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Abstract: In this paper, we investigate the effect of the Dicke quantum phase transition on the speed
of evolution of the system dynamics. At the phase transition point, the symmetry associated with
the system parity operator begins to break down. By comparing the magnitudes of the two types of
quantum speed limit times, we find that the quantum speed limit time of the system is described by
one of the quantum speed limit times, whether in the normal or superradiant phase. We find that, in
the normal phase, the strength of the coupling between the optical field and the atoms has little effect
on the dynamical evolution speed of the system. However, in the superradiant phase, a stronger
atom-photon coupling strength can accelerate the system dynamics” evolution. Finally, we investigate
the effect of the entanglement of the initial state of the system on the speed of evolution of the system
dynamics. We find that in the normal phase, the entanglement of the initial state of the system has
almost no effect on the system dynamics” evolution speed. However, in the superradiant phase, larger
entanglement of the system can accelerate the evolution of the system dynamics. Furthermore, we
verify the above conclusions by the actual evolution of the system.

Keywords: quantum speed limit time; Dicke quantum phase transition; normal phase; superradiant
phase; entanglement

1. Introduction

The quantum speed limit (QSL) characterizes the lower bound on the minimum
time a quantum system can take to evolve from an initial quantum state to a distinguish-
able state [1-9]. The quantum speed limit has important application value in various
research fields of quantum physics, such as quantum communication [10-15], quantum
computing [16-19], quantum metrology [20-23], non-equilibrium thermodynamics [24-26],
and quantum optimal control theory [4,27-32]. Currently, there are two main understand-
ings of quantum acceleration. The first understanding is that the shorter the quantum
speed limit time is, the faster the quantum system evolves, given the fidelity between the
initial and final states. The second one is based on comparing the quantum speed limit
time and the actual evolution time. If the actual evolution time is equal to the quantum
speed limit time, it means that the system has evolved along the fastest path and the system
has no potential to accelerate. However, if the actual evolution time is greater than the
quantum speed limit time, the system has the potential to accelerate [33—42].

For a closed quantum system, the dynamical evolution is determined by a time-
independent Hamiltonian H when the system evolves from an initial state to an orthogonal
state of the initial state. Mandelstam and Tamm (MT) obtained a quantum speed limit deter-
mined by the system’s Hamiltonian variance based on the Cauchy-Schwarz inequality [43].
This limit shows that the speed limit time Tj;7 required for the system to evolve from the ini-
tial state to the orthogonal state of the initial state satisfies the equation Tyir = i/ (2AH),
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where AH denotes the variance of the Hamiltonian H over the initial state. In 1998, Margo-
lus and Levitin (ML) obtained another quantum speed limit time using the von Neumann
trace inequality [18,44]. They showed that the limit time )y required for a closed quan-
tum system to evolve from its initial state to its orthogonal state satisfies the equation
vt = 7h/[2((H) — Eo)]. (H) and Ej are the mean value of Hamiltonian H over the
initial state and the ground state energy of Hamiltonian H, respectively. Both MT-type and
ML-type quantum speed limits indicate that the time required for a quantum system to
evolve from its initial state to its orthogonal state depends only on the initial state of the
quantum system and the system’s Hamiltonian. The time required for a closed quantum
system to evolve from its initial state to its orthogonal state must satisfy both MT-type and
ML-type quantum speed limit times. Thus, the quantum speed limit time of the system
is taken as the largest of the two. That is, the quantum speed limit time of the system is
Tost = max{nh/(2AH), nh/[2((H) — Eo)]} [18]. It is worth noting that the MT-type and
ML-type quantum speed limit times are only applicable to closed quantum systems whose
initial state is a pure state. In recent years, the quantum speed limit time has been extended
to systems with mixed initial states and open systems [3,33,38,45-58].

In quantum computing, quantum communication, and quantum simulation, the con-
trol of the dynamical evolution speed of the system is critical. Moreover, quantum phase
transitions can strongly influence the dynamical behavior of the system [59-82]. Mean-
while, continuous-variable entanglement, a key resource in continuous-variable quantum
information processing, has been widely used in various quantum communications and
quantum computing [83-90]. The effect of the Dicke quantum phase transition as an envi-
ronment on the quantum speed limit time of a two-level atom has been studied [91]. Here,
we mainly study the effects of quantum phase transition and initial state entanglement on
the quantum speed limit time of the system. We find that, in the normal phase, the phase
transition parameters and the initial state entanglement of the system have almost no
effect on the quantum speed limit time. However, in the superradiant phase, both the
phase transition parameters and the initial state entanglement can accelerate the system’s
dynamical evolution. Finally, we confirm these conclusions through the actual dynamical
evolution of the system.

