
Citation: Naowarat, S.; Ahmad, S.;

Saifullah, S.; Sen, M.D.l.; Akgül, A.

Crossover Dynamics of Rotavirus

Disease under Fractional Piecewise

Derivative with Vaccination Effects:

Simulations with Real Data from

Thailand, West Africa, and the US.

Symmetry 2022, 14, 2641. https://

doi.org/10.3390/sym14122641

Academic Editor: Mariano Torrisi

Received: 9 November 2022

Accepted: 6 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Crossover Dynamics of Rotavirus Disease under Fractional
Piecewise Derivative with Vaccination Effects: Simulations
with Real Data from Thailand, West Africa, and the US
Surapol Naowarat 1, Shabir Ahmad 2,* , Sayed Saifullah 2, Manuel De la Sen 3 and Ali Akgül 4,5,6

1 Department of Mathematics, Faculty of Science and Technology, Suratthani Rajabhat University,
Surat Thani 84100, Thailand

2 Department of Mathematics, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
3 Department of Electricity and Electronics, Institute of Research and Development of Processes, Faculty of

Science, Technology University of the Basque Country Campus of Leioa (Bizkaia), 644 Leioa, Spain
4 Department of Computer Science and Mathematics, Lebanese American University, Beirut 1102 2801, Lebanon
5 Department of Mathematics, Art and Science Faculty, Siirt University, 56100 Siirt, Turkey
6 Department of Mathematics, Mathematics Research Center, Near East University, Near East Boulevard,

Mersin 10, 99138 Nicosia, Turkey
* Correspondence: shabir.maths@uom.edu.pk

Abstract: Many diseases are caused by viruses of different symmetrical shapes. Rotavirus particles
are approximately 75 nm in diameter. They have icosahedral symmetry and particles that possess
two concentric protein shells, or capsids. In this research, using a piecewise derivative framework
with singular and non-singular kernels, we investigate the evolution of rotavirus with regard to
the effect of vaccination. For the considered model, the existence of a solution of the piecewise
rotavirus model is investigated via fixed-point results. The Adam–Bashforth numerical method along
with the Newton polynomial is implemented to deduce the numerical solution of the considered
model. Various versions of the stability of the solution of the piecewise rotavirus model are presented
using the Ulam–Hyres concept and nonlinear analysis. We use MATLAB to perform the numerical
simulation for a few fractional orders to study the crossover dynamics and evolution and effect of
vaccination on rotavirus disease. To check the validity of the proposed approach, we compared our
simulated results with real data from various countries.

Keywords: rotavirus disease; piecewise operator; Newton polynomial; nonlinear analysis

1. Introduction

The sickness causes a lot of deaths. The spread of the illness can be stopped using
mathematical models. They are effective instruments for predicting the course of the
disease [1,2]. Infectious diseases come in a vast variety, a number of which have minimal
impact on our health, while others are lethal. Due to the great infectivity of rotavirus, it
is regarded as a directly transmitted illness. For almost 40 years, both in developed and
developing nations, it has been acknowledged as the primary cause of gastroenteritis and
diarrhoea in babies and young children. The main way that rotaviruses spread is by the
fecal–oral pathway, which includes intimate contact between people as well as interaction
with contaminated environments [3,4]. Unvaccinated children often contract rotavirus
between the ages of 6 and 24 months, and almost always before the age of five. Rotavirus
infections typically take two days to develop [5]. Around the world, millions of children
have the rotavirus. Although rotavirus infections seldom cause fatalities in high-income
nations, they nonetheless place a significant strain on medical resources and can result
in serious morbidity. The main method of transmission is when the virus enters another
person’s mouth through the infected person’s feces [6,7].

Symmetry 2022, 14, 2641. https://doi.org/10.3390/sym14122641 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122641
https://doi.org/10.3390/sym14122641
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5610-6248
https://orcid.org/0000-0001-9320-9433
https://orcid.org/0000-0001-9832-1424
https://doi.org/10.3390/sym14122641
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122641?type=check_update&version=1


Symmetry 2022, 14, 2641 2 of 25

Fever, nausea, vomiting, stomach pains, and frequent watery diarrhoea are some of
its manifestations, which can persist up to eight days [8–10]. There are seven different
types of rotavirus, denoted by the letters A through G. Species A, B, and C are the most
frequent to infect humans, with A being the most prevalent. Despite the availability of
a fast antigen stool test, the recognition of rotavirus infection is frequently established
clinically. According to [11,12], the main ways that rotavirus is spread are by the fecal–oral
channel; touching infected hands, surfaces, or objects; and perhaps through respiration.
About two days pass during the incubation stage [13,14]. Reinfection occurs; however, with
every infection, the immunity grows and the severity of subsequent illnesses decreases [15].
Indeed, it was shown in [16] that children who had two naturally occurring rotavirus
infections were completely protected against moderate-to-severe diarrhoea as opposed
to children who had never had an infection. Additionally, it has been proven that both
symptomatic and silent illnesses offer a comparable level of defence [16].

Moreover, other research [17,18] have noted that breastfeeding exclusively might
minimize gastrointestinal infections in newborns, as well as good cleanliness, access to the
clean and safe water, and sanitation, although these approaches have not been proven yet
to be successful. In addition to the aforementioned measures, a cure has been also proposed
as a strategy of rotavirus reduction; this involves regular re-hydration therapy [19,20].
Children are given this orally to prevent dehydration from severe diarrhoea and vomiting.
In order to avoid fatal and severe rotavirus illness, rotavirus vaccinations have been
suggested as being more successful than alternative methods [21,22]. As a result, the WHO
issued global suggestions urging all nations, particularly developing ones, to incorporate
the vaccination of infants infected with rotavirus into their national immunisation programs.
The GAVI Alliance also pledged to support developing nations’ rotavirus vaccinations
programs financially.

