weibull
MLE maximum likelihood estimate
MSE mean squared error
Kum-WG Kumaraswamy-Weibull geometric
Kum-WP Kumaraswamy-Weibull Poisson
Kum-BXII Kumaraswamy-Burr XII
W Weibull
AIC Akaike information criterion
BIC Bayesian information criterion
CAIC consistent Akaike information criterion
HQIC Hannan–Quinn information criterion
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