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Abstract: In this work, we used three finite difference schemes to solve 1D and 2D convective
diffusion equations. The three methods are the Kowalic–Murty scheme, Lax–Wendroff scheme, and
nonstandard finite difference (NSFD) scheme. We considered a total of four numerical experiments;
in all of these cases, the initial conditions consisted of symmetrical profiles. We looked at cases when
the advection velocity was much greater than the diffusion of the coefficient and cases when the
coefficient of diffusion was much greater than the advection velocity. The dispersion analysis of
the three methods was studied for one of the cases and the optimal value of the time step size k,
minimizing the dispersion error at a given value of the spatial step size. From our findings, we
conclude that Lax–Wendroff is the most efficient scheme for all four cases. We also show that the
optimal value of k computed by minimizing the dispersion error at a given value of a spacial step
size gave the lowest l2 and l∞ errors.

Keywords: finite difference schemes; amplification factor; stability; relative phase error; optimization

1. Introduction

Petroleum is used as fuel for daily human activities. Liquid petroleum has some useful
advantages over other energy sources; it is concentrated and could be easily transported
from one point to another.

The major objective of oil spill modeling is to predict where oil is likely to go after
a spill [1,2]. The use of data on ocean currents, winds, waves, and other environmental
factors help in this regard [3]. Ovsienko et al. [4] developed a model to forecast the behavior
and spreading of oil at sea using the particle-in-cell technique on a quasi-Eulerian adaptive
grid. The fate and behavior of spilled oil can be affected by nine physical, chemical,
and biological processes: advection, spreading, evaporation, dissolution, emulsification,
dispersion, auto-oxidation, biodegradation, and sinking/sedimentation [5].

Cho et al. [1] analyzed the movement of oil with a numerical model that solved an
advection–diffusion reaction equation with finite difference schemes. The spilled oil dis-
persion model was established in consideration of tide and tidal currents, simultaneously.
They obtained the velocity components in the advection–diffusion reaction equation from
the shallow water equations. Another commonly used method is the split-operator ap-
proach where the convection and diffusion terms are solved by two different numerical
methods [6]. A one-dimensional convective diffusion equation was solved by Noye–Tan [7]
using the third-order semi-implicit finite difference method. This approach was later ex-
tended by Noye–Tan [8] to solve the two-dimensional convective diffusion equation but the
said method had issues handling three-dimensional problems because of the large matrix
inversion at each time step. The quadratic upstream interpolation convective kinematics
(QUICK) method for one-dimensional unsteady flow was introduced by Leonard [9] to
address the issue of numerical dispersion. This method was extended to an improved
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scheme, getting rid of wiggles in its entirety by introducing exponential integration into
the regions with sharp fronts.

The second-order wave equation method for advection calculation (SOWMAC) was
used to discretize the advection term in the advection–diffusion equation based on the
characteristic method, but this method is implicit [1]. An upwind difference scheme was
used by Sankaranarayanan et al. [10] for the discretization of the convective terms of the
convective diffusion equation of the shallow water momentum equations. This latter
scheme was constructed by Kowalik–Murty [11] and referred to as the third-order upwind
scheme. However, we found the scheme to be second-order accurate in space and first-order
accurate in time after conducting the truncation error analysis.

Three numerical methods have been used to solve two problems described by advection–
diffusion equations in Appadu et al. [12]. The methods are third-order upwind [13], fourth-
order upwind [13], and the nonstandard finite difference scheme. First-order classical methods,
such as the Lax–Friedrichs method, often fail to capture shocks efficiently and odd–even
decoupling usually occurs [14]. Results can be improved by employing high-order schemes.
High-order schemes for convection–diffusion equations are reported in [14–19]. Use of special
multi-grid strategies on non-uniform grids for solving 3D convection–diffusion problems
with boundary/interior layers was reported by Ma et al. [15]. Jha and Lin [16] constructed
a two-level implicit compact formulation with quasi-variable meshes for solving three-
dimensional second-order non-linear parabolic partial differential equations.

2. Organisation of Paper

In this work, we present three numerical schemes, i.e., the Kowalic–Murty [11] scheme,
Lax–Wendroff scheme, and a nonstandard finite difference scheme for solving convective
diffusion equations. Section 4 introduces the one-dimensional convective diffusion equa-
tion; the three methods are introduced and their regions of stability are obtained using
the von Neumann stability analysis. In Section 5, optimization analyses are carried out
to determine the optimal value of the temporal step size at a given spatial step size that
will minimize the dispersion errors. The graphs of the relative phase error and integrated
error are displayed. In Section 6, numerical results for numerical experiment 2 for the three
schemes are tabulated and the graphical representations of the solutions and behaviors
of the errors are displayed. In Section 7, a 2D problem is considered and the schemes
in Section 4 are extended to discretize the 2D convection–diffusion equation. Regions of
stability are also obtained for the schemes. In Section 8, numerical results for the two
experiments dealing with the 2D advection–diffusion equation are displayed graphically
and l2 and l∞ errors are tabulated. The salient features of this paper are highlighted in the
Section 9.

3. Dispersive and Dissipative Properties

In simple room acoustic models, sound waves of different frequencies are expected
to travel through the air at the same speed, but numerical dispersion causes waves of
different frequencies to travel at different speeds [20]. A phenomenon of waves of different
frequencies traveling at different speeds is called dispersion. It causes numerical solutions
to spread out as time progresses. Dissipation is the constant decrease in the amplitude of a
plane wave as time progresses. The relative phase error (RPE) is defined as the ratio of the
numerical phase velocity to the exact phase velocity and is calculated as:

RPE =
arg(ξnum)

arg(ξexact)
,

where ξnum is the numerical amplification factor, which is obtained using Fourier analysis
and ξexact is the exact amplification factor of the partial differential equation [20].
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The exact amplification factor of the UPFD scheme discretizing

∂u
∂t

(1 + α) + a
∂u
∂x
− D

∂2u
∂x2 = −κu,

was obtained in Appadu [14]. Applying the ansatz C = exp(αt) exp(Iθx), to the PDE

∂C
∂t

+ U
∂C
∂x

= Kx
∂2C
∂x2 , (1)

we obtain the dispersion relation α = −Kxθ2 − IUθ. Since ξexact =
C(x,t+k)

C(x,t) , where C =

exp(αt) exp(Iθx), [21], we obtain ξexact = exp{(−Kxθ2− IUθ)k}. The RPE of the numerical
method discretizing Equation (1) is RPE = − 1

cxω arg (ξnum), where cx = Uk
h .