The most essential tool for examining the epidemiological features of viral diseases is
the mathematical model. Regarding the dynamics of the illness, it may offer some insightful
information. Several scholars have undertaken various investigations using various studies
concerning the modeling and the dynamical study of the rotavirus disease’s transmission.
The model of rotavirus infection introduced by Shim et al. in 2006 [23] takes into account
the effects of breastfeeding, seasonally, and the potential for control with vaccination.
Namawejje et al. [24]’s model of rotavirus disease, which includes three doses of vaccine
and therapy and a bilinear incidence rate, was suggested in 2015. A unique mathematical
model for rotavirus illness by Omondi et al. [25] that integrates the bilinear incidence rate
and vaccination has been developed and extensively investigated. In order to comprehend
the dynamics of rotavirus epidemic propagation, Shuaib and Riyapan [26] created and
examined the mathematical model shown below, which incorporates breastfeeding and
immunisation into consideration.

dS
dt

= (1− ξ − ζ)Λ + ωM + νV− δIS− (ϕ + Υ + ζ)S,

dM
dt

= Λξ + ϕS− ςδIM− (ω + ψ + ζ)M,

dV
dt

= Λζ + ΥS + ψM− λδIV− (ν + ζ)V,

dI
dt

= δSI + εδIM + λδIV− (τ + κ + ζ)I,

dR
dt

= κI− ζR, (1)

with {
S(0) = S0 > 0, M(0) = M0 ≥ 0, V(0) = V0 ≥ 0,
I(0) = I0 ≥ 0, R(0) = R0 ≥ 0,
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where S(t), M(t), V(t), I(t), and R(t) stand for susceptible, breastfeeding, vaccinated,
infected, and recovered compartments. The description of the parameter are given in the
Table 1.

Fractional-order (FO) models have attracted greater attention from researchers during
the last 20 years [27,28]. Compared to traditional integer-order models, they provide novel,
accurate, and deeper information on the complicated activity of many diseases [29,30].
Due to genetic characteristics and descriptions memory, classical-order systems are not
superior to FO systems. Numerous equations of integer order are used in mathematical
models (IDEs). The real events are improved for a higher degree of accuracy and precision
using fractional differential equations (FDEs). As a result, Ahmad et al. [31] used the
Atangana–Baleanu fractional derivative with the impacts of vaccination and lactation on
the FO model of rotavirus outbreaks. Some more applications of fractional calculus can be
found in [32,33].

A novel class of operators called piecewise integrals and derivatives was recently
presented by Atangana and Araz [34]. Since the timing of the crossover cannot be specified
by the exponential or Mittag–Lefler mappings, in order to overcome these challenges, one
of the unique methods of piecewise derivatives has been proposed in [34] . The cross-
over behaviors using these operators must now be studied in a new way by researchers.
Some applications of piecewise fractional operators are available in the literature [35–37].
Based on these benefits, we will investigate the model (1) using the piecewise Caputo and
Atangana–Baleanu operator in the manner as follows:

PCABC
0 Dm

t S(t) = (1− ξ − ζ)Λ + ωM + νV− δIS− (ϕ + Υ + ζ)S,
PCABC
0 Dm

t M(t) = Λξ + ϕS− ςδIM− (ω + ψ + ζ)M,
PCABC
0 Dm

t V(t) = Λζ + ΥS + ψM− λδIV− (ν + ζ)V,
PCABC
0 Dm

t I(t) = δSI + εδIM + λδIV− (τ + κ + ζ)I,
PCABC
0 Dm

t R(t) = κI− ζR.

(2)

More specifically, we can write Equation (2) as

CABC
0 Dm

t (S(t)) =

{C
0 Dm

t (S(t)) =C z1(S, t), 0 < t ≤ t1,
ABC
0 Dm

t (S(t)) =ABC z1(S, t), t1 < t ≤ T,

CABC
0 Dm

t (M(t)) =

{C
0 Dm

t (M(t)) =C z2(M, t), 0 < t ≤ t1,
ABC
0 Dm

t (M(t)) =ABC z2(M, t), t1 < t ≤ T,

CABC
0 Dm

t (V(t)) =

{C
0 Dm

t (V(t)) =C z3(V, t), 0 < t ≤ t1,
ABC
0 Dm

t (V(t)) =ABC z3(V, t), t1 < t ≤ T,

CABC
0 Dm

t (I(t)) =

{C
0 Dm

t (I(t)) =C z4(I, t), 0 < t ≤ t1,
ABC
0 Dm

t (I(t)) =ABC z4(I, t), t1 < t ≤ T,

CABC
0 Dm

t (R(t)) =

{C
0 Dm

t (R(t)) =C z5(R, t), 0 < t ≤ t1,
ABC
0 Dm

t (R(t)) =ABC z5(R, t), t1 < t ≤ T.
(3)
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Table 1. Parameters and their description in model (1).

Parameter Description Units

(1− ξ − ζ)Λ Rate of inclusion into class S people/day
Λξ Rate of inclusion into class M people/day
Λζ Rate of inclusion into class V people/day
ϕ Rate of breastfeeding of class S 1/day
Υ Rate of vaccination of class S 1/day
ψ Rate of vaccination of class M 1/day
δ Contact rate 1/day
ω Rate of waning of antibodies (maternal) from breast milk 1/day
ν Rate of waning of vaccine 1/day
ς Infection risk reduction due to antibodies (maternal) 1/day
λ Infection risk reduction due to vaccines 1/day
τ Mortality rate of disease 1/day
κ Natural death rate 1/day
m Flow rate into the removed class 1/day

In this paper, the epidemic model of rotavirus is investigated under the piecewise
fractional operator in the sense of the Caputo and ABC operators. The existence and unique-
ness of the solution is derived with the help of fixed point theorems. The Ulam–Hyres-type
stability of the solution and its different version is studied through nonlinear functional
analysis. The numerical results are derived by using the Adams–Bashforth method. All of
the results are validated through numerical simulations with real data from three different
countries. The rest of the paper is organized as follows: Section 2 provides the basic notions
of the piecewise fractional operators. Section 3 is devoted to the existence and uniqueness of
the solution. The results of Ulam–Hyres stability are discussed in Section 4. The numerical
results of the proposed model are given Section 5. Numerical simulations of the considered
model are provided in Section 6. Section 7 provides the conclusion of the manuscript.

2. Preliminaries

Here, we present some definitions regarding Caputo and ABC fractional, as well as
piecewise derivatives and integrals.

Definition 1. The definition of ABC operator of functionM(t) with conditionM(t) ∈ H1(0, T)
is:

ABC
0Dm

t (M(t)) =
ABC(m)

1−m

∫ t

0

d
dP
M(P)Em

[−m
(

t−P

)m

1−m

]
dP. (4)

Here, ABC(m) denotes the normalization function such that ABC(0) = ABC(1) = 1.
Additionally, Em is the special function known as Mittag–Leffler function.

