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Abstract: The collective effect of thermal and mass convection along with the significance of thermal
radiation, heat source/sink, and magneto-nanofluid are considered. A bi-directional stretching device
is used to generate the symmetry of the flowing structure. Nonlinear behavior of thermal radiation is
considered here. The magnetic field is considered non-uniform and vertically upward. Significances
of pedesis motion and Ludwig–Soret are also revealed in an innovative way with heat source/sink
effects. The concept of symmetry is used to transmute the transport equations from PDE type to
nonlinear ODE type. We solved the transformed setup numerically by adopting Keller-box method
criteria with the targeted accuracy rate. Graphical interpretations are explored with code verification.
It is important to conclude that friction coefficients decline for incremental values of stretching
parameter (0.1 ≤ α ≤ 0.9), magnetic field (0.3 ≤ M ≤ 0.9), and unsteady parameter (0.2 ≤ Λ ≤ 0.9)
along with the bidirectional velocity components, and the rate of heat transmission rises with
temperature ratio (1.3 ≤ Γ ≤ 1.7) and temperature Biot number (0.3 ≤ BiT ≤ 0.9) amplification.
Moreso, the rate of mass transfer is enhanced with growing values of pedesis motion (0.2 ≤ Nb ≤ 0.6),
unsteady parameter and concentration Biot number (0.3 ≤ BiC ≤ 0.9) with opposite effect when the
Ludwig–Soret parameter (0.3 ≤ Nt ≤ 0.6) is boosted.

Keywords: thermal/mass convection; unsteady flow; bidirectional stretching; nonlinear thermal
radiation; heat source/sink; Keller-box method

1. Introduction

Fluid mechanics as an application point of view is a vast area of research in industrial
and engineering sectors. It is difficult to neglect the laws of fluid dynamics in daily life
activities, such as production of polymers, biomedicine manufactures, ventilation, pipelines
system, plastic industries, oil refiners, aerospace, thermal trades, oxygen plants, hydro
power projects, etc. Nonlinear thermal radiation energy at the surface of any plane structure
in fluid mechanics is of tremendous importance, such as could be found in hydroelectric
dams, production engineering, wind energy, and also medical sciences. Nonlinear thermal
radiation, like electromagnetic fields, is transmitted in all directions from a radiating surface.
Nonlinear thermal radiation energy is the process by which heat is transported via space
by convection or conduction. Various engineering processes occur due to high temperature,
which propelled the research study of Seddeek et al. [1] to address the implication of
thermal radiation on unsteady MHD fluid flow. Mushtaq et al. [2] examined the radiation
impact in 2D stagnation point flow of a nanofluid owing to solar energy. They revealed
that wall temperature gradient is a rising function of the radiation parameter. Moreso, the
increased mobility of nanoparticles in the base fluids culminates in the greater conversion
of solar radiations in the fluids. Ramzan et al. [3] researched the flow of a hybrid nanofluid
across a curved stretching surface using nonlinear thermal radiation. They concluded that
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when the radiation and curvature characteristics were boosted, the Nusselt number reduced.
Mahanthesh et al. [4] analyzed the heat transport phenomena under effect of bioconvec-
tion in order to optimize heat transfer attributes. They established that, in comparison
to the thermophoresis impact, the heat transport rate is significantly sensitive to nonlin-
ear thermal radiation coefficients. Using the RKF45 method with a shooting procedure,
Rana et al. [5] studied the impacts of thermal radiation on a stretching/shrinking sheet in
a slip flow of a nanofluid. It was revealed that thermal radiation increases temperature
and nanoparticle volume fraction. Bhatti et al. [6] investigated entropy generation using
nonlinear thermal radiation and chemical reaction interactions on Magnetohydrodynamic
Williamson nanofluids. Recently, Adnan et al. [7] examined the behavior of nanofluids
in a specific context of Cu-kerosene oil and Cu-water consisting of two Riga plates using
unique effects of thermal radiation and surface convection. They discovered that when
thermal radiations and surface convection are induced, the temperature of Cu-kerosene
oil and Cu-water considerably increases, and the local Nusselt number increases as a
result of the altering thermal radiation. Mustafa et al. [8] investigated the dynamics of
nanofluid through a natural convective surface via a vertical medium in the presence of
nonlinear radiative heat flux. They discovered that as the radiation parameter is increased,
the temperature rise and heat transfer from the plate diminishes. Muhammad et al. [9]
investigated Carreau nanofluid bioconvection transmission using a magnetic dipole and
nonlinear thermal radiation. Khan et al. [10] investigated the effects of nonlinear radiation
on the MHD flow of a nanofluid across a nonlinearly elongating wedge.