To compare the performance of the methods, we calculate l2, l∞ errors, and the total
mean square error. The l2, l∞ errors, and total mean square error (TMSE) are calculated
as [22]

l2 error =

√√√√h
N

∑
i=1

(Ci − C∗i )
2,

l∞ error = max
i
|Ci − C∗i |,

and [23,24]

TMSE =
1
N

N

∑
i=1

(Ci − C∗i )
2,

where Ci and C∗i are the analytical and numerical solutions, respectively, at a given spatial
grid point i, and N is the number of spatial nodes.

4. 1D Convection–Diffusion Equation

We consider the following equation:

∂C
∂t

+ U
∂C
∂x
− Kx

∂2C
∂x2 = 0, (2)

where 0 ≤ x ≤ 9, 0 ≤ t ≤ 5, with initial conditions,

C(x, 0) = exp
(
− (x− x0)

2

Kx

)
,

and subject to the boundary condition

∂C
∂x

= 0.

The exact solution is given by Sankaranarayanan et al. [10] as

C(x, t) =
1√

4t + 1
exp

(
− (x− x0 −Ut)2

Kx(4t + 1)

)
. (3)

We consider two cases:

(i) numerical experiment 1, where Kx = 0.005, U = 0.8 and x0 = 1, i.e., (U >> Kx).
(ii) numerical experiment 2, where Kx = 0.8, U = 0.005 and x0 = 1, i.e., (U << Kx).

Three finite difference methods are used to solve Equation (2). We also study the
stability and consistency of the methods. Stability is of major concern in the study of
convergence of a numerical method for approximating a PDE, and it is often very difficult
to obtain the region of stability for a numerical method. In the past, many attempts were
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made to obtain stability regions of numerical methods discretizing convection–diffusion
equations. In Sousa [25], several techniques from previous works have been reviewed
using the forward time central space scheme. Hindmarsh et al. [26] made use of the
von Neumann analysis and proved that the correct limits were necessary and sufficient
stability conditions.

4.1. Kowalic–Murty Scheme [11]

Here, we describe how an upwind scheme was constructed by Kowalik–Murty [11]
for Equation (2) in which the first derivative of C with respect to t and x is given by

∂C
∂t
≈

Cn+1
i − Cn

i
k

,

and

∂C
∂x
≈

Cn
i−2 − 6Cn

i−1 + 3Cn
i + 2Cn

i+1
6h

,

respectively.
The second derivative of C with respect to x is obtained as

∂2C
∂x2 ≈

Cn
i+1 − 2Cn

i + Cn
i−1

h2 ,

where h and k are the spatial and temporal step sizes. Upon substituting these approxima-
tions into Equation (2), we have

Cn+1
i − Cn

i
k

+ U
(Cn

i−2 − 6Cn
i−1 + 3Cn

i + 2Cn
i+1

6h

)
− Kx

(Cn
i+1 − 2Cn

i + Cn
i−1

h2

)
= 0. (4)

This can be written explicitly as

Cn+1
i = Cn

i −
kU
6h
(
Cn

i−2 − 6Cn
i−1 + 3Cn

i + 2Cn
i+1
)
+

kKx

h2

(
Cn

i+1 − 2Cn
i + Cn

i−1
)
, (5)

for i = 3, · · · , NP− 1, where NP is the number of spatial nodes. Note that to implement
this scheme, a four-point upstream formula is used near the boundary when i = 2 [10].

The stability region is obtained using the von Neumann stability analysis, i.e., using
the ansatz Cn

i = ξneIωi where I =
√
−1, into Equation (5) and simplifying, we obtain the

amplification factor as

ξ = 1− kU
2h
− 2kKx

h2 +

(
2kU
3h

+
2kKx

h2

)
cos ω− kU

6h
cos 2ω + I

(
kU
6h

sin 2ω− 4kU
3h

sin ω

)
, (6)

where ω = θh is the phase angle.
For a purely non-imaginary amplification factor, we choose ω = π in Equation (6)

and obtain
ξ = 1− kU

2h
− 2kKx

h2 −
2kU
3h
− 2kKx

h2 −
kU
6h

.

For stability, |ξ| ≤ 1, and so we have the following region of stability:

0 <
k
h
≤ 3h

2(hU + 3Kx)
. (7)

We next consider the case when ω → 0. When ω → 0, cos ω ≈ 1− 1
2 ω2, sin ω ≈ ω,

and neglect higher-order terms, we have

|ξ|2 = 1− 2kKx

h2 ω2 +
k2U2

h2 ω2. (8)
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For stability, |ξ| ≤ 1, and we have after simplification

k ≤ 2Kx

U2 . (9)

Hence, we have the region of stability for the scheme to be the intersection of the
regions defined by Equations (7) and (9).

For cases 1 and 2, when h = 0.025, the stability regions are 0 < k ≤ 1.5625× 10−2 and
0 < k ≤ 3.9060× 10−4, respectively.

Consistency of the scheme

To determine the order of accuracy of the scheme, we apply the Taylor series expansion
at about the point (tn, xi). We then obtain,

∂C
∂t

+ U
∂C
∂x
− Kx

∂2C
∂x2 = −1

2
k

∂2C
∂t2 −

1
6

k2 ∂3C
∂t3 −

1
24

k3 ∂4C
∂t4 +

1
12

Kxh2 ∂4C
∂x4 −

1
12

Uh3 ∂4C
∂x4 + · · · .