Definition 2. The integral for the ABC operator is expressed by:

ABC
0 Im

t M(t) =
1−m

ABC(m)
M(t) +

m
ABC(m)Γ(m)

∫ t

0
M(P)(t−P)m−1dP. (5)

Definition 3. The Caputo operator for a functionM(t) is defined as

C
0 Dm

t M(t) =
1

Γ(1−m)

∫ t

0

d
dP

M(P)(t−P)−mdP.
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Definition 4. SupposeM(t) is piecewise differentiable; then, the piecewise derivative with the
Caputo and ABC operators [17] is

PCABC
0 Dm

t M(t) =

{C
0 Dm

t M(t), 0 < t ≤ t1,
ABC
0 Dm

t M(t) t1 < t ≤ T,

here, PCABC
0 Dm

t represents a piecewise differential operator, where the Caputo operator is in the
interval 0 < t ≤ t1 and the ABC operator is in the interval t1 < t ≤ T.

Definition 5. SupposeM(t) is a piecewise integrable; then, the piecewise integral with Caputo
and ABC operators [17] is

PCABC
0 ItM(t) =


1

Γ(m)

∫ t

t1

M(P)(t−P)m−1d(P), 0 < t ≤ t1,

1−m
ABC(m)

M(t) +
m

ABC(m)Γ(m)

∫ t

t1

M(P)(t−P)m−1d(P) t1 < t ≤ T,
,

here, PCABC
0 Im

t represents the piecewise integral operator, where the Caputo operator is in interval
0 < t ≤ t1 and the ABC operator in interval t1 < t ≤ T.

3. Existence and Uniqueness

The existence and the uniqueness results of the suggested model in the piecewise
notion are found in this part. We shall now determine whether a solution exists for the
hypothetical piecewise derivable function as well as its specific solution attribute. In order
to do this, we can also write the following by way of more explanation.

PCABC
0 Dm

t Q(t) = W(t,Q(t)), 0 < m ≤ 1,

is

Q(t) =


Q0 +

1
Γ(m)

∫ t

0
W(ϑ,Q(ϑ))(t− ϑ)m−1dϑ, 0 < t ≤ t1,

Q(t1) +
1−m

ABC(m)
W(t,Q(t)) +

m
ABC(m)Γ(m)

∫ t

t1

(t− ϑ)m−1

W(ϑ,Q(ϑ))d(ϑ), t1 < t ≤ T,

(6)

where

Q(t) =



S(t)

M(t)

V(t)

I(t)

R(t)

, Q0 =



S0

M0

V0

I0

R0

, Q(t1) =



S(t1)

M(t1)

V(t1)

I(t1)

R(t1)

, W(t,Q(t)) =



z1 =

{Cz1(S, t)
ABCz1(S, t)

,

z2 =

{Cz2(M, t)
ABCz2(M, t)

,

z3 =

{Cz3(V, t)
ABCz3(V, t)

,

z4 =

{Cz4(I, t)
ABCz4(I, t)

,

z5 =

{Cz5(R, t)
ABCz5(R, t)

.

(7)

Taking 0 < t ≤ T < ∞ and the Banach space E1 = C[0,T] with a norm

‖Q‖ = max
t∈[0,T]

|Q(t)|.
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We assume the following growth condition:

(C1) ∃ LQ > 0; ∀W, Q̄ ∈ E we have

|W(t,Q)−W(t, Q̄)| ≤ mathcalLW|Q− Q̄|.

(C2) ∃ CW > 0 & MW > 0,;

|W(t,Q(t))| ≤ CW|Q|+ MW.

Theorem 1. If W be piece-wise continuous on (0, t1] and [t1, T] on [0, T ], also satisfy (C2); then,
(3) has least one solution.

Proof. Let us define a closed sub-set as B and E in both subintervals of [0,L].

B = {Q ∈ E : ‖Q‖ ≤ R1,2, R > 0},

Suppose L : B→ B and using (23) as

L(Q) =


Q0 +

1
Γ(m)

∫ t1

0
W(ϑ,Q(ϑ))(t− ϑ)m−1dϑ, 0 < t ≤ t1,

Q(t1) +
1−m

ABC(m)
W(t,Q(t)) +

m
ABC(m)Γ(m)

∫ t

t1

(t− ϑ)m−1

W(ϑ,Q(ϑ))d(ϑ), t1 < t ≤ T,

(8)

For any Q ∈ B, we have

|L(Q)(t)| ≤


|Q0|+

1
Γ(m)

∫ t1

0
(t− ϑ)m−1|W(ϑ,Q(ϑ))|dϑ,

|Q(t1)
|+ 1−m

ABC(m)
|W(t,Q(t))|+ m

ABC(m)Γ(m)

∫ t

t1

(t− ϑ)m−1

|W(ϑ,Q(ϑ))|d(ϑ),

≤


|Q0|+

1
Γ(m)

∫ t1

0
(t− ϑ)m−1[CW|Q|+ MW]dm,

|Q(t1)|+
1−m

ABC(m)
[CW|Q|+ MW] +

m
ABC(m)Γ(m)

∫ t

t1

(t− ϑ)m−1

[CW|Q|+ MW]d(m),

≤


|Q0|+

Tm

Γ(m + 1)
[CH |Q|+ MW] = R1, 0 < t ≤ t1,

|Q(t1)
|+ 1−m

ABC(m)
[CW|Q|+ MW] +

m(T − T)m

ABC(m)Γ(m) + 1

[CW|Q|+ MW]d(m) = R2, t1 < t ≤ T,

≤
{

R1, 0 < t ≤ t1,

R2, t1 < t ≤ T.

As determined by the previous equation, Q ∈ B. Therefore, L(B) ⊂ B. Thus, it
demonstrates that L is closed and complete. In order to further demonstrate the completely
continuity, we may present ti < tj ∈ [0, t1] as an initial interval in the sense of Caputo .
Consider the following:
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|L(Q)(tj)− L(Q)(ti)| =

∣∣∣∣ 1
Γ(m)

∫ tj

0
(tj − ϑ)m−1W(ϑ,Q(ϑ))dϑ

− 1
Γ(m)

∫ ti

0
(ti − ϑ)m−1W(ϑ,Q(ϑ))dϑ

∣∣∣∣
≤ 1

Γ(m)

∫ ti

0
[(ti − ϑ)m−1 − (tj − ϑ)m−1]|W(ϑ,Q(ϑ))|dϑ

+
1

Γ(m)

∫ tj

ti

(tj − ϑ)m−1|W(ϑ,Q(ϑ))|dϑ

≤ 1
Γ(m)

[ ∫ ti

0
[(ti − ϑ)m−1 − (tj − ϑ)m−1]dϑ

+
∫ tj

ti

(tj − ϑ)m−1dϑ

]
(CH |Q|+ MW)

≤ (CWQ+ MW)

Γ(m + 1)
[tϑ

j − tm
i + 2(tj − ti)

m]. (9)

If ti → tj, then
|L(Q)(tj)− L(Q)(ti)| → 0, as ti → tj.