At the present time, researchers are analyzing nanofluid flows caused by a bidirection-
ally stretchable surface owing to its remarkable applications in paper production, particle
growing, fibre and glass, cooling of fabrics, evaporative cooling, fibrous insulating layers,
groundwater sources, fractional distillation, among others. By definition, this novel phe-
nomenon known as bidirectional stretching is actually stretching proceeds in the x and y axes.
Ramzan and Yousaf [11] investigated the three-dimensional drift of nanofluid moving on a
bidirectional stretchy surface. Hayat et al. [12] investigated the bidirectional flow of a radiative
viscoelastic nanomaterial driven by an expanding sheet in the presence of energy stored.
Javed et al. [13] investigated the effect of viscous dissipation and Joule heating on Prandtl
nanofluid flow induced by an unsteady bidirectionally moving surface. Ahmad et al. [14]
investigated the effect of ceria and zinc-oxide nanocomposites on the time dependent
3D transmission of a water-driven hybrid nanofluid over a bidirectional stretched sheet
coupled with a heat source/sink. To improve energy systems’ effectiveness, Khan et al. [15]
investigated the double stratification three-dimensional flow of Burgers nanofluid, includ-
ing microorganisms, across a bidirectional stretched surface. Faisal et al. [16] surveyed
the bidirectional flow of Casson nanomaterial powered by an unsteady moving surface
in the boundary layer region using a suitable Keller-box method, taking into account the
implications of prescribed surface temperature. Gupta and Gupta [17] noticed a stream of
an Oldroyd-B typed nanocomposite in a three-dimensional framework on a bidirectional
extensible surface. Bag and Kundu [18] analyzed thermal radiation nanofluidic transfer
over a bidirectional stretched sheet with diverse convective regimes and a heat source/sink.
Ahmad et al. [19] evaluated thermal stratification, chemical reaction, and solutal stratifica-
tion of time dependent three-dimensional bidirectional stretching flow of an Oldroyd-B
nanofluid. Munir et al. [20] evaluated the flow and heat transmission properties of a 3D
Sisko fluid controlled by a bidirectional stretching sheet. Bilal et al. [21] addressed the
MHD 3D boundary layer flow of Williamson fluid regulated by a bidirectional stretched
surface using the Runge–Kutta algorithm in conjunction with the shooting method. Other
relevant research work could be cited in [22–25].