2. Quantum Phase Transition in a Nonlinear Dicke Model with Two Impurity Qubits

In this section, we focus on the quantum phase transition of the nonlinear Dicke model
containing two impurity qubits. Here, the two impurity qubits interact only with the
single-mode optical field in the nonlinear Dicke model. The interaction of the two impurity
qubits with the single-mode optical field is described by the following Tavis—-Cummings
model:

5 ~ta Wy a ot o A A
Hre =wad'a+— ) ol+g ) (a 1 4), 1)
2 £
i=1,2 i=1,2
where 4 (4") is the annihilation (creation) operator of the single-mode cavity field with
resonance frequency w, and wj is the transition frequency between the two levels of the
1mpur1ty qubit. 0y , , are the usual Pauli operators of the impurity qubit, and & o =13 Lol +

y). g is the dipole interaction strength between the cavity field and the impurity qubit. We
define a frequency detuning A; = wy — w,. Under the large detuning condition, i.e., A; >
g, the Hamiltonian above can be transformed by the Frohlich-Nakajima transformation
into the following form [92,93]:

A = waata+ % ol + Y wiatact, @)
i=12 i=12

where x; = g2 /Ag. The Hamiltonian of the nonlinear Dicke model is

A A A N w
Ap = @+ ol + (@ +a) 1+ 1)+ 1, ®
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where wy is the transition frequency of these N identical two-level atoms. f] (j=xy,2)is
the collective angular momentum operator for the spin ensemble consisting of N identical
two-level atqms; tpese E)perators T, fy, J. satisfy the commutation relation of the SU(2)
algebra and [+ = [y +iJy. x denotes the interaction between N identical two-level atoms.
When both the interaction of the two impurity qubits with the light field and the
interaction between the atoms vanish, the above equation is reduced to the standard Dicke
model. Then, the Hamiltonian of the nonlinear Dicke model with two impurity qubits is as
follows:
Y1 Wy ni At A
H:HD—I—?‘ZO'Z—F‘ZK,'QQZ. 4)
With the Holstein—Primakoff transformation [94], we can represent the angular mo-
mentum operators by the following single-mode boson operators:

~

Jjo=etvVN—-¢te, J_=+VN-¢étee, J.=c"e—

©)

Substituting Equation (5) into Equation (4) and dropping the constant terms and
conserved term yield

N AR ot a JN N éte éte
H = (wa+ 2Kl-c7§>a+a+(wo—)()c+c+)x(a++a)<c+\/l—N+\/1—Nc)

i=1,2

X (ata2
+N(C &)~ (6)

To describe the collective behavior of condensed atoms and photons, we introduce
new boson operators 4; = 4 + v/Na and ¢ = ¢ — /N, where both « and B are real
numbers. Substituting 4; and ¢; into the above equation and neglecting the term of N in
the denominator yields the following expression:

H:NEO+\/NH1+H2, 7)

where Ey, H;, and H, are defined by

Ey = wu® + (wo— x)B* + xB* — 40/ 1 — B2ap, ®)
. 1-2p2
Hy = 2M¢ﬁ — (wo — x)B—2xpB° (CI + Cl)

4{wﬂ—2A L—W4(4+ag, )
Hy, = wjaia;+ |(wo—x)+2xB*+ \/2%1 cley

2 Aap(2+ B?)
+["ﬁ PV P
A1 =2p%) (af +a1) (¢t +¢1)
_l’_
1B

(o) -2

. (10)

Here, wj, = wy + Y1 x;(61). Since & commutes with the total Hamiltonian H, we
replace ¢! with its mean (57).

The collective excitation parameters «, § can be determined from the equilibrium
conditions dEy/da = 0, 0Eg/9dp = 0, which leads to the following two equations:

wha —2A4/1— B2B =0, (11)
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2Ma(1—2p?)
VI-F

In this way, we are able to obtain an equation that characterizes the quantum phase
transition:

(wo — x)B+2xB° — =0. (12)

B [(2xw; + SAZ) B2 + w! (wy — X) — 4A2] = 0. (13)

Obviously, if w)(wp — x) —4A% > 0, then B = a = 0, i.e., there is no macroscopic
excitation of both the light field and the atoms. At this point, the system is in the normal
phase. However, when w/, (wg — x) — 4A? < 0, then we can obtain the following expression:

P — ﬁf% (14)
W @
1 /

B = 5 s (15)

2 8AZ 4+ 2xw),’

Equations (14) and (15) imply the existence of macroscopic excitations in the light field
and the atoms, respectively. In this case, the system is in the superradiant phase. At the
transition point from the normal phase to the superradiant phase, the symmetry of the
ground state of the system defined by the parity operator I'T = exp[irt(ata + J, + N/2)] is
broken. This spontaneous symmetry breaking was studied in [60].