We deduce that the scheme is of order two in space and order one in time.

4.2. Lax–Wendroff Method

This scheme uses the following approximations [27] for the 1D convection–diffusion
equation:

∂C
∂t
≈

Cn+1
i − Cn

i
k

, (10)

∂C
∂x
≈ cx

Cn
i − Cn

i−1
h

+ (1− cx)
Cn

i+1 − Cn
i−1

2h
, (11)

∂2C
∂x2 ≈

Cn
i+1 − 2Cn

i + Cn
i−1

h2 , (12)

where cx = Uk
h . Upon substitution of Equations (10)–(12) into Equation (2), we obtain

Cn+1
i − Cn

i
k

+ Ucx

(Cn
i − Cn

i−1
h

)
+ (1− cx)U

(Cn
i+1 − Cn

i−1
2h

)
− Kx

(Cn
i+1 − 2Cn

i + Cn
i−1

h2

)
= 0, (13)

which is written explicitly as

Cn+1
i =

1
2
(2sx + cx + c2

x)C
n
i−1 + (1− c2

x − 2sx)Cn
i +

1
2
(2sx − cx + c2

x)C
n
i+1, (14)

where sx = kKx
h2 . We now obtain the region of stability using the approach used in Hind-

marsh et al. [26].
We first obtain the amplification factor, ξ, from the scheme, which is

ξ =
1
2
(2sx + cx + c2

x)e
−Iωx +

1
2
(2sx − cx + c2

x)e
Iωx + (1− c2

x − 2sx),

and then consider the case when ω = π. The scheme is stable if the inequality 0 < |ξ| ≤ 1
holds. The Lax–Wendroff scheme is stable when it satisfies the inequality

2sx + c2
x ≤ 1. (15)

We next consider the case when ω → 0. When ω → 0, cos ω ≈ 1− 1
2 ω2, sin ω ≈ ω,

and neglect higher-order terms, we have

|ξ|2 = 1− 2sxω2, (16)
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this implies that sx > 0. Thus, the scheme is stable when 0 ≤ sx ≤ 1−c2
x

2 [14].
Stability regions for cases 1 and 2 when h = 0.025 are 0 < k ≤ 2.4400× 10−2 and

0 < k ≤ 3.9060× 10−4 respectively.

Consistency of the scheme

To determine the order of accuracy of this scheme, we apply the Taylor series expansion
at about the point (tn, xi) on Equation (13), and on simplifying, we obtain

∂C
∂t

+ U
∂C
∂x
− Kx

∂2C
∂x2 =− 1

2
k

∂2C
∂t2 −

1
6

k2 ∂3C
∂t3 +

1
2

kU2 ∂2C
∂x2 − kh2U

∂3C
∂x3 +

1
24

Kxh2 ∂4C
∂x4

+
1

24
U2kh2 ∂4C

∂x4 + · · · .

The scheme is accurate of order two in space and order one in time.

4.3. Nonstandard Finite Difference Method

Nonstandard finite difference (NSFD) methods have been widely used for the numer-
ical approximations of differential equations [28,29]. The architect behind these classes
of methods is Ronald Mickens [30]. The extension and summary of the known results
up to 1994 are provided in Mickens [31]. The idea behind the construction of the NSFD
schemes is that the discrete model must preserve the properties of the continuous model.
Progress has been made in the theoretical understanding of the method by Anguelov and
Lubuma [32].

Let
D+

φ(k)(u
n) = Fφ(k)( f (un)), (17)

at tn = t0 + nk be the general one-step numerical scheme with the temporal step size k that
the approximate solution of the differential equation

du
dt

= f (u), u(t0) = u0 ≥ 0, (18)

where Dφ(k)(un) ≈ du
dt and Fφ(k)( f (un)) approximates the right-hand side of (18) and

un ≈ u(tn).

Definition 1 ([33]). The one-step scheme given by Equation (17) is called a nonstandard finite
difference scheme if at least one of the following conditions is satisfied:

•

D+
φ(k)(u

n) =
un+1 − un

φ(k)
,

where φ(k) = k +O(k2); 0 < φ(k) < 1,
• Fφ(k)( f (un)) = Ψ(un, un+1, φ(∆t)), where Ψ(un, un+1, φ(k)) is a nonlocal approximation

of the right-hand side of (18).

Definition 2 ([31]). Equations (17) and (18) are said to have the same general solution if and
only if

un = u(tn)

for arbitrary φ(k).

Definition 3 (Exact scheme, [31]). An exact finite difference scheme is the one for which the solu-
tion to the differential equation has the same general solution as the associated differential equation.

Here, we describe how NSFD was constructed by Mickens [28] for the 1D convection–
diffusion equation.
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The equation
∂C
∂t

+ U
∂C
∂x
− Kx

∂2C
∂x2 = 0

is split into three sub-equations following [34]:

∂C
∂t

+ U
∂C
∂x

= 0, (19)

∂C
∂x

=
Kx

U
∂2C
∂x2 , (20)

and
∂C
∂t

= Kx
∂2C
∂x2 . (21)

Equations (19) and (20) have known–exact finite difference schemes, which are

Cn+1
i − Cn

i
k

+ U
(Cn

i − Cn
i−1

h

)
= 0,

and

U
(

Ci − Ci−1

h

)
= U

Ci+1 − 2Ci + Ci−1

h(exp(Uh/Kx)− 1)
,

respectively, when h→ 0 and k→ 0.
The NSFD is given by Mickens [28,34] as:

Cn+1
i − Cn

i
k

+ U
(Cn

i − Cn
i−1

h

)
= U

Cn
i+1 − 2Cn

i + Cn
i−1

h(exp(Uh/Kx)− 1)
, (22)

which is written explicitly as

Cn+1
i = (cx + βx) Cn

i−1 + (1− cx − 2βx) Cn
i + βx Cn

i+1, (23)

where cx = kU
h and βx = Uk

h(exp(Uh/Kx)−1) . The square of the modulus of the amplification
factor is given by

|ξ|2 = ((1− cx − 2βx) + (cx + 2 βx) cos(ω))2 + (cx sin(ω))2. (24)