The Ludwig–Soret effect and pedesis motion are critical for comprehending the phe-
nomena of heat and mass movement. The Ludwig–Soret effect or thermophoresis is a
physical phenomenon that occurs in combination of moving particles when the varying
particle kinds respond differently to the force of a temperature gradient. The terminology
thermophoresis is most frequently used to refer to aerosol mixtures. Typically, the phrase
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“Soret Effect” refers to liquid mixes, which behave differently and through fewer known
mechanisms than gaseous mixtures. On the other hand, pedesis or Brownian motion is
the random motion of suspended particles in a fluid. The motion is caused by collisions
between fast-moving molecules or atoms and the particles. The Ludwig–Soret effect and
pedesis motion is critical in practically all industrial processes. It is utilized in industrial
operations to conserve energy and shorten processing times. Afify [26] scrutinized the
Brownian movement and thermodiffusion impact on Casson nanofluid flow with convec-
tive boundaries. Comparing non-Newtonian fluid and Newtonian fluid, Dawar et al. [27]
explored MHD flow of Maxwell fluid via a velocity slippery stretching sheet with Brown-
ian motion, and thermophoresis. They discovered that an improved temperature field is
noticed for increasing the function of the pedesis motion parameter. Kumar et al. [28] inves-
tigated magnetite fluid containing nanoparticles through a rotating disk using Noumerov’s
discretization, considering the accuracy of the finite difference procedure. They reported
that at the rotating disk surface, pedesis motion and the Ludwig–Soret effect enhanced
the temperature profile while the rate of heat transfer experienced a decline with upsurge
values of pedesis motion and the Ludwig–Soret effect. Using the finite element method,
Ali et al. [29] investigated hyperbolic tangent Carreau nanofluid via a stretching wedge
with pedesis motion and the Ludwig–Soret effect. The rate of heat transport dwindles
against the growing values of pedesis motion and the Ludwig–Soret effect. Abbas et al. [30]
explored entropy generation on a viscous nanofluid through a horizontal Riga plate. They
found that the Brownian motion parameter and thermophoresis parameter improve the
energy distribution and its boundary layer thickness. Additionally, the thermophoresis
parameter and Brownian motion parameter displayed alternate behavior on nanoparticle
concentration distribution. Using the classical Runge–Kutta method, Jayaprakash et al. [31]
examined the stagnation point flow of ferromagnetic Oldroyd-B nanofluid via a stretch-
ing sheet with Brownian motion and thermophoretic properties. They concluded that
increasing the Brownian motion character decreases mass transport with reverse implica-
tion of the thermophoretic factor. Shah et al. [32] discussed the suspended nanoparticles
in Maxwell fluid in other to enhance thermal transport of the fluid. They revealed that
thermal conductivity of the nanofluid improves due to a rise in Brownian motion factor.
The increase in the boundary layer thickness is traceable to an upsurge in pedesis motion
and the Ludwig–Soret effect. Zeeshan et al. [33] examined the effect of Brownian motion in
a nanofluid of a stretchable inclined rotating surface. Some useful research works in this
regard are due to Refs. [34–42].

With the exposition of the previous published work, numerous studies on nanofluidic
flows have been conducted in a variety of circumstances. However, it is factual to report
that little is known about the influence of time dependent radiative nanofluid transport over
a bi-directional stretching device with thermal/mass convection taking into consideration
the relevance of pedesis motion and Ludwig–Soret flow attributes featuring MHD and heat
sink/source. Using the Keller-box method, the objective of this research work is to address
some unresolved questions:

i. What is the comparative effect of the unsteady parameter when it is considered on
the bidirectional component of x- axis and y-axis and when it is not considered?

ii. How does the presence of magnetic field and absence of it affect the velocity components?
iii. Whether present or absent, does the stretching parameter have any noticeable

influence on f ′ and g′ directions?
iv. What is the effect of friction coefficients, Nusselt number, and Sherwood number

on the model?

2. Mathematical Modeling

The mathematical modeling of the model is completed by adopting the following steps.
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2.1. Transport Equations

Bidirectional unsteady stream of incompressible nanofluidic transport on a stretchable
device placed in the plane (i.e., z = 0). Mechanically, the device is extending in both
locations with velocity uw(x, t) = ax

1−et along x− direction and velocity vw(y, t) = by
1−et is

applied towards y− direction. Here, extending rates are designated by a > 0 and b ≥ 0
along respective directions with dimension [time]−1. The unsteadiness of the stretching
device is estimated by the constant e with dimension [time]−1 satisfying et < 1 to create a
balance with extending rates. A non-uniform magnetic field with strength B(t) = B0√

1−et
is

applied vertically upwards. Inductive effects are negligible by considering the magnetic
Reynolds number so small. The modified Buongiorno nanofluid model is adopted to
manipulate the significance of pedesis motion designated by coefficient DB and Ludwig–
Soret labeled by coefficient DT of nanoparticles. The nonlinear form of the thermal radiation
term is included. Heat source/sink Q(t) = Q∗

1−et is also linked with the thermal setup.