So, L is equicontinuous in [0, t1]. Consider ti, tj ∈ [t1, T] in the ABC sense as

|L(Q)(tj)− L(Q)(ti)| =

∣∣∣∣ 1−m
ABC(m)

W(t,Q(t)) +
m

ABC(m)Γ(m)

∫ tj

t1

(tj − ϑ)m−1

W(ϑ,Q(ϑ))dϑ− 1−m
ABC(m)

W(t,Q(t)) +
(m)

ABC(m)Γ(m)∫ ti

t1

(ti − ϑ)m−1W(ϑ,Q(ϑ))dϑ

∣∣∣∣
≤ m

ABC(m)Γ(m)

∫ ti

t1

[(ti − ϑ)m−1 − (tj − ϑ)m−1]|W(ϑ,Q(ϑ))|dϑ

+
m

ABC(m)Γ(m)

∫ tj

ti

(tj − ϑ)m−1|W(ϑ,Q(ϑ))|dϑ

≤ m
ABC(m)Γ(m)

[ ∫ ti

t1

[(ti − ϑ)m−1 − (tj − ϑ)m−1]dϑ

+
∫ tj

ti

(tj − ϑ)m−1dm
]
(CW|Q|+ MW)

≤ m(CWQ+ MW)

ABC(m)Γ(m + 1)
[tm

j − tm
i + 2(tj − ti)

m]. (10)

If ti → tj, then
|L(Q)(tj)− L(Q)(ti)| → 0, as ti → tj.

So, L, which shows its equi-continuity in [t1, T]. Thus, L is an equi-continuous map.
Based on the Arzel’a–Ascoli result, L is continuous (completely), uniformly continuous,
and bounded as the Schauder result indicates that problem (3) contains the solution to at
least one solution in the subintervals.
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Further, if L is a contraction mapping with (C1), then the suggested system has a
unique solution. Since L : B → B is a piece-wise continuous operator, consider Q and
Q̄ ∈ B on [0, t1] in the sense of Caputo as

‖L(Q)− L(Q̄)‖ = max
t∈[0,t1]

∣∣∣∣ 1
Γ(m)

∫ t

0
(t− ϑ)m−1

W(ϑ,Q(ϑ))dϑ− 1
Γ(m)

∫ t

0
(t− ϑ)m−1W(ϑ, W̄(ϑ))dϑ

∣∣∣∣
≤ Tm

Γ(m + 1)
LW‖Q− Q̄‖. (11)

From (11), we have

‖L(Q)− L(Q̄)‖ ≤ Tm

Γ(m + 1)
LW‖Q− Q̄‖. (12)

As a result, L is a contraction. So, the model under consideration has a only one
solution in the provided sub interval in light of the Banach contraction result. Additionally,
t ∈ [t1, T] in the sense of the ABC derivative as

‖L(Q)− L(Q̄)‖ ≤ 1−m
ABC(m)

LW‖Q− Q̄‖+ m(T− Tm)

ABC(m)Γ(m + 1)
Lz‖Q− Q̄‖. (13)

or

‖L(Q)− L(Q̄)‖ ≤ LW

[
1−m

ABC(m)
+

m(T − T)m

ABC(m)Γ(m + 1)

]
‖Q− Q̄‖. (14)

Thus, L is a contraction. As a result, the model under consideration has a unique
solution in the provided sub interval in light of the Banach contraction result. Hence, the
proof is finished.

4. Stability Analysis

In this portion, we demonstrate the H-U stabilities of the solution of the model (2).

Definition 6. The PW rotavirus model (2) is U-H-stable, if for each d > 0, we have:∣∣∣PCABCDm
t Θ(t)−z(t, Θ(t))

∣∣∣ < d, f or all, t ∈ T , (15)

and ∃ H > 0 and a unique solution Θ ∈ Z such that,∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤ Hd, f or all, t ∈ T . (16)

Moreover, if a non-decreasing function K : [0, ∞)→ R+, then∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤ HK(d), at every, t ∈ T , (17)

with K(0) = 0, then acquired solution is generalized U-H-stable.

Definition 7. The model (2) is H-U-R-stable if G : [0, ∞)→ R+, for each d > 0, and inequality∣∣∣PCABCDm
t Θ(t)−z(t, Θ(t))

∣∣∣ < dG(t), f orall, t ∈ T , (18)

∃ HG > 0 and a unique solution Θ ∈ Z, so that∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤ HGdG(t), t ∈ T . (19)
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Let G : [0, ∞)→ R+, so that∣∣∣PCABCDm
t Θ(t)−z(t, Θ(t))

∣∣∣ < G(t), t ∈ T , (20)

∃ HG > 0 and a unique solution Θ ∈ Z, so that∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤ HGG(t), t ∈ T . (21)

the acquired solution is generalized H-U-R-stable.

Remark 1. Consider a function φ1 ∈ C(T ) so that it does not on Θ ∈ Z , and φ1(0) = 0, and

|φ1(t)| ≤ d, t ∈ T ;
PCABCDm

t Θ(t) = z(t, Θ(t)) + φ1(t), t ∈ T .

Lemma 1. Consider the system as:

PCABC
0 D$

t Θ(t) = z(t, Θ(t)), 0 < $ ≤ 1. (22)

One can get the solution of the system (22) as

Θ(t) =



Θ0 +
1

Γ(m)

∫ t

0
z($, Θ($))(t− $)m−1d$, 0 < t ≤ t1

Θ(t1) +
1−m

ABC(m)

z(t, Θ(t)) +
m

ABC(m)Γ(m)

∫ t

t1

(t− $)m−1z($, Θ($))d($), t1 < t ≤ T,

(23)

and

∣∣∣∣F(Θ)− F(Θ)
∣∣∣∣ ≤


T m

1
Γ(m + 1)

dt ∈ T1,[
(1−m)Γ(m) + (Tm

2 )

ABC(m)Γ(m)

]
d = Λd, t ∈ T2.

(24)

Theorem 2. In light of Lemma (1) if the condition
L f T m

Γ(m)
< 1 holds, then the solution of the PW

rotavirus model (2) is H-U as well as generalized H-U-stable.