For stability, 0 < |ξ| ≤ 1 and this implies that 0 < |ξ|2 ≤ 1. The square of the modulus
of the amplification factor when ω = π is given by

|ξ|2 = (1− 2 cx − 4 βx)
2. (25)

and, therefore,
cx + 2 βx ≤ 1. (26)

We next consider the case when ω → 0. When ω → 0, we use the approximations
cos(ω) ≈ 1− 1

2 ω2, sin(ω) ≈ ω and neglecting higher-order terms, we have

|ξ|2 = 1− (cx + 2 βx − c2
x)ω

2. (27)

|ξ|2 ≤ 1 implies that
cx + 2 βx − c2

x ≥ 0. (28)
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Thus, the scheme is stable if it satisfies the inequality [12]

c2
x ≤ cx + 2 βx ≤ 1. (29)

Stability regions for NSFD schemes discretizing Equation (2) for cases 1 and 2 when
h = 0.025 are 0 < k ≤ 3.0700× 10−2 and 0 < k ≤ 3.9676× 10−4, respectively.

Consistency of the scheme

To determine the order of accuracy of this scheme, we apply the Taylor series expansion
at about the point (tn, xi) in Equation (22), and upon simplifying, we obtain

∂C
∂t

+ U
∂C
∂x
− Kx

∂2C
∂x2 =

1
2

hU
∂2C
∂x2 −

1
2

k
∂2C
∂t2 −

1
6

k2 ∂3C
∂t3 −

1
6

Uh2 ∂3C
∂x3 + · · ·

This scheme is accurate in order one in both space and time.

5. Optimization and Results for Numerical Experiment 1

While running numerical experiment 1 using Lax–Wendroff and NSFD schemes with
h = 0.025, and different values of k for which methods are stable, we observed that the
results are much affected by the values of k used especially with regard to the phase lag/lead
behavior. Therefore, we decided to compute the optimal value of k, which minimizes the
dispersion error when h = 0.025 for the two methods when U = 0.8 and Kx = 0.005.

We follow the same ideas as in the work of Appadu [35,36] to compute the optimal
value of k at a given value of h by minimizing the dispersion error.

The 3D plots of the exact RPE versus k vs. ω ∈ [0, 1.1] for the three methods: Kowalic–
Murty [11], Lax–Wendroff, and NSFD are shown in Figure 1a–c. We observe that there is
no phase-wrapping phenomenon [37].

The integrated error from Tam and Webb (IETAM) is defined as [35,36]

IETAM =
∫ 1.1

0
|1− RPE|2 dω.

Plots of the integrated error versus k are depicted in Figure 2. The optimal values are
obtained using NLPSolve maple solver and are given as follows:

• Lax–Wendroff, optimal k = 0.015625;
• NSFD, optimal k = 0.014952.

Figure 3 shows the plots of the relative phase errors versus phase angles for different
values of k for all schemes. Figure 3b,c show that the RPE is closest to 1 in the case of
Lax–Wendroff and NSFD methods when k = 0.015625 and k = 0.014952, respectively.
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(a) (b)

(c)

Figure 1. Plot of the exact RPE vs. k vs. ω ∈ [0, 1.1] for the three methods using h = 0.025.
(a) Kowalic–Murty with k ∈ [0, 1.5625× 10−2]; (b) Lax–Wendroff with k ∈ [0, 2.44× 10−2]; (c) NSFD
with k ∈ [0, 3.0700× 10−2].

0.008 
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0.006 

0.005 
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O.00 I 

0 0.005 0 . 010 0 . 015 0 .020 
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0.004 

0.003 

0.002 

o .00 I 

0 --+-----------.-.....;::,o,,-.,...:;;;....________ __ 

0 0.0 I 0.02 0.03 

(a) (b)

Figure 2. Plot of integrated error vs. k to determine optimal k when h = 0.025. (a) Lax–Wendroff
scheme; (b) NSFD scheme.
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Figure 3. Plot of the exact RPE vs. ω ∈ [0, π] for the three methods at different values of k when
h = 0.025. (a) Kowalic–Murty. (b) Lax–Wendroff. (c) NSFD.

We note that for numerical experiment 1 at h = 0.025, the stability regions for the
Kowalic–Murty scheme [11], Lax–Wendroff scheme, and NSFD scheme are 0 < k ≤
1.5625× 10−2, 0 < k ≤ 2.4400× 10−2 and 0 < k ≤ 3.0700× 10−2 respectively.

Figure 4a shows the plot of the initial and exact profiles for the transport of the
one-dimensional Gaussian pulse while Figure 4b–d show the plots of the numerical and
exact solutions of transport of one-dimensional Gaussian pulse of unit height, when the
coefficient of convection is greater than the coefficient of diffusion after 5 s at different
temporal step sizes, using the three schemes. It is observed that the pulse of the height
unit decreases after 5 s. In Figure 4b, the Kowalic–Murty scheme [11] shows anti-diffusion
whereby the peak of the numerical profile is higher than the peak of the exact profiles at
some values of k. Moreover, l2 and l∞ errors, as well as the total mean square error, are
tabulated in Table 1 while the numerical l2 rate of convergence in space is given in Table 2
for Kowalic–Murty [11], Lax–Wendroff, and NSFD schemes. For experiment 1, to obtain
the rate of convergence, for a given h, the size of k is chosen so that it lies in the region of
stability. For h = 0.1, we use k = 0.025 and dividing k by 2 as h decreases by half.
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Table 1. l2, l∞ errors, and total mean square error at time T = 5 with different values of k using
Kowalic–Murty, Lax–Wendroff, and NSFD schemes using h = 0.025 for numerical experiment 1.