The temperature of the liquid at the surface is designated by Tf = T∞ + A xrys

1−et
and volume fraction of nano-composition on the same device has been nominated by
C f = C∞ + B xrys

1−et with ambient positions T∞, C∞, respectively. Here, A and B are dimen-
sional constants but (r, s) are non-dimensional power indices used to simultaneous control
the temperature/volume fraction of nano-composition at the device in (x, y)− plane, re-
spectively. Leading transport equations in the view of the above-mentioned circumstances
are listed as follows: ([24,35]).

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= ϑ f
∂2u
∂z2 −

σf B2

ρ f
u, (2)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= ϑ f
∂2v
∂z2 −

σf B2

ρ f
v, (3)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= α f
∂2T
∂z2 + τ

[
DB
∆C

∂C
∂z

∂T
∂z

+
DT
T∞

(
∂T
∂z

)2
]
+

Q(
ρCp

)
f
(T − T∞)− 1(

ρCp
)

f

∂qr

∂z
, (4)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

= DB
∂2C
∂z2 +

DT∆C
T∞

∂2T
∂z2 . (5)

In Equation (4), Q is termed as the heat coefficient used for thermal-absorption or
thermal-generation rendering to Q < 0 or Q > 0, respectively. Further, the factor qr
recognizes the heat flux at the surface in the form of radiation. The Rosseland approximation
for a sufficiently thick optical medium is mentioned as follows: ([1,3,6])

qr = −
4

3K∗
grad(eb). (6)

Here, eb = σ∗T4 offers the Stephan–Boltzmann expression and K∗ is included to
represent the mean-absorption coefficient. The expression for the non-linear radiation
phenomenon is as follows:

qr = −
4σ∗

3K∗
∂T4

∂z
= −− 16σ∗

3K∗
T3 ∂T

∂z
. (7)

2.2. Geometry

The graphical abstract of the present formulation is provided below via Figure 1.
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2.3. Boundary Restrictions

The related boundary restrictions for the above-mentioned flow with thermal/mass
convection are as follows:

at z = 0 : u = ax
1−et , v = by

1−et , w = 0,−K f
∂T
∂z = h f

(
Tf − T

)
,−Dm

∂C
∂z = hm

(
C f − C

)
as z→ ∞ : u→ 0, v→ 0, T → T∞, C → C∞

. (8)

Here, Dm offers the molecular-diffusivity of the tiny-sized particle’s density, h f des-
ignates the coefficient of wall heat transference, hm identifies the coefficient of wall mass
transference, and K f represents the thermal conductivity.

2.4. Transformations

It is very necessary to introduce the following transformations to convert the dimen-
sional governing structure placed in Equations (1)–(5) and (8) into the non-dimensional
structure before the solution of the problem. These transformations are as follows: ([15,25])

u = ax
1−et f ′(ζ), v = ay

1−et g′(ζ), w = −
√

aϑ f
1−et [ f (ζ) + g(ζ)],

θ(ζ) = T−T∞
Tf−T∞

, φ(ζ) = C−C∞
C f−C∞

, ζ =
√

a
ϑ f (1−et) z

. (9)

2.5. Transformed Transport Equations

The transport Equations (2)–(5) have been transformed as mentioned below:

f ′′′ + ( f + g) f ′′ −
(

f ′
)2 −Λ

(
f ′ +

ζ

2
f ′′
)
−M f ′ = 0, (10)

g′′′ + ( f + g)g′′ −
(

g′
)2 −Λ

(
g′ +

ζ

2
g′′
)
−Mg′ = 0, (11)