Proof. Let Θ ∈ Z satisfy the Equation (2) and Θ ∈ Z be a unique solution of (2); so, we
have two parts:

Case:1 For t ∈ T , we consider the Caputo case. Consider

∣∣∣∣Θ−Θ
∣∣∣∣ = sup

t∈T

∣∣∣∣Θ−(Θ◦ +
1

Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
)∣∣∣∣ (25)

≤ sup
t∈T

∣∣∣∣Θ−(Θ◦ +
1

Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
)∣∣∣∣ (26)

+ sup
t∈T

∣∣∣∣+ 1
Γ(m)

∫ t1

0
(t1 − s)m−1z(s, Θ(s))ds (27)

− 1
Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
∣∣∣∣ (28)

≤ T∞
m

Γ(m + 1)
d +

L f T∞

Γ(m + 1)

∣∣∣∣Θ−Θ
∣∣∣∣. (29)
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Through further simplification

∣∣∣∣Θ−Θ
∣∣∣∣ ≤

 T∞
Γ(m+1)

1− L f T∞

Γ(m+1)

d. (30)

Case:2∣∣∣∣Θ−Θ
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣Θ− [Θ(t1) +
1−m

ABC(m)
[z(t, Θ(t))]

+
m

ABC(m)Γ(m)

[∫ t

t1

(t− s)m−1z
(
s, Θ(s)

)
d(s)

]]∣∣∣∣
+ sup

t∈T

1−m
ABC(m)

∣∣z(t, Θ(t))−z
(
t, Θ(t)

)∣∣
+ sup

t∈T

m
ABC(m)Γ(m)

∫ t

t1

(t− s)m−1∣∣z(s, Θ(s))−z
(
s, Θ(s)

)∣∣ds.

Through further simplification and using Λ =
[
(1−m)Γ(m)+Tm

2
ABC(m)Γ(m)

]
, we have∣∣∣∣Θ−Θ

∣∣∣∣
Z ≤ Λd + ΛL f

∣∣∣∣Θ−Θ
∣∣∣∣

Z,

we have

∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤

 Λ
1− Λ

L f

d
∣∣∣∣Θ−Θ

∣∣∣∣
Z.

Using

H = max


 T1

Γ(m+1)

1− L f T1
Γ(m+1)

,
Λ

1− ΛL f
1−M f

.

Now from Equations (33) and (34), we have∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤ Hd, at each t ∈ T .

Hence, the solution of the PW rotavirus model (2) is H-U-stable. Moreover, by replac-
ing d with K(d), we have∣∣∣∣Θ−Θ

∣∣∣∣
Z ≤ HK(d), at each t ∈ T .

Thus, the solution of the PW rotavirus model (2) is G-H-U-stable.

Remark 2. Consider φ1 ∈ C(T ) with φ1(0) = 0; then,

|φ1(t)| ≤ G(t)d, t ∈ T ;
PCABCDm

t Θ(t) = z(t, Θ(t)) + φ1(t), t ∈ T .

Lemma 2. Solution to the model

PCABCDm
t Θ(t) = z(t, Θ(t)) + φ1(t),

Θ(0) = Θ◦,
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satisfies the following inequality:

∣∣∣∣F(Θ)− F(Θ)
∣∣∣∣ ≤


T m

1
Γ(m + 1)

CGG(t)d, t ∈ T1,[
(1−m)Γ(m) + (Tm

2 )

ABC(m)Γ(m)

]
CGG(t)d = ΛCGG(t)d, t ∈ T2.

(31)

whereH f ,G,Λ = ΛH f ,G .
Remark 2 can be used to obtain Equation (31).

Theorem 3. The solution of the PW rotavirus model is H-U-R-stable if the following conditions
hold:
(H1) For each Θ, v ∈ Z and a constant CK > 0, we obtain

|K(Θ)−K(v)| ≤ CK|Θ− v|;

(H2) For each Θ, v, Θ, v ∈ Z and constant L f > 0, 0 < M f < 1, we obtain∣∣z(t, Θ, v)−z(t, Θ, v)
∣∣ ≤ L f

∣∣Θ−Θ
∣∣+ M f |v− v|.

Proof. We prove the results in two parts.

Case:1 for t ∈ T , we have

∣∣∣∣Θ−Θ
∣∣∣∣ = sup

t∈T

∣∣∣∣Θ−(Θ◦ +
1

Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
)∣∣∣∣

≤ sup
t∈T

∣∣∣∣Θ−(Θ◦ +
1

Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
)∣∣∣∣

+ sup
t∈T

∣∣∣∣+ 1
Γ(m)

∫ t1

0
(t1 − s)m−1z(s, Θ(s))ds

− 1
Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
∣∣∣∣

≤
T m

1
Γ(m + 1)

CKK(t)d +
L f T∞

Γ(m + 1)

∣∣∣∣Θ−Θ
∣∣∣∣.

Through further simplification

∣∣∣∣Θ−Θ
∣∣∣∣ ≤

CKK(t) T1
Γ(m+1)

1− L f T1
Γ(m+1)

d. (32)

Case:2∣∣∣∣Θ−Θ
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣Θ− [Θ(t1) +
1−m

ABC(m)
[z(t, Θ(t))]

+
m

ABC(m)Γ(m)

[∫ t

t1

(t− s)m−1z
(
s, Θ(s)

)
d(s)

]]∣∣∣∣
+ sup

t∈T

1−m
ABC(m)

∣∣z(t, Θ(t))−z
(
t, Θ(t)

)∣∣
+ sup

t∈T

m
ABC(m)Γ(m)

∫ t

t1

(t− s)m−1∣∣z(s, Θ(s))−z
(
s, Θ(s)

)∣∣ds.

Through further simplification and using Λ =
[
(1−m)Γ(m)+Tm

2
ABC(m)Γ(m)

]
, we have∣∣∣∣Θ−Θ

∣∣∣∣
Z ≤ ΛCKK(t)d + ΛL f

∣∣∣∣Θ−Θ
∣∣∣∣

Z,
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we have

∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤

ΛCKK(t)
1− Λ

L f

d
∣∣∣∣Θ−Θ

∣∣∣∣
Z.

Using

HΛ,CK = max


 T1

Γ(m+1)

1− L f T1
Γ(m+1)

,
CKK(t)Λ

1− ΛL f
1−M f

.

Now, from Equations (33) and (34), we have∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤ HΛ,CKd, at each t ∈ T .

Hence, the theorem is proved.

Remark 3. Let φ1 ∈ C(T ) with φ1(0) = 0; then,

|φ1(t)| ≤ G(t), t ∈ T .

Theorem 4. Using H1, H2, and Remarks 2 and 3, the solution of the PW rotavirus model (2) is
generalized H-U-R-stable, if M f < 1.