In the thermodynamic limit N — oo, we can obtain the scaled population inversion of
N identical two-level atoms as

UJz) _ o 1 wawo
N P T e 16)
XWq

In Figure 1, we plot the variation of the atomic population with the strength of
interatomic interactions and atom-photon interactions. When (f,) /N = —0.5, the atoms
have no macroscopic population in the excited state, and the system is in the normal phase.
When ( fz> /N > —0.5, there is macroscopic excitation of the atoms, and the system is in the
superradiant phase. The red line indicates the dividing line between the normal phase and
the superradiant phase. The relevant parameters in Figure 1 were selected from [95].

-0.25
v 0.3
+-0.35
-0.3
z
</v\i\1 04 -04
-0.5 0.45
0
0.4
X 0.6 0.8 L0 -0.5

Figure 1. Phase diagrams described by the scaled population inversion of (J) /N with respect to the
atom—photon coupling strength A and interatomic interaction x. The other parameters are taken as
wy = 20MHz, wy = 0.05MHz, N = 10°, and both qubits are in the ground state |¢) ® |g). The relevant
parameters in the figure are given in units of wy.

3. The Effect of Quantum Phase Transition on Quantum Speed Limit Time

In this section, we focus on the effect of the Dicke quantum phase transition on the
speed of evolution of the system dynamics. For a closed system, its initial and orthogonal
states are [¥(0)) and |¥ (7)), respectively. Then, the quantum speed limit time for this
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closed system to evolve from the initial state to the orthogonal state is given by the following
equation [18]:
TQST = max{TMT, TML}. (17)

Furthermore, Tgst has been shown to be tightly bounded [18].

In the following, for an initial state |¥(0)) of the system, we discuss the quantum speed
limit time of the system in the normal phase and superradiant phase regions, respectively.
For a given initial state,

['¥(0)) = Wcos 6], ) + sin@exp(ig)|—7, —1)], (18)

where 6 € [0,71/2],¢ € [0,27] and |y) and | — ) (|57) and | — 7)) are the eigenstates of
the operator annihilation operators 4 (¢) when the eigenvalues are y and —7 ( and —7),
respectively. Obviously, |'¥(0)) is a superposition state of coherent states. The normalization
coefficient is given by the following equation:

W2 = [1+ Kcos ¢sin26] ", (19)

where K = exp[—2(|’y|2 + |17|2>}
s

In the normal phase at the thermodynamic limit N — oo, we can take N O~ 0,

(CA;\C;)Z ~ 0. Hamiltonian Equation (6) then becomes

>

H,y, = whita + (wo — x)ete + A(a* + ﬁ) (@* + c) (20)

Since neither the atoms nor the light field is collectively excited in the normal phase,
the ground state energy of the system in the normal phase in the thermodynamic limit is
Ey = 0. For our studied nonlinear Dicke quantum system with two impurity qubits in the
normal phase, the limit time for the system to evolve from the initial state |'¥(0)) to the
orthogonal state of the initial state is

np = i , ZT , 21
Tnp maX{2 <ﬁ%p>_<H"P>2 2<an>} (21)

where the average value of the Hamiltonian an over the initial state |'¥(0)) is

(Hup) = W?[(R+4ARe(7)Re(y)) — D(R +4AIm(y) x Im(y))], (22)

and R = w}|y|* + (wo — x)|n|*>, D = Ksin 26 cos ¢. The average value of A2 over the initial
state |'¥(0)) is

(H3p)

= Wz{wa(v) + (wo — x)?F(y) + A2[TL; + DIL_] + 2 (ewo — x) |7 ly/(1 + D)

+4((U0 — X))\

(211 +1)Re()Re() + Dim(y)im(n) (2l * - 1)]