1
Pr (1 + Rd)θ′′ +

Rd
Pr

[
(Γ− 1)3

{
θ3θ′′ + 3θ2(θ′)2

}
+ 3(Γ− 1)2

{
θ2θ′′ + 2θ(θ′)2

}
+ 3(Γ− 1)

{
θθ′′ + (θ′)2

}]
+( f + g)θ′ − (r f ′ + sg′)θ −Λ

(
θ + ζ

2 θ′
)
+ Nbθ′φ′ + Nt(θ′)

2 + Hgθ = 0,
(12)

φ′′ +
Nt

Nb
θ′′ + Sc

[
( f + g)φ′ −

(
r f ′ + sg′

)
φ−Λ

(
φ +

ζ

2
φ′
)]

= 0. (13)



Symmetry 2022, 14, 2609 6 of 18

2.6. Restructured Boundary Conditions

By adopting the similar procedure, the previous conditions described in Equation (8)
are restructured to the format as follows:

at ζ = 0 : f ′(0) = 1, g′(0) = α, f (0) + g(0) = 0,

θ′(0) = −BiT(1− θ(0)), φ′(0) = −BiC(1− φ(0)),

as ζ → ∞ : f ′(∞)→ 0, g′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0

 (14)

2.7. Physical Quantities

In the micro and nano level study, the estimation of physical quantities is key to
inspecting the technological and engineering aspects of the flow. According to the present
modeling, drag forces along both sides/directions, Nusselt number (i.e., rate of heat
transfer), and the Sherwood number (i.e., rate of mass transfer) are demarcated as:

C fx =
τzx

1
2 ρ f uw2

, withτzx = µ f

(
∂u
∂z

)
z=0

, (15)

C fy =
τzy

1
2 ρ f vw2

, withτzy = µ f

(
∂v
∂z

)
z=0

, (16)

Nux =
xqw

K f

(
Tf − T∞

) , withqw = −K f

(
∂T
∂z

)
z=0

+ (qr)z=0, (17)

Shx =
xqm

DB

(
C f − C∞

) , with qm = −DB

(
∂C
∂z

)
z=0

. (18)

The non-dimensional form of Equations (15)–(18) are as follows:

C frx = Rex
1
2 C f x = 2 f ′′ (0), (19)

C fry = Rey
1
2 C f y = 2g′′ (0), (20)

Nur = Rex
− 1

2 Nux = −
[
1 + Rd{1 + θ(0)(Γ− 1)}3

]
θ′(0), (21)

Shr = Rex
− 1

2 Shx = −φ′(0). (22)

2.8. Dimensionless Numbers/Parameters

The dimensionless numbers and parameters involved in the present modeling are

unsteady parameter
(
Λ = e

a
)
, Hartmann number

(
M = σB0

2

ρ f a

)
, Prandtl number

(
Pr =

ϑ f
α f

)
,

radiation parameter
(

Rd = 4σ∗T∞
3

3K∗K f

)
, temperature-ratio parameter

(
Γ =

Tf
T∞

)
, pedesis mo-

tion parameter
(

Nb =
τDB(C f−C∞)

∆Cϑ f

)
, Ludwig–Soret parameter

(
Nt =

τDT(Tf−T∞)
ϑ f T∞

)
, heat

consumption/production parameter
(

Hg = Q∗

a(ρCp) f

)
, Schmidt number

(
Sc =

ϑ f
DB

)
, bi-

directional stretching-ratio parameter
(

α = b
a

)
, thermal Biot number

(
BiT =

h f
K f

√
ϑ f
a

)
,

concentration Biot number
(

BiC = hm
Dm

√
ϑ f
a

)
, local Reynold’s number corresponding to x−

axis
(

Rex = xuw
ϑ f

)
, and local Reynold’s number corresponding to y− axis

(
Rey =

(
b
a

)3 yvw
ϑ f

)
.
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3. Numerical Simulation
3.1. Keller-Box Method Procedure