Where
(H1) For each Θ, v ∈ Z and constant CK > 0, we obtain

|K(Θ)−K(v)| ≤ CK|Θ− v|;

and
(H2) For each Θ, v, Θ, v ∈ Z and constant L f > 0, 0 < M f < 1, we obtain∣∣z(t, Θ, v)−z(t, Θ, v)

∣∣ ≤ L f
∣∣Θ−Θ

∣∣+ M f |v− v|.

Proof. We obtain our results in two parts:

Case:1 We consider the Caputo operator in the t ∈ T . Consider

∣∣∣∣Θ−Θ
∣∣∣∣ = sup

t∈T

∣∣∣∣Θ−(Θ◦ +
1

Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
)∣∣∣∣

≤ sup
t∈T

∣∣∣∣Θ−(Θ◦ +
1

Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
)∣∣∣∣

+ sup
t∈T

∣∣∣∣+ 1
Γ(m)

∫ t1

0
(t1 − s)m−1z(s, Θ(s))ds

− 1
Γ(m)

∫ t1

0
(t1 − s)m−1z

(
s, Θ(s)

)
ds
∣∣∣∣

≤
T m

1
Γ(m + 1)

CKK(t)d +
L f T∞

Γ(m + 1)

∣∣∣∣Θ−Θ
∣∣∣∣.

Through further simplification

∣∣∣∣Θ−Θ
∣∣∣∣ ≤

CKK(t) T1
Γ(m+1)

1− L f T1
Γ(m+1)

d. (33)
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Case:2∣∣∣∣Θ−Θ
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣Θ− [Θ(t1) +
1−m

ABC(m)
[z(t, Θ(t))]

+
m

ABC(m)Γ(m)

[∫ t

t1

(t− s)m−1z
(
s, Θ(s)

)
d(s)

]]∣∣∣∣
+ sup

t∈T

1−m
ABC(m)

∣∣z(t, Θ(t))−z
(
t, Θ(t)

)∣∣
+ sup

t∈T

m
ABC(m)Γ(m)

∫ t

t1

(t− s)m−1∣∣z(s, Θ(s))−z
(
s, Θ(s)

)∣∣ds.

Through further simplification and using Λ =
[
(1−m)Γ(m)+Tm

2
ABC(m)Γ(m)

]
, we have∣∣∣∣Θ−Θ

∣∣∣∣
Z ≤ ΛCKK(t)d + ΛL f

∣∣∣∣Θ−Θ
∣∣∣∣

Z,

we have

∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤
(

ΛCKK(t)
1−ΛL f

)∣∣∣∣Θ−Θ
∣∣∣∣

Z.

Using

HΛ,CK = max


 T1

Γ(m+1)

1− L f T1
Γ(m+1)

,
CKK(t)Λ
1−ΛL f

.

Now, from Equations (33) and (34), we have∣∣∣∣Θ−Θ
∣∣∣∣

Z ≤ HΛ,CK , at each t ∈ T .

The generalized H-U-R stability of the solution is proved.

5. Numerical Scheme for the Fractional Piecewise Rotavirus Model

In this section, we derive the numerical scheme for the following rotavirus epidemic
model (2):

PCABC
0 Dm

t S(t) = (1− ξ − ζ)Λ + ωM + νV− δIS− (ϕ + Υ + ζ)S,
PCABC
0 Dm

t M(t) = Λξ + ϕS− ςδIM− (ω + ψ + ζ)M,
PCABC
0 Dm

t V(t) = Λζ + ΥS + ψM− λδIV− (ν + ζ)V,
PCABC
0 Dm

t I(t) = δSI + εδIM + λδIV− (τ + κ + ζ)I,
PCABC
0 Dm

t R(t) = κI− ζR.

(34)

By applying the piece-wise integral to the Caputo and AB derivative, we obtain
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S(t) =

{
S(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz1(t, S)dρ 0 < t ≤ t1,

S(t1) +
1−m

AB(m)
z1(t, S)dρ + m

AB(m)Γ(m)

∫ t
t1
(t− ρ)m−1z1(t, S)dρ t1 < t ≤ T,

M(t) =

{
M(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz2(t, M)dρ 0 < t ≤ t1,

M(t1) +
1−m

AB(m)
z2(t, M)dρ + m

AB(m)Γ(m)

∫ t
t1
(t− ρ)m−1z2(t, M)dρ t1 < t ≤ T,

(35)

V(t) =

{
V(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz3(t, V)dρ 0 < t ≤ t1,

V(t1) +
1−m

AB(m)
z3(t, V)dρ + m

AB(m)Γ(m)

∫ t
t1
(t− ρ)m−1z3(t, V)dρ t1 < t ≤ T,

I(t) =

{
I(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz4(t, I)dρ 0 < t ≤ t1,

I(t1) +
1−m

AB(m)
z4(t, I)dρ + m

AB(m)Γ(m)

∫ t
t1
(t− ρ)m−1z4(t, I, )dρ t1 < t ≤ T,

R(t) =

{
R(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz5(t, R)dρ 0 < t ≤ t1,

R(t1) +
1−m

AB(m)
z5(t, R)dρ + m

AB(m)Γ(m)

∫ t
t1
(t− ρ)m−1z5(t, R)dρ t1 < t ≤ T,

At t = tn+1

S(t) =

{
S(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz1(t, S)dρ 0 < t ≤ t1,

S(t1) +
1−m

AB(m)
z1(t, S)dρ + m

AB(m)Γ(m)

∫ tn+1
t1

(t− ρ)m−1z1(t, S)dρ t1 < t ≤ T,

M(t) =

{
M(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz2(t, M)dρ 0 < t ≤ t1,

M(t1) +
1−m

AB(m)
z2(t, M)dρ + m

AB(m)Γ(m)

∫ tn+1
t1

(t− ρ)m−1z2(t, M)dρ t1 < t ≤ T,

V(t) =

{
V(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz3(t, V)dρ 0 < t ≤ t1,

V(t1) +
1−m

AB(m)
z3(t, V)dρ + m

AB(m)Γ(m)

∫ tn+1
t1

(t− ρ)m−1z3(t, V)dρ t1 < t ≤ T,

I(t) =

{
I(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz4(t, I)dρ 0 < t ≤ t1,

I(t1) +
1−m

AB(m)
z4(t, I)dρ + m

AB(m)Γ(m)

∫ tn+1
t1

(t− ρ)m−1z4(t, I, )dρ t1 < t ≤ T,

R(t) =

{
R(0) + 1

Γ(m)

∫ t1
0 (t− ρ)m−1cz5(t, R)dρ 0 < t ≤ t1,

R(t1) +
1−m

AB(m)
z5(t, R)dρ + m

AB(m)Γ(m)

∫ tn+1
t1

(t− ρ)m−1z5(t, R)dρ t1 < t ≤ T.
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We put the Newton polynomials, so we obtain

S(tn+1) =



S0 +



(∆t)m−1

Γ(m + 1)

i

∑
k=2

[C

z1(Sk−2, tk−2)

]
Π

+
(∆t)m−1

Γ(m + 2)

i

∑
k=2

[C

z1(Sk−1, tk−1)−C z1(Sk−2, tk−2)

]∧
+

m(∆t)m−1

2Γ(m + 3)

i

∑
k=2

[C

z1(Sk, tk)− 2Cz1(Sk−1, tk−1)

+C z1(Sk−2, tk−2)

]
∆



.