WA [(2|’y|2 +1)Re(7)Re(y) + DIm(y)Im(y) (2[7]* 1)1 } (23)

where

FG) = P[P +1) (1 =1i) ] =, (24)
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Me = (2Re(7?) £27 +1) (2Re (i) £2Iy* +1). (25)

In the superradiant phase, we translate the two operators, 4 and ¢, respectively, where
a=a— VNu, ¢ = &1+ VN B. The values of « and f are determined by Equations (14) and (15),
respectively. Substitute the operators after the translation into Equation (6). Because, in the
thermodynamic limit N — oo, the denominator terms containing N have a value of zero,
after neglecting the terms of N in the denominator and the constant terms, we obtain

Asp = wialay + @ocler + Ay (a{ + al) (a{ + @1) A (@{ n 51)2, (26)

where the parameters @y, A1, and A, are given by

272wy 272
2V 202 ;
YW= T aw W @7
/
No= At , (28)
V(4A2 + xwp) (4A2 + xwj + whwo)
A A-w)@B+p)  x
A, = 2 LBZHWETR LX), 2
2 2, 1+ 4 + 2( 1) 29)

Since dy and ¢ are the operators after displacing the bosonic operators 4 and ¢, respec-
tively, then, we obtain the eigenvalues of 4y (¢7) for the states |y) and | — ) (|7) and | — 7)),
respectively.

d@1]y) = (a+ VNa)|7) = A1ly), (30)
@] — ) = (a+ VNa)| - 7) = A — ), (1)
éln) = (6= VNB)Jny) = Bilp), (32)
¢l —n) = (= VNB)| =) = B[ — 1), (33)

where A; = v+ v/Na, Ay = —y+/Na, By =5 —/NB,and B, = —y — vV/NB.
In the superradiant phase, the ground state energy of the system is given by Equation (8).
Then, for the following quantum speed limit time:

TQSL = max{ i ’ = il } (34)

2,/(A2,) — (A2 2({Hsp) — Eo)

We need to calculate the average values of H;, and ng on the initial state ['¥(0)). We

easily obtain the average value of Hy, over the initial state [¥(0)) as

(Hsp) = WZ{ 2(—1)j_1sin(9+j§) wa|Aj|* + @o|Bj|* + 4\ 1Re(A)Re(B;)

j=12

A <2Re (B]?) +2|Bi|* + 1) + K sin 20Re{ exp(ip)[wa Af Az + @ B; B,

+A1 (A} + Ay) (B} + Ba) + Ay (B;‘Z + B3 +2B;B, + 1)]} } (35)

Since the average value of Hszp over the initial state [¥(0)) is too cumbersome, we put
it in Appendix A.

In order to determine the quantum speed limit times of the system in the normal and
superradiant phases, we need to compare the magnitude of the MT-type and ML-type
quantum speed limit times. In Figure 2a, when w, = 400wy, x = 0.64wy, we plot the
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variation of these two quantum speed limit times with the phase transition parameter A.
The figure shows that the MT-type quantum speed limit time is always larger than the ML-
type quantum speed limit time, whether in the normal phase region or the superradiant
phase region. Furthermore, to investigate whether the MT-type quantum speed limit
time is always larger than the ML-type quantum speed limit time at different interatomic
interaction strengths, we plot the variation of the two quantum speed limit times with
the phase transition parameter A and the interatomic interaction strength x in Figure 2b.
We find that the MT-type quantum speed limit time is always larger than the ML-type
quantum speed limit time in any parameter interval, so we can obtain the quantum speed
limit time of the system as follows:
s

, Normal phase,

TQsL = T (36)
, Superradiant phase.

—4
10 x10
(@) T™T
8 ™ML
6_
=
D
[y
4_
2_
0 — |
0 0.5 1 1.5 2

Superradiant phase Ty

Figure 2. (a) Variation of MT-type and ML-type quantum speed limit times with the phase transition
parameter A, where w, = 400wy, x = 0.64wy, and the critical coupling strength A, = 6wy. (b) The
MT-type and ML-type quantum speed limit times vary with the phase transition parameter A and the
strength x of the interatomic interactions. The initial state parameters of the system are y =5 =5,
@ = 0,and 0 = 71/4. The other parameters are the same as in Figure 2.