Schemes k l2 Error l∞ Error TMSE

Kowalic–Murty 0.0125 9.4300× 10−2 2.0600× 10−1 9.8620× 10−4

0.0050 2.2100× 10−2 4.1300× 10−2 5.3910× 10−5

0.0025 9.6000× 10−3 1.7400× 10−2 1.0223× 10−5

0.00125 4.3000× 10−3 7.7000× 10−3 2.0950× 10−6

Lax–Wendroff 0.0200 2.4000× 10−3 3.9000× 10−3 6.6135× 10−7

0.015625 8.4219× 10−5 1.5464× 10−4 7.8592× 10−10

0.0100 2.8000× 10−3 4.4000× 10−3 8.3834× 10−7

0.0050 4.8000× 10−3 7.8000× 10−3 2.5858× 10−6

NSFD 0.0200 1.6600× 10−2 3.1000× 10−2 3.0480× 10−5

0.0149518 4.7000× 10−3 8.0000× 10−3 2.4253× 10−6

0.0100 1.8500× 10−2 3.2200× 10−2 3.7738× 10−5

0.0050 2.9200× 10−2 4.9900× 10−2 9.4241× 10−5

Table 2. Rate of convergence in space for the three schemes when used to solve numerical experiment
1 at time T = 5.

Schemes h l2 Error l∞ Error
Rate of

Convergence in
Space (l2)

Kowalic–Murty 0.0500 0.0471 0.0865 –
0.0250 0.0096 0.0174 2.2946
0.0125 0.0023 0.0042 2.0614
0.00625 5.780× 10−4 0,0010 1.9925

Lax–Wendroff 0.1000 0.0609 0.0868 –
0.0500 0.0221 0.0333 1.5992
0.0250 0.0043 0.0070 2.2248
0.0125 5.9417× 10−4 9.4389× 10−4 2.8554
0.00625 9.8965× 10−5 1.5663× 10−5 2.5859

NSFD 0.1000 0.0814 0.1290 –
0.0500 0.0576 0.0943 0.4990
0.0250 0.0267 0.0460 1.1092



Symmetry 2022, 14, 2616 12 of 27

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

S
o

lu
ti

o
n

Exact

Initial value

(a)

0 2 4 6 8 10

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
o

lu
ti

o
n

(b)

0 2 4 6 8 10

-0.05

0

0.05

0.1

0.15

0.2

0.25

S
o

lu
ti

o
n

(c)

0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

S
o

lu
ti

o
n

(d)

Figure 4. Plots of numerical and exact solution vs. x at time T = 5 when Kx = 0.005 m2/s and
U = 0.8 m/s using the three schemes at h = 0.025 and different values of k. (a) Initial and Exact;
(b) Kowalic–Murty; (c) Lax–Wendroff; (d) NSFD.

In Figure 5, we obtain plots of absolute error versus x for each of the three schemes
for two scenarios; when the scheme performs best and when it performs worst, when
h = 0.025.
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Figure 5. Plot of absolute errors vs. x using the three methods at h = 0.025 and different values
of k. (a) Kowalic–Murty scheme with k = 0.0125; (b) Kowalic–Murty scheme with k = 0.00125;
(c) Lax–Wendroff scheme with k = 0.0050; (d) Lax–Wendroff scheme with k = 0.015625; (e) NSFD
scheme with k = 0.0050; (f) NSFD scheme with k = 0.0149518.

6. Results of Numerical Experiment 2

In this section, plots of the numerical solution for the transport of the one-dimensional
Gaussian pulse for numerical experiment 2 at different values of k are displayed along-
side the tables showing l2, l∞ errors, and the rate of convergence for the three schemes
considered. Figure 6 shows the plots of the initial, numerical, and exact solutions of
transport of the one-dimensional Gaussian pulse of unit height using the three schemes:
Kowalic–Murty [11], Lax–Wendroff, and NSFD schemes, respectively, where the coefficient
of diffusion is greater than that of convection. A drastic change in the initial pulse is
observed as time progresses as depicted in Figure 6. Table 3 shows the l2, l∞ errors, and
rate of convergence for the three schemes for numerical experiment 2. For experiment 2,
to obtain the rate of convergence, for a given h, the size of k is chosen so that it lies in the
region of stability. For h = 0.1, we use k = 0.005 and divide k by 4 as h decreases by half.
We observe that all three methods are efficient at solving numerical experiment 2; the most
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efficient method here is Lax–Wendroff followed by Kowalic–Murty scheme [11], followed
by the NSFD scheme.
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Figure 6. Plots of the initial profile, numerical, and exact solutions at time T = 5 and h = 0.025 when
Kx = 0.8 m2/s and U = 0.005 m/s using the three schemes at different values of k. (a) k = 3.5× 10−4;
(b) k = 2.0× 10−4; (c) k = 3.5× 10−4; (d) k = 2.0× 10−4; (e) k = 3.5× 10−4; (f) k = 2.0× 10−4.
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Table 3. Rate of convergence in space using the three schemes for numerical experiment 2 at time
T = 5.

Schemes h l2 Error l∞ Error
Rate of

Convergence in
Space (l2)

Kowalic–Murty
scheme [11] 0.1000 4.6638× 10−5 2.4520× 10−5 –

0.0500 1.1659× 10−5 6.1359× 10−6 2.0001
0.0250 2.9146× 10−6 1.5351× 10−6 2.0001
0.0125 7.2862× 10−7 3.8379× 10−7 2.0001

Lax–Wendroff 0.1000 4.6750× 10−5 2.4172× 10−5 –
0.0500 1.1689× 10−5 6.0506× 10−6 1.9998
0.0250 2.9225× 10−6 1.5132× 10−6 1.9999
0.0125 7.3062× 10−7 3.7833× 10−7 2.0000

NSFD 0.1000 0.0065 0.0032 –
0.0500 0.0032 0.0016 1.0224
0.0250 0.0016 7.8017× 10−4 1.0000
0.0125 7.9874× 10−4 3.8784× 10−4 1.0023

7. 2D Advection–Diffusion Equation

We solve
∂C
∂t

+ U
∂C
∂x

+ V
∂C
∂y
− Kx

∂2C
∂x2 − Ky

∂2C
∂y2 = 0, (30)

subject to the boundary condition

∂C
∂x

=
∂C
∂y

= 0,

and domains being 0 ≤ x, y ≤ a, 0 < t ≤ c.