S(t1) +



1−m
ABC(m)

ABCz1(Sn, tn) +
m

ABC(m)

(δt)m−1

Γ(m + 1)
n

∑
k=i+3

[ABC

z1(Sk−2, tk−2)

]
Π

+
m

ABC(m)

(mt)m−1

Γ(m + 2)

n

∑
k=i+3

[ABC

z1(Sk−1, tk−1)

+ ABCz1(Sk−2, tk−2)

]∧
+

m
ABC(m)

m(mt)m−1

Γ(m + 3)

n

∑
k=i+3

[ABC

z1(Sk, tk)

− 2ABCz1(Sk−1, tk−1)

+ABC z1(Sk−2, tk−2)

]
∆.



.

.
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M(tn+1) =



M0 +



(∆t)m−1

Γ(m + 1)

i

∑
k=2

[C

z2(Mk−2, tk−2)

]
Π

+
(∆t)m−1

Γ(m + 2)

i

∑
k=2

[C

z2(Mk−1, tk−1)−C z2(Mk−2, tk−2)

]∧
+

m(∆t)m−1

2Γ(m + 3)

i

∑
k=2

[C

z2(Mk, tk)− 2Cz2(Mk−1, tk−1)

+C z2(Mk−2, tk−2)

]
∆



.

M(t1) +



1−m
ABC(m)

ABCz2(Mn, tn) +
m

ABC(m)

(δt)m−1

Γ(m + 1)
n

∑
k=i+3

[ABC

z2(Mk−2, tk−2)

]
Π

+
m

ABC(m)

(mt)m−1

Γ(m + 2)

n

∑
k=i+3

[ABC

z2(Mk−1, tk−1)

+ ABCz2(Mk−2, tk−2)

]∧
+

m
ABC(m)

m(mt)m−1

Γ(m + 3)

n

∑
k=i+3

[ABC

z2(Mk, tk)

− 2ABCz2(Mk−1, tk−1)

+ABC z2(Mk−2, tk−2)

]
∆.



.

.
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V(tn+1) =



V0 +



(∆t)m−1

Γ(m + 1)

i

∑
k=2

[C

z3(Vk−2, tk−2)

]
Π

+
(∆t)m−1

Γ(m + 2)

i

∑
k=2

[C

z3(Vk−1, tk−1)−C z3(Vk−2, tk−2)

]∧
+

m(∆t)m−1

2Γ(m + 3)

i

∑
k=2

[C

z3(Vk, tk)− 2Cz3(Vk−1, tk−1)

+C z3(Vk−2, tk−2)

]
∆



.

V(t1) +



1−m
ABC(m)

ABCz3(Vn, tn) +
m

ABC(m)

(δt)m−1

Γ(m + 1)
n

∑
k=i+3

[ABC

z3(Vk−2, tk−2)

]
Π

+
m

ABC(m)

(mt)m−1

Γ(m + 2)

n

∑
k=i+3

[ABC

z3(Vk−1, tk−1)

+ ABCz3(Vk−2, tk−2)

]∧
+

m
ABC(m)

m(mt)m−1

Γ(m + 3)

n

∑
k=i+3

[ABC

z3(Vk, tk)

− 2ABCz3(Vk−1, tk−1)

+ABC z3(Vk−2, tk−2)

]
∆.



.

.
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I(tn+1) =



I0 +



(∆t)m−1

Γ(m + 1)

i

∑
k=2

[C

z4(Ik−2, tk−2)

]
Π

+
(∆t)m−1

Γ(m + 2)

i

∑
k=2

[C

z4(Ik−1, tk−1)−C z4(Ik−2, tk−2)

]∧
+

m(∆t)m−1

2Γ(m + 3)

i

∑
k=2

[C

z4(Ik, tk)− 2Cz4(Ik−1, tk−1)

+C z4(Ik−2, tk−2)

]
∆



.

I(t1) +



1−m
ABC(m)

ABCz4(In, tn) +
m

ABC(m)

(δt)m−1

Γ(m + 1)
n

∑
k=i+3

[ABC

z4(Ik−2, tk−2)

]
Π

+
m

ABC(m)

(mt)m−1

Γ(m + 2)

n

∑
k=i+3

[ABC

z4(Ik−1, tk−1)

+ ABCz4(Ik−2, tk−2)

]∧
+

m
ABC(m)

m(mt)m−1

Γ(m + 3)

n

∑
k=i+3

[ABC

z4(Ik, tk)

− 2ABCz4(Ik−1, tk−1)

+ABC z4(Ik−2, tk−2)

]
∆.



.

.
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R(tn+1) =



R0 +



(∆t)m−1

Γ(m + 1)

i

∑
k=2

[C

z5(Rk−2, tk−2)

]
Π

+
(∆t)m−1

Γ(m + 2)

i

∑
k=2

[C

z5(Rk−1, tk−1)−C z5(Rk−2, tk−2)

]∧
+

m(∆t)m−1

2Γ(m + 3)

i

∑
k=2

[C

z5(Rk, tk)− 2Cz5(Rk−1, tk−1)

+C z5(Rk−2, tk−2)

]
∆



.

R(t1) +



1−m
ABC(m)

ABCz5(Rn, tn) +
m

ABC(m)

(δt)m−1

Γ(m + 1)
n

∑
k=i+3

[ABC

z5(Rk−2, tk−2)

]
Π

+
m

ABC(m)

(mt)m−1

Γ(m + 2)

n

∑
k=i+3

[ABC

z5(Rk−1, tk−1)

+ ABCz5(Rk−2, tk−2)

]∧
+

m
ABC(m)

m(mt)m−1

Γ(m + 3)

n

∑
k=i+3

[ABC

z5(Rk, tk)

− 2ABCz5(Rk−1, tk−1)

+ABC z5(Rk−2, tk−2)

]
∆.