The restructured transport equations have been solved through implicit finite difference-
based mechanisms termed the Keller-box method. Keeping the procedure of this method
in mind, higher order ODEs (10)–(13) are reorganized into first-order ODEs and boundary
conditions (14) are adjusted according to new/fresh variables as follows:



f ′

f ′′
f ′′′
g′

g′′
g′′′
θ′

θ′′

φ′

φ′′


=



f1
f2
f2
′

g1
g2
g2
′

θ1
θ1
′

φ1
φ1
′


=



f1
f2

−( f + g) f2 + ( f1)
2 + Λ

(
f1 +

ζ
2 f2

)
+ M f1

g1
g2

−( f + g)g2 + (g1)
2 + Λ

(
g1 +

ζ
2 g2

)
+ Mg1

θ1
−Rd[3(Γ−1)3θ2(θ1)

2+6(Γ−1)2θ(θ1)
2+3(Γ−1)(θ1)

2]
(1+Rd+Rd [(Γ−1)3θ3+3(Γ−1)2θ2+3(Γ−1)θ]) −

Pr
[
( f+g)θ1−(r f1+sg1)θ−Λ

(
θ+ ζ

2 θ1

)
+Nbθ1φ1+Nt(θ1)

2+Hgθ
]

(1+Rd+Rd [(Γ−1)3θ3+3(Γ−1)2θ2+3(Γ−1)θ])

φ1

− Nt
Nb

θ2 − Sc
[
( f + g)φ1 − (r f1 + sg1)φ−Λ

(
φ + ζ

2 φ1

)]



, (23)

with the BCs 

f (0)
f1(0)
f1(6)
g(0)
g1(0)
g1(6)
θ1(0)
θ(6)

φ1(0)
φ1(6)


=



0
1
0
0
α
0

−BiT(1− θ(0))
0

−BiC(1− φ(0))
0


. (24)

Equations (23) and (24) are then transformed into difference equations by incorporat-
ing central difference and average center approximations before the implementation of
Newton’s iterative formula. A linearized tri-diagonal system is formed by the omission
of quadratic and higher order terms in the change of the variable. Finally, the tri-diagonal
block matrices system is solved via the LU-decomposition technique.

3.2. Solution Convergence

The grid independence approach is used for convergence analysis. Initially, less
numbers of grid points with step size ∆ζ = 1/5 are opted to start the convergence analysis
with the far field boundary effect, say ζ∞ = 20 and then numbers of grid points are
increased to achieve the convergence of the solution with desired accuracy, i.e., up to the
fifth decimal place. The results are displayed in Table 1.

3.3. Code Validation

The assurance of the current scrutiny in association with previous published reports is
accessed in this section. Here, we have computed the outputs of f ′′ (0), g′′ (0), f (∞), g(∞)
for diverse choices of α and then obtained outcomes have been compared with the published
reports of Wang [42] and Liu and Andersson [41]. The outputs are reflected in Table 2 and
an excellent scientific connection has been revealed with previous reports.
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Table 1. Convergence analysis with Pr = 6.2, α = 0.3, Sc = 0.4, r = 1.0, s = 2.0, Λ = 0.6, M = 0.7,
Rd = 0.8, Γ = 1.4, Hg = 0.2, BiT = 0.5, BiC = 0.3, Nt = 0.4, Nb = 0.5.

Grid Points Step Size − f ′′ (0) −g′′ (0) −θ′ (0) −φ′ (0)

100 1/5 1.49809 0.39968 0.4051 0.14813

500 1/25 1.49852 0.39959 0.40504 0.14822

1000 1/50 1.49854 0.39958 0.40503 0.14822

1500 1/75 1.49854 0.39958 0.40503 0.14822

Table 2. Scientific connection with previous reports via numerical comparison.