Numerical experiment 3

Here, the initial condition C(x, y, t0) is selected from the exact solution given by

C(x, y, t) =
1

4t + 1
exp

(
− (x− x0 −Ut)2

Kx(4t + 1)
− (y− y0 −Vt)2

Ky(4t + 1)

)
, (31)

where 0 ≤ x, y ≤ 6, 0 < t ≤ 5, (x0, y0) = (0.5, 0.5), U = V = 0.8 and Kx = Ky = 0.01.

Numerical experiment 4

Here, the initial condition C(x, y, t0) is selected from the exact solution given by

C(x, y, t) =
K√

4πKxt
√

4πKyt
exp

(
− (x− x0 −Ut)2

4Kxt
− (y− y0 −Vt)2

4Kyt

)
, (32)

where 0 ≤ x, y ≤ 100, 000, 0 < t ≤ 36, 000, (x0, y0) = (50, 000, 50, 000), U = V = 0.5 and
Kx = Ky = 10, 000, K = 1012.

7.1. 2D Scheme from Kowalic–Murty Scheme

Here, we use the second-order upwind scheme for the 2D convection–diffusion
Equation (30) given by
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Cn+1
i,j − Cn

i,j

k
+ U

(
Cn

i−2,j − 6Cn
i−1,j + 3Cn

i,j + 2Cn
i+1,j

6h

)
+ V

(
Cn

i,j−2 − 6Cn
i,j−1 + 3Cn

i,j + 2Cn
i,j+1

6h

)

− Kx

(
Cn

i+1,j − 2Cn
i,j + Cn

i−1,j

h2
x

)
− Ky

(
Cn

i,j+1 − 2Cn
i,j + Cn

i,j−1

h2
y

)
= 0. (33)

This can be written explicitly as

Cn+1
i,j = Cn

i,j −
kU
6hx
{Cn

i−2,j − 6Cn
i−1,j + 3Cn

i,j + 2Cn
i+1,j}−

kV
6hy
{Cn

i,j−2 − 6Cn
i,j−1 + 3Cn

i,j + 2Cn
i,j+1}+ (34)

kKx

h2
x
{Cn

i+1,j − 2Cn
i,j + Cn

i−1,j}+
kKy

h2
y
{Cn

i,j+1 − 2Cn
i,j + Cn

i,j−1}.

The stability region is obtained using the von Neumann stability analysis, i.e., substi-
tuting the ansatz Cn

i,j = ξneI(ωx i+ωy j), where I =
√
−1 into Equation (34), and simplifying,

we obtain the amplification factor

ξ = 1− kU
2hx
− 2kKx

h2
x
− kV

2hy
−

2kKy

h2
y

+

(
2kU
3hx

+
2kKx

h2
x

)
cos ωx+(

2kV
3hx

+
2kKy

h2
y

)
cos ωy −

kU
6hx

cos 2ωx −
kV
6hy

cos 2ωy+ (35)

I
{

kU
6hx

sin 2ωx −
4kU
3hx

sin ωx +
kV
6hy

sin 2ωy −
4kV
3hy

sin ωy

}
.

For the purely non-imaginary amplification factor, we choose ωx = ωy = π. This gives

ξ = 1− 4kU
3hx
− 4kKx

h2
x
− 4kV

3hy
−

4kKy

h2
y

.

For stability, |ξ| ≤ 1, and so we have the following region of stability

0 <
k
h
≤ 3h

2{(U + V) + 3(Kx + Ky)}
, (36)

where we have chosen hx = hy = h.
For ωx → 0 and ωy → 0, we use Taylor’s approximation; cos ωx ≈ 1−ω2

x/2, sin ωx ≈
ωx, and on neglecting the higher-order terms, we have the following condition

ξ2 = 1− 2kKx

h2
x

ω2 +
k2U2

h2
x

ω2 −
2kKy

h2
y

ω2 +
k2V2

h2
y

ω2. (37)

For stability, |ξ| ≤ 1, after simplification, we have

k ≤
2(Kx + Ky)

U2 + V2 , (38)

here, we chose hx = hy = h. Hence, we have the region of stability for the scheme to be the
intersection of the regions defined by (36) and (38).
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7.2. 2D Lax–Wendroff Scheme

This scheme uses the following approximations for Equation (30)

∂C
∂t
≈

Cn+1
i,j − Cn

i,j

k
,

∂C
∂x
≈cx

(
Cn

i,j − Cn
i−1,j

hx

)
+ (1− cx)

(
Cn

i+1,j − Cn
i−1,j

2hx

)
, (39)

∂C
∂y
≈cy

(
Cn

i,j − Cn
i,j−1

hy

)
+ (1− cy)

(
Cn

i,j+1 − Cn
i,j−1

2hy

)
,

∂2C
∂x2 ≈

Cn
i+1,j − 2Cn

i,j − Cn
i−1,j

h2
x

,

∂2C
∂y2 ≈

Cn
i,j+1 − 2Cn

i,j − Cn
i,j−1

h2
y

,

where cx = Uk
hx

and cy = Vk
hy

.
Substituting these approximations into Equation (30), we obtain

Cn+1
i,j − Cn

i,j

k
+ Ucx

(
Cn

i,j − Cn
i−1,j

hx

)
+ U(1− cx)

(
Cn

i+1,j − Cn
i−1,j

2hx

)
+ Vcy

(
Cn

i,j − Cn
i,j−1

hy

)
+

V(1− cy)

(
Cn

i,j+1 − Cn
i,j−1

2hy

)
− kx

(
Cn

i+1,j − 2Cn
i,j − Cn

i−1,j

h2
x

)
− Ky

(
Cn

i,j+1 − 2Cn
i,j − Cn

i,j−1

h2
y

)
= 0. (40)

This is written explicitly as

Cn+1
i,j =

1
2
(2sx + cx + c2

x)Cn
i−1,j +

1
2
(2sy + cy + c2

y)Cn
i,j−1 + (1− c2

x − 2sx − c2
y − 2sy)Cn

i,j

+
1
2
(2sx − cx + c2

x)Cn
i+1,j +

1
2
(2sy − cy + c2

y)Cn
i,j+1, (41)

where sx = kKx
h2

x
and sy =

kKy

h2
y

.