.

.

Here

Π =


(−k + 1 + n)m

(
2(n− k)2 + (3m + 10)(−k + n) + 2m2 + 9m + 12

)
− (n− k)

(
2(−k + n)2 + (5m + 10)(n− k) + 6m2 + 18m + 12

)
,

∧
=


(1− k + n)m

(
3 + n + 2m− k

)
− (−k + n)

(
n + 3m− k + 3

)
,

∆ =
[
(1− k + n)m − (−k + n)m ]

.

and

Cz1(S, t) = ABCz1(S, t) = (1− ξ − ζ)Λ + ωM + νV− δIS− (ϕ + Υ + ζ)S,
Cz3(M, t) = ABCz3(M, t) = Λξ + ϕS− ςδIM− (ω + ψ + ζ)M,
Cz2(V, t) = ABCz2(V, t) = Λζ + ΥS + ψM− λδIV− (ν + ζ)V,
Cz4(I, t) = ABCz4(I, t) = δSI + εδIM + λδIV− (τ + κ + ζ)I,
Cz5(R, t) = ABCz5(R, t) = κI− ζR.

6. Numerical Simulations

Here, we present the graphical simulations of the suggested model (2). The initial
conditions are used as [S0, M0, V0, I0, R0] = [2000, 1500, 1500, 100, 0]. The simulations for
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the values of Table 2 are presented in Figure 1a–e. We split the interval into two sub-
intervals, which are (0, t1] = (0, 85] and (t1, T] = (85, 200]. In the first half-interval, we
take the Caputo derivative, and the fractional order ABC operator is used in the second
half-interval. Thus, the first half-interval shows the evolution of the considered model (2)
in the Caputo operator’s sense, and the curves in second half-interval demonstrate the
behavior of the suggested model with various values of m in the ABC sense. In Figure 1a–e,
the values of fractional order m are used as (blue, 0.990), (green, 0.985), (black, 0.980),
(red, 0.975) and (magenta, 0.970).

Table 2. Parameters and their values in model (1).

Parameter Breastfeeding Only Breastfeeding and Vaccination

Λ 6.8394 6.8394
ϕ 4.9315× 10−4 4.9315× 10−4

Υ 0 0.2
ψ 0 0.2
δ 0.01 0.01
ω 5.4945× 10−3 5.4945× 10−3

ν 1.3699× 10−3 1.3699× 10−3

ς 0.62 0.62
λ 0.62 0.62
τ 4.4660× 10−5 4.4660× 10−5

κ 3.6529× 10−5 3.6529× 10−5

m 8.3333×10−2 8.3333×10−2
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Figure 1. Cont.
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Figure 1. The dynamics of the considered model (2) for t1 = 80.

Figure 1a, depicts the behavior of susceptible individuals. Figure 1b,c demonstrates the
evolution of breastfeeding and vaccinated populous. Further, Figure 1d,e demonstrates the
effects of the piecewise operator on the evolution of the infected and recovered populous.
In Figure 1a, the number of susceptible individuals declines with the passage of time and
vanishes after t = 105. This shows that at small fractional orders, the individuals decreases
fast. The breastfeeding population also decreases with time, which becomes stable after
t = 130, as shown in Figure 1b. Furthermore, the vaccinated populous decays with time
starting from 1500 individuals. Moreover, the number of infected children increases and
reaches its highest point at t = 80, after which the number of infections gradually decreases.
The recovered populous increases with time demonstrate a rapid increase at the lower
values of m as compared to the higher values.

For Figure 2a–e, the parameter values are taken into consideration as shown in Table 2
with fractional order 0.98. Figure 2a,b show the dynamics of susceptible and breastfeeding
population with and without vaccination. Similarly, Figure 2c,d demonstrate the behavior
of vaccinated and infected individuals. Furthermore, Figure 2e shows the dynamics of the
recovered population. From the simulation of the results with and without vaccination, one
thing is clear: that vaccination increases the number of recovered individuals and reduces
the size of the infected population.
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Figure 2. Cont.
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Figure 2. The dynamics of the model (2) with and without vaccination.

Figure 3a shows a comparison of the simulated data and the real data of the infected
children for three years, September 2012 to October 2014 of the Thailand. We have simulated
the infected class with real data. The data considered here is interpolated into days. For
the simulation, we have considered initial value I0 = 2 and the parameters m = 0.52
and λ = 0.2, while the other parameters are used as presented in Table 2. Here, the
fractional order m are used as (blue, 0.990), (green, 0.985), (red, 0.980), (cyan, 0.975), and
(magenta, 0.970). For the crossover behavior, the interval is split into two intervals, which
are (0, t1] = (0, 280] and (t1, T] = (280, 800]. The comparison shows that the proposed
rotavirus system shows the best-fitted dynamics with the real cases. The piecewise operator
positively affects the model dynamics, which makes the simulated data more fitted with
the real data, as can be observed for fractional orders 0.990, 0.980, , and 0.970. Figure 3b,c
show the comparison between the simulated results and real data for West Africa and the
United States of America. For the simulation of Figure 3b, the parameter δ is considered
as δ = 0.009, while the other parameters are considered as presented in Table 2. Similarly,
for the simulation of Figure 3c, the parameters are estimated as δ = 0.00108, ψ = 0.5, and
other parameters are used from Table 2. We observed that the piecewise operators provide
a suitable and efficient way to analyze biological models showing the best-fitted dynamics,
as observed from the proposed comparison.
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Figure 3. The comparison of the simulated and real data with a variety of fractional orders of the
model (2) with t1 = 280.

7. Conclusions

The concept of piecewise operators is rarely used in the analysis of mathematical
models of biomathematics. So, here in this paper, we have provided another application
of the piecewise fractional operator in mathematical biology. We have used the fractional
piecewise operator to analyze the rotavirus model regarding the effects of vaccination.
The important theoretical and numerical properties have been presented for the proposed
model. Using the concept of fixed-point results, we have derived results that deals with
the existence and uniqueness of the solution. The solution of a nonlinear model is difficult
to compute by using an analytical approach. So, we have used the Adams–Bashforth
technique to compute the numerical solution of the piecewise fractional model of rotavirus.
The stability of the solution has been studied via the concept of Ulam–Hyres stability. We
have used MATLAB-18 to depict the numerical results for few fractional orders. We have
observed that the simulated data coincide with the real data for different fractional orders.
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