α = 1.0 f (∞) g(∞) − f ′′ (0) −g′′ (0)

Present scrutiny 0.751498 0.751498 1.173722 1.173722

Liu and Andersson [41] 0.751494 0.751494 1.173721 1.173721

Wang [42] 0.751527 0.751527 1.173720 1.173720

α = 0.5 f (∞) g(∞) − f ′′ (0) −g′′ (0)

Present scrutiny 0.842387 0.451678 1.093095 0.465205

Liu and Andersson [41] 0.842360 0.451663 1.093096 0.465206

Wang [42] 0.842360 0.451671 1.093097 0.465205

α = 0.0 f (∞) g(∞) − f ′′ (0) −g′′ (0)

Present scrutiny 1.0 0.0 −1.0 0.0

Liu and Andersson [41] 1.0 0.0 −1.0 0.0

Wang [42] 1.0 0.0 −1.0 0.0

4. Results and Discussion

The implications of available parameters on velocity, temperature, concentration
distributions, friction coefficients, Nusselt and Sherwood numbers are investigated in this
segment as reported in the generated Figures 2–17 and Tables 3–5.
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Table 3. Skin-friction analysis C frx and C fry for dissimilar values of α, M, and Λ.

α M Λ Cfrx Cfry

0.1 0.5 0.4 −2.703724 −0.221048

0.5 −2.805763 −1.277634

0.9 −2.903119 −2.57092

0.2 0.3 −2.578544 −0.423887

0.6 −2.802237 −0.477544

0.9 −3.009137 −0.525623

0.4 0.2 −2.543627 −0.416068

0.6 −2.764274 −0.468131

0.9 −2.922576 −0.504867

Table 4. Heat transfer analysis Nur for dissimilar values of BiT , Λ, Hg, and Γ.

BiT Λ Hg Γ Nur

0.3 0.5 0.2 1.1 0.480382

0.5 0.741029

0.7 0.962075

0.9 0.4 1.14159

0.8 1.17459

1.2 1.202528

1.6 0.4 1.210284

0.6 1.192313

0.8 1.171314

1.1 1.3 1.209605

1.5 1.374133

1.7 1.548237

Table 5. Mass transfer analysis Shr for dissimilar values of BiC, Λ, Nb, and Nt.