For stability, we use the approach of Hindmarsh et al. [26]. Using the von Neumann
stability, the amplification factor is given by

ξ =
1
2
(2sx + cx + c2

x) e−Iωx +
1
2
(2sy + cy + c2

y) e−Iωy + (1− c2
x − 2sx − c2

y − 2sy)

+
1
2
(2sx − cx + c2

x) eIωx +
1
2
(2sy − cy + c2

y) eIωy .

For ωx = ωy = π, |ξ| ≤ 1, gives the inequality

2(sx + sy) + c2
x + c2

y ≤ 1. (42)

For ωx → 0 and ωy → 0, we use Taylor’s approximation, and upon neglecting the
higher-order terms, we have the following condition

cx cy ≤ sx + sy. (43)

Thus, the scheme is stable when

cx cy ≤ sx + sy ≤
1
2
(1− c2

x − c2
y).
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7.3. 2D NSFD Scheme

The NSFD scheme for the 2D convection–diffusion equation given by Equation (30) is

Cn+1
i,j − Cn

i,j

k
+ U

(
Cn

i,j − Cn
i−1,j

hx

)
+ V

(
Cn

i,j − Cn
i,j−1

hy

)
=

U

(
Cn

i+1,j − 2Cn
i,j + Cn

i−1,j

hx(exp(hxU/Kx)− 1)

)
+ V

(
Cn

i,j+1 − 2Cn
i,j + Cn

i,j−1

hy(exp(hyV/Ky)− 1)

)
, (44)

which is written explicitly as

Cn+1
i,j =(cx + βx) Cn

i−1,j + (cy + βy) Cn
i,j−1 + (1− cx − 2βx − cy − 2βy) Cn

i,j

+ βx Cn
i+1,j + βy Cn

i,j+1, (45)

where cx = Uk
hx

, cy = Vk
hy

, βx =
kU

hx exp(hxU/Kx)− 1
and βy =

kV
hy exp(hyV/Ky)− 1

.

Using von Neumann stability, the amplification factor is given by

ξ = (cx + βx) e−Iωx + (cy + βy) e−Iωy + (1− cx − 2βx − cy − 2βy) + βx eIωx + βy e−Iωy

For ωx = ωy = π, we have

ξ = −(cx + βx)− (cy + βy) + (1− cx − 2βx − cy − 2βy)− βx − βy.

The scheme is stable when the following inequality is satisfied

cx + cy + 2 (βx + βy) ≤ 1. (46)

For ωx → 0 and ωy → 0, we use Taylor’s approximation, and upon neglecting the
higher-order terms, for stability, we have the following condition

(cx + cy)
2 ≤ cx + cy + 2 (βx + βy). (47)

Thus, the scheme is stable when

(cx + cy)
2 ≤ cx + cy + 2 (βx + βy) ≤ 1.

Table 4 presents the range of values of k for the stability of the three methods for
numerical experiments 3 and 4 at selected values of h.

Table 4. Stability region of the three methods discretizing 2D advection–diffusion equation for
numerical experiments 3 and 4.

Schemes Numerical Experiment Value of h Stability Region

Kowalic–Murty 3 0.025 0 < k ≤ 9.3750× 10−3

4 5000 0 < k ≤ 624.99

Lax–Wendroff 3 0.025 0 < k ≤ 0.0114
4 5000 0 < k ≤ 624.99

NSFD 3 0.025 0 < k ≤ 0.0128
4 5000 0 < k ≤ 697.74
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8. Some Numerical Results
8.1. Numerical Experiment 3

In this section, we present the numerical solutions of the two-dimensional convection–
diffusion equation for the case when hx = hy = 0.025, U = V = 0.8, Kx = Ky = 0.01.
The plots of the initial solution, the numerical and exact solutions, as well as the l2, l∞, and
relative errors, are displayed and tabulated for the three schemes considered. In this case,
the initial Gaussian pulse of the unit height located at (x0, y0) = (0.5, 0.5) has moved to
a new location with a decreased height at time T = 5. Figure 7 shows the 3D plot of the
initial and exact solutions at time T = 5 vs. x vs. y.

(a) (b)

Figure 7. The 3D plot of solution vs. x vs. y at time T = 5 with U = V = 0.8, Kx = Ky = 0.01,
x, y ∈ [0, 6]× [0, 6]. (a) Initial profile; (b) exact profile.

Plots of the numerical solution versus x versus y at time T = 5 for numerical experi-
ment 3 are displayed in Figures 8–10 using the Kowalic–Murty scheme [11], Lax–Wendroff
scheme, and NSFD scheme. The numerical solution agrees with the analytical as the tempo-
ral step size decreases. We also obtain l2, l∞ errors in Table 5 along with the numerical rate
of convergence in time and we observe that this rate of convergence is close to the theoreti-
cal rate of convergence. Using Table 5, we can also conclude that, in general, Lax–Wendroff
is the most efficient, followed by NSFD, followed by the Kowalic–Murty scheme [11], as far
as numerical experiment 3 is concerned.