From Figure 2a,b, we can see a sudden change in the quantum speed limit time of
the system from the normal phase to the superradiant phase. Moreover, the stronger the
coupling between the optical field and the atoms, the smaller the quantum speed limit time
is, which means that the stronger interaction between the subsystems can accelerate the
evolution of the system dynamics. At the same time, in the normal phase, the quantum
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speed limit time of the system decreases slowly with the increase of the phase transition
parameter A. However, once the coupling strength A exceeds the critical coupling strength
A, in the superradiant phase, the quantum speed limit time of the system suddenly
decreases sharply. Moreover, when the coupling strength A far exceeds the critical coupling
strength A., the quantum speed limit time of the system again decreases slowly with the
increase of the phase transition parameter A.

In order to verify our conclusions from the actual dynamical evolution of the system,
in Figure 3, we plot the fidelity of the initial state of the system with time for different
phase transition parameters. We find that, in the normal phase region, the time taken for
the system to evolve from the initial state to the orthogonal state of the initial state hardly
decreases with the enhancement of the coupling strength. However, in the superradiant
phase, the time for the system to reach the initial state’s orthogonal state decreases with
the coupling strength. In other words, in the normal phase, the stronger phase transition
parameters hardly accelerate the system dynamics’ evolution. In contrast, the stronger
phase transition parameters accelerate the system dynamics’ evolution in the superradiant
phase. The numerical simulation of the actual dynamical evolution of the system in Figure 3
was performed with the Qutip software [96].

1.0
‘l \, —-+— Normal phase, 1=2
H \\ Normal phase, A=5
0.81] \
i I\ : Critical point, 1. =6
BNE \. —— Superradiant phase, 1 =6.1
z0.6{l ;1A - : _
= | . Superradiant phase, 1 =8
S 1 Y
= il A
=o4{ | ! A\
ARYERY
Y -
o2f i AR T T e
O\ Tl N 0 TTr— 4
AN N
0.0+1 =
0 0.5 1 1.5 2 2.5
t (x1073)

Figure 3. Variation of fidelity with time for systems with the same initial state under different phase
transition parameters. The other parameters are the same as in Figures 1 and 2.

4. The Effect of Initial State Entanglement on the Evolution Speed of
System Dynamics

Entanglement is a fundamental resource. In this section, we study the effect of the ini-
tial state entanglement on the evolution speed of the system dynamics in normal phase and
superradiant phase systems, respectively. For the initial state represented by Equation (18),
the magnitude of the initial entanglement is [97]

E = W2|sin26]1/ (1 — exp(—4[7[2)) (1 — exp(—4[y[2) (37)

where W is the normalization coefficient of the initial state. When we choose vy =7 =5,
we can obtain the relationship between the size of the initial quantum entanglement of the
system and 6 from Equations (19) and (37), that is E = | sin26/|. In this way, we only need
to adjust the value of 8 to control the size of the initial quantum entanglement.

In the following, we study the quantum speed limit time of the system in the normal
phase and the superradiant phase by adjusting the initial state parameter 6. In Figure 4a, we
study the variation of the system fidelity with time when the initial state entanglement takes
different values. We find that, in the normal phase, the system’s initial state entanglement
hardly affects the system’s quantum speed limit time. However, in the superradiant phase,
the greater the entanglement of the initial state of the system, the shorter the time for the
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system to evolve to the orthogonal state of the initial state. In order to verify the above
conclusion, in Figure 4b, when the initial state entanglement takes different values, we plot
the fidelity of the initial state of the system as a function of time. We find that, in the normal
phase, a different initial state entanglement has almost no effect on the evolution of the
system dynamics. However, in the superradiant phase, larger initial state entanglement
can accelerate the system dynamics’ evolution. The numerical simulation of the actual
dynamical evolution of the system in Figure 4b was executed with the Qutip software [96].

—4
10><10
(a) -=%-- Normal phase
¥ -*¥--  Superradiant phase
."‘
61 .
3
S v
[y
4
V..
v,
21 MR A0 ey
..V-..V...v..'.av.;'_‘;v,'1
0
0.0 0.2 0.4 0.6 0.8 1.0

E

—— Normal phase, E=0
Normal phase, E=0.5
Normal phase, E=1

— Superradiant phase, E=0

—-— Superradiant phase, E=0.5
Superradiant phase, E=1

" ——
" — — —
" — — —

1 1.5 2 2.5
t (x1073)

Figure 4. (a) Variation of the MT-type quantum velocity limit time of the system with the initial state
entanglement when the system is in the normal and superradiant phases, respectively. (b) Fidelity of
the initial state of the system with time for different initial state entanglement and different phase
transition parameters. The initial state parameters of the system are y = # = 5 and ¢ = 0. The other
parameters are the same as in Figure 1.