BiC Λ Nb Nt Shr

0.3 0.5 0.2 0.3 0.069379

0.5 0.096893

0.7 0.11673

0.9 0.4 0.11797

0.8 0.16536

1.2 0.1995

1.6 0.3 0.306

0.4 0.34569

0.5 0.36951

0.6 0.4 0.36094

0.5 0.33677

0.6 0.3129

In graphical numbering, Figures 2 and 3 show that the horizontal velocity aspect
of both the x- and y-axis pathway of the nanofluidic transport features is a declining
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attribute of the unsteady parameter (Λ = e/a) within the range of 0.0 ≤ Λ ≤ 1.2. Due to
the relationship between a and Λ, the augmentation of a in its positive sense of values
boost Λ, which implies an incremental stretching rate. Consequently, the velocity of the
nanofluid declines given the augmentation values of Λ. Furthermore, a decline is noticed
for friction coefficients on both the x- and y-axis pathway as revealed in Table 3. Figure 4
presents the effect of the stretching parameter (α) on f ′ in the presence of the unsteady
parameter (Λ) and in the absence of the unsteady parameter (Λ). The growing values of the
stretching parameter (α) decreases f ′, with greater downfall in the presence of the unsteady
parameter (Λ) than in the absence of the unsteady parameter (Λ). Given that (α = b/a),
augmenting the values of the stretching parameter (α) connotes that the stretching ratio (a)
along the x-axis diminishes, which results in decline of f ′. Moreso, as reported in Table 3,
the friction coefficient in the x-axis experiences a decline as the values of the stretching
parameter increases. Figure 5 shows the effect of the stretching parameter (α) on g′. The
growing values of the stretching parameter (α) increases g′, with a greater upshot in the
absence of the unsteady parameter (Λ) than in the presence of the unsteady parameter (Λ),
which is expected from the mathematical relationship (α = b/a). Conversely, the friction
coefficient in the y-axis drops as the values of the stretching parameter increases. The
magnetic field (M) parameter range 0.0 ≤M ≤ 2.0 in Figures 6 and 7 establishes that the
velocity component of both x- and y-direction nanofluidic transport processes diminishes
with increased magnetic field values, with a concurrent greater downfall in the presence
of the unsteady parameter (Λ) than in the absence of the unsteady parameter (Λ). The
downfall of the velocity component is traceable to the Lorentzian force created by the
augmentation of the magnetic field values. In addition, a downfall is reported for friction
coefficients on both the x- and y-axis pathway as revealed in Table 3. Figure 8 demonstrates
the influence of the stretching parameter (0.1 ≤ α ≤ 1.0) on temperature profiles, taking
into cognizance the increasing values of M. The effect of the stretching parameter shows
a decline in the nanofluid temperature gradient. In Figure 9, the power index r shows a
decreasing impact on nanofluid temperature distribution in the presence of the unsteady
parameter (Λ) and in the absence of the unsteady parameter (Λ). Similarly, In Figure 10,
the power index s shows a decreasing impact on nanofluid temperature distribution in
the presence of an incremental impact of thermal radiation. With distinct values of the
temperature-ratio parameter as shown in Figure 11, thermal-absorption parameter values
are found to decrease nanofluid temperature distribution. More so, in Tables 4 and 5, the
rate of heat transfer and mass transfer improves with an upshot in the temperature-ratio
parameter. As expected, the thermal source parameter enhances nanofluid temperature
distribution, as seen in Figure 12, in the presence of an increasing Ludwig–Soret parameter.
On the contrary, the rate of heat transaction (Nur) drops with enhanced values of heat
generation. In Figure 13, the Ludwig–Soret parameter empowers nanofluid temperature
distribution in the presence of an increasing pedesis motion parameter. Figure 14 shows
the improvement of nanofluid temperature distribution as the values of the Biot number
BiT increase. Similarly, the rate of heat transfer rises when BiT increases as displayed
in Table 4. In Figure 15, concentration distribution is enhanced as the concentration Boit
number BiC increases, with a corresponding effect on mass transfer. In Figure 16, the power
index r shows a decreasing impact on concentration distribution in the presence of an
increasing pedesis motion parameter. Similarly, in Figure 17, the power index s shows a
decreasing impact on concentration distribution in the presence of an incremental impact
of the Ludwig–Soret parameter.

5. Conclusions

In this report, the nonlinear radiative nanofluidic hydrothermal unsteady bidirectional
transport with thermal/mass convection aspect has been investigated using the Keller-box
method. Based on the analysis of the results, it is worth concluding that:

• The decline in the velocity components of the x-axis and y-axis direction is due to
progressive flourishing of the unsteady parameter and magnetic field.
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• Temperature distribution rises with a corresponding increase in the values of the heat
source, Ludwig–Soret factor, temperature Biot number with an opposite effect for heat
sink, stretching parameter, and power indices of r and s.

• Given the growth of the concentration Biot number, power indices of r and s, the
concentration of the nanofluidic is enhanced.

• Friction coefficients decline for the stretching parameter, magnetic field, and unsteady
parameter growth along the bidirectional velocity components.

• The rate of heat transmission is amplified with the temperature ratio and temperature
Biot number and a reverse effect is noticed for the heat source and unsteady parameter.

• Mass transfer is enhanced for pedesis motion, unsteady parameter, and the concentra-
tion Biot number, with reverse impact of the Ludwig–Soret parameter.

In the future, this work can be extended for non-Newtonian nanofluids, hybrid-
nanofluids, tri-hybrid nanofluids, and ternary hybrid nanofluids.
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