(a) (b)

Figure 8. Cont.
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(c)

Figure 8. The 3D plot of the solution using the Kowalic–Murty scheme vs. x vs. y at time T = 5
with h = 0.025, U = V = 0.8, Kx = Ky = 0.01, x, y ∈ [0, 6]× [0, 6]. (a) k = 0.00625; (b) k = 0.0040;
(c) k = 0.0025.

(a) (b)

(c)

Figure 9. The 3D plot of the solution using the Lax–Wendroff scheme vs. x vs. y at time T = 5
with h = 0.025, U = V = 0.8, Kx = Ky = 0.01, x, y ∈ [0, 6]× [0, 6]. (a) k = 0.00625; (b) k = 0.0040;
(c) k = 0.0025.
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(a) (b)

(c)

Figure 10. The 3D plot of the solution using the NSFD scheme vs. x vs. y at time T = 5 with h = 0.025,
U = V = 0.8, Kx = Ky = 0.01, x, y ∈ [0, 6]× [0, 6]. (a) k = 0.00625; (b) k = 0.0040; (c) k = 0.0025.

Table 5. l2, l∞ errors, and l2 rate of convergence in time from the three methods for U = V = 0.8,
Kx = Ky = 0.01 at time T = 5 using h = 0.025 and different values of k.

Schemes Value of k l2 Error l∞ Error Rate of Convergence
in Time (l2)

Kowalic–Murty
scheme [11] 0.008 0.0085 0.0188 –

0.004 0.0034 0.0070 1.3219
0.002 0.0015 0.0031 1.1806

Lax–Wendroff 0.008 0.0035 0.0046 –
0.004 0.0017 0.0026 1.0418
0.002 9.7500× 10−4 0.0018 0.8021

NSFD 0.008 0.0038 0.0049 –
0.004 0.0022 0.0039 0.7885

8.2. Numerical Experiment 4

Here, we present the numerical results for the case involving the two-dimensional
convection–diffusion equation for a point source. The concentration C at a given time t for
a point source pollutant placed at the center of the given domain (x0, y0) is given and the
transport of the instantaneous point source pollutant originally placed at the center of the
domain is obtained using the three schemes. We observe that the initial Gaussian pulse
located at (x0, y0) = (50, 000, 50, 000) spread through the entire domain. Figures 11–13 show
the transport of the instantaneous point source pollutant originally placed at the center of
the domain for different values of temporal step sizes, for the three schemes, respectively.
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(a) (b)

(c) (d)

(e)

Figure 11. Plot of numerical solution vs. x vs. y at time T = 36, 000 when hx = hy = 5000,
(x0, y0) = (50, 000, 50, 000), U = V = 0.5, Kx = Ky = 10, 000, K = 1012 on [0, 100, 000]× [0, 100, 000]
using the scheme from the Kowalic–Murty scheme. (a) Initial profile; (b) exact solution; (c) numerical
profile at k = 50; (d) numerical profile at k = 30; (e) numerical profile at k = 20.
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(a) (b)

(c) (d)

(e)

Figure 12. Plot of the numerical solution vs. x vs. y at time T = 36, 000 when hx = hy = 5000,
(x0, y0) = (50, 000, 50, 000), U = V = 0.5, Kx = Ky = 10, 000, K = 1012 on [0, 100, 000]× [0, 100, 000]
using Lax–Wendroff. (a) Initial profile; (b) exact solution; (c) numerical profile at k = 50; (d) numerical
profile at k = 30; (e) numerical profile at k = 20.
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(c) (d)
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Figure 13. Plot of the numerical solution vs. x vs. y at time T = 36, 000 when hx = hy = 5000,
(x0, y0) = (50, 000, 50, 000), U = V = 0.5, Kx = Ky = 10, 000, K = 1012 on [0, 100, 000]× [0, 100, 000]
using NSFD. (a) Initial profile; (b) exact solution; (c) numerical profile at k = 50; (d) numerical profile
at k = 30; (e) numerical profile at k = 20.

Table 6 shows the errors for the three schemes when hx = hy = 5000, k = 50,
(x0, y0) = (50, 000, 50, 000), U = V = 0.5, Kx = Ky = 10, 000, K = 1012 at time T = 36, 000
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on [0, 100, 000]× [0, 100, 000]. In this case, it is observed that the l2 and l∞ errors for the
Lax–Wendroff are least followed by the Kowalic–Murty scheme [11]. The NSFD scheme
has the largest error in this case, as depicted in Table 6.

Table 6. l2 and l∞ errors at time T = 36, 000 using the three methods for U = V = 0.5, Kx = Ky =

10, 000, K = 1012 at hx = hy = 5000 and different values of k.

Schemes Value of k l2 Error l∞ Error

Kowalic–Murty scheme [11] 300 4.3103× 105 14.0042
150 4.2544× 105 14.0042

Lax–Wendroff 600 1.5957× 105 5.7115
300 8.2684× 103 0.3271
150 4.0194× 104 1.4263

NSFD 600 8.4336× 105 26.6466
300 8.5971× 105 27.1736
150 8.6977× 105 27.5904

9. Conclusions

We used three numerical schemes to solve one- and two-dimensional convection–
diffusion equations where the initial conditions consisted of symmetrical profiles. Four
cases were considered with different coefficients of advection and dissipation. The most
efficient scheme was the Lax–Wendroff in all four experiments. We obtained better results
using Lax–Wendroff as compared to the results obtained by Sankaranarayanan et al. [10]
when they used the scheme constructed by Kowalik and Murty [11]. We also computed the
optimal time step size by minimizing the dispersion error for one of the cases and this was
validated. Convergence tests were carried out and the numerical rate of convergence was
found to be close to the theoretical one.

10. Future Work

For this current study, we used three finite difference schemes to solve the convection–
diffusion equation. Since the modeling of the oil spill has convection and diffusion terms,
we will extend this work to solve mathematical models of oil spills in the literature. A good
example of the governing equations of 3D tidal flows as well as oil concentration distribu-
tions in coastal waters are given in [38].
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