5. Conclusions

In summary, we focused on the effect of the Dicke quantum phase transition on the
quantum speed limit time of the system. We obtained the MT-type and ML-type quantum
speed limit times following the general approach. We found that the MT-type quantum
speed limit time is always larger than the ML-type quantum speed limit time, both in
the normal and superradiant phases. Therefore, we finally chose the MT-type quantum
speed limit time as the quantum speed limit time of the system. In the normal phase,
the time taken for the system to evolve from the initial state to the orthogonal state of the
inijtial state is almost independent of the phase transition parameters. However, a stronger
phase transition parameter in the superradiant phase enables the system to have a shorter
quantum speed limit time. In addition, we investigated the effect of the entanglement
of the initial state on the quantum speed limit time. We found that, in the normal phase,
the entanglement of the initial state does not affect the quantum speed limit time of the
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system. However, in the superradiant phase, a more extensive initial state entanglement can
give the system a shorter quantum speed limit time. We verified all the above conclusions
by studying the actual dynamical evolution of the system through numerical calculations.
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Appendix A. Specific Expression for the Average Value of ng over the Initial State
[¥(0))

Since the average value of I:Iszp over the initial state [¥(0)) is too cumbersome, we give
its specific expression as follows:

(¥(0)|H3,[¥(0))

= cos?0 A1 * (|41 +1) +sin?0] Ao (|42 +1) + sin20 exp[~2(Jas | + 1)
xRe{exp(ip) A Ay (AX Ay +1)}
+c0529|31|2(\31\2 +1) —|—sin29|Bz|2(|B2|2 + 1) +sin29exp[—2(|zx1|2 + |/31|2)}
xRe{exp(ip)BiBy(BBy +1)}
+cos?6(2Re(A2) + 2|41 +1) (2Re(B}) +2/Bi[* + 1)
+sin?0(2Re (43) +2| 42> +1) (2Re (B3 ) +2|Bo* +1)
+sin20 exp[—2(Ja* + 1)
xRe{exp(ip) (A2 + A3 + 241 4> +1) (B{2 + B +2B{B, +1) |
+cos?0(6B1|* +2(4[B1|* + 6 )Re(B}) +2Re(B}) + 12|, +3)
+sin?0 (6| By|* +2(4]Bo [ + 6 ) Re (B3 ) + 2Re (B ) +12/Bs[* +3)
+sin29exp[—2(|0¢1|2 + |ﬁ1!2)]
xRe{exp(i(p) (31‘4 +4Bi3By + 6B12B3 + 4B} B3 + B} + 12B; By + 6B;2 + 6B3 + 3) }
+ cos? 0| A1]?| By |* + sin? 0] A3 |*| B |2
+sin20 exp|~2(|ar|* + [B1]”) |[Re{exp(ip) A{ A2B} By }
+4cos? 0Re(A1)Re(B1) (2] A1[” + 1) + 4sin 6Re( A2)Re(B2) (2] Az +1)

+ sin 260 exp [*2(|"‘1|2 + |131|2)]
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xRe{exp(ip) (2A7 Ay + 1)(A] + A2)(B; + By)}

+cos?0| 41 (2Re (B} ) +2|Bi[* +1) +sin® 0] A * (2Re (B3 ) +2/Baf* +1)
+sin20exp| 2|1 * + B1]”) |[Re{explip) A7 A (B{2 + B3 +2B;By +1) }
+4cos? ORe(A;)Re(B1) (2\31\ +1) + 45in? fRe(A»)Re( Bz)(2|Bz| +1)
+sin20exp| 2|1 * +B11”) [ Re{exp(ig) (AT + A2) (B] + B2) (2B} By +1)}
+cos?0(4Re(B2) (|B1[* +1) +4(Bi[*(|B1* +3/2) )

+sin?0(4Re (B3 ) (|Baf” +1) +41Baf (1B +3/2) )

+sin20 exp[—2(|a [ + 1) |

xRe{exp(ip)|2(BiB, +1) (B;? + B} ) + 4B (B{B, +3/2)B| |

+4Re(A1) (3|B1|*Re(B1) + 3Re(By) + Re (B} ) ) cos? 6

+4Re(A;) (3|B2|2Re(Bz) +3Re(B,) + Re(B%)) sin?
+sin20exp[—2(Jar | + |1 )

xRe{exp(ip)(Af + A2) (B{® + B} +3(B2 + B)(BiB, +1) ) }. (A1)
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