
Citation: Hammad, H.A.; Rashwan,

R.A.; Nafea, A.; Samei, M.E.; de la

Sen, M. Stability and Existence of

Solutions for a Tripled Problem of

Fractional Hybrid Delay Differential

Equations. Symmetry 2022, 14, 2579.

https://doi.org/10.3390/

sym14122579

Academic Editor: Wei-Shih Du

Received: 29 October 2022

Accepted: 3 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Stability and Existence of Solutions for a Tripled Problem of
Fractional Hybrid Delay Differential Equations
Hasanen A. Hammad 1,2,* , Rashwan A. Rashwan 3, Ahmed Nafea 2 , Mohammad Esmael Samei 4,*
and Manuel de la Sen 5

1 Department of Mathematics, Unaizah College of Sciences and Arts, Qassim University,
Buraydah 52571, Saudi Arabia

2 Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
3 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
4 Department of Mathematics, Faculty of Basic Science, Bu-Ali Sina University, Hamedan 65178, Iran
5 Institute of Research and Development of Processes, Department of Electricity and Electronics,

Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
* Correspondence: hassanein_hamad@science.sohag.edu.eg or h.abdelwareth@qu.edu.sa (H.A.H.);

mesamei@gmail.com or mesamei@basu.ac.ir (M.E.S.)

Abstract: The purpose of this paper is to determine the existence of tripled fixed point results for the
tripled symmetry system of fractional hybrid delay differential equations. We obtain results which
support the existence of at least one solution to our system by applying hybrid fixed point theory.
Similar types of stability analysis are presented, including Ulam–Hyers, generalized Ulam–Hyers,
Ulam–Hyers–Rassias, and generalized Ulam–Hyers–Rassias. The necessary stipulations for obtaining
the solution to our proposed problem are established. Finally, we provide a non-trivial illustrative
example to support and enhance our analysis.
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1. Introduction

The study of fractional derivatives is very important for many engineering applications
as it utilizes differential equations which have a long history of application in many
fields, including chemistry, physics and dynamical systems. The significance of fractional-
order differential equations is that fractional-order types are more accurate than integer-
order types because they have a greater degree of freedom [1–3]. Hybrid differential
equations (HDEs), which are one of the most common ways of representing perturbations
in dynamical systems, have piqued the curiosity of many academics [4–6]. Many studies
have involved the application of hybrid fixed point theory to HDEs by incorporating
various symmetry perturbations [7–10]. Before describing our investigation, we provide an
overview of related studies addressing the identified problem. In 2013, Dhage established
the existence and uniqueness of the following HDE solution:

[z(ς)−Λ(ς, z(ς))]
′
= Ω(ς, z(ς)), ς ∈ i = [ς0, a + ς0], (1)

and z(ς0) = z0 ∈ R, where Λ, Ω ∈ C(i×R,R) [8,11]. Subsequently, Lu et al. [5] general-
ized (1) by employing the Riemann–Liouville derivative to obtain a satisfactory relation
between the analytical solution and the experimental results

Dϑ
+0(z(ς)−Λ(ς, z(ς))) = Ω(ς, z(ς)), ς ∈ i,
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and z(ς0) = z0 ∈ R. In addition, Hilal et al. [6] proposed the BVP for fractional hy-
brid differential equations (FHDEs), which included Caputo’s fractional-order derivative
as follows: 

CDϑ
+0

(
z(ς)

Λ(ς,z(ς))

)
= Ω(ς, z(ς)), ς ∈ i,

>1

(
z(0)

Λ(0,z(0))

)
+>2

(
z(τ)

Λ(τ,z(τ))

)
= >3,

here Λ ∈ C(i×R,R− {0}), Ω ∈ C(i×R,R), >1,>2 (>1 + >2 6= 0) and >3 are real
values. Recently, Iqbal et al. [7] extended the work of [6] by adding a delay parameter to
obtain the following FHDDE

CDϑ
+0(z(ς)−Λ(ς, z(ς))) = Ω(ς, c(ς), c(ν1ς)),

CDϑ
+0(c(ς)−Λ(ς, c(ς))) = Ω(ς, z(ς), z(ν2ς)),

CDξ
+0z(0) = Π1z(ð1), z′(0) = 0, . . . , zβ−2(0) = 0, ĈDξ

+0z(1) = Π2z(ð2),
CDξ

+0c(0) = Π1c(ð1), c′(0) = 0, . . . , c
β−2

(0) = 0, ĈDξ
+0c(1) = Π2c(ð2),

where ς ∈ [0, 1], ν1, ν2, ξ,ð1, ð1 ∈ (0, 1), Π1, Π2 are non-zero real values, CDϑ
+0 is Caputo’s

derivative, with ϑ ∈ (β− 1, β); here β ∈ N, β ≥ 3, Λ and Ω are non-linear continuous
functions. Samei et al. investigated the existence of solutions for the following hybrid
Caputo–Hadamard fractional differential inclusion

C
HDϑ

+0

(
z(ς)−Θ(ς, z(ς), Iγ1 h1(ς, z(ς)), . . . , Iγn hn(ς, z(ς)))

Λ(ς, z(ς), Iη1 z(ς), . . . , Iγm z(ς))

)
∈ Ω(ς, z(ς)),

for ς ∈ [1, τ] and z(1) = µ1(ς), z(τ) = µτ(ς), where C
HDϑ

+0 and Iγ denote the Caputo–
Hadamard fractional derivative and Hadamard integral of order 1 < ϑ ≤ 2 and γi > 0
for i = 1, 2, . . . , n, respectively; functions Θ : [1, τ] × Rn+1 → R, Λ : [1, τ] × Rm+1 →
R \ {0}, hi : [1, τ]× R → R, i = 1, 2, . . . , n are continuous, µ1,µτ ∈ C([1, τ],R) and the
multifunction Ω : [1, τ] × R → P(R) satisfies certain conditions [12]. Etemad et al.
investigated the fractional hybrid multi-term Caputo integro-differential inclusion

CDϑ
+0

(
z(ς)

Λ(ς, z(ς), ϕ1(z(ς)), . . . , ϕn(z(ς)))

)
∈ Ω(ς, z(ς), ϕ1(z(ς)), . . . , ϕm(z(ς))),

with three-point integral hybrid boundary value conditions, where ς ∈ i = [0, 1], CDϑ
+0

denotes the fractional Caputo derivative of order 0 < ϑ ≤ 2, Λ : [0, 1] × Rn+1 → R \
{0} is a continuous function and Ω : [0, 1] × Rm+1 → P(R) is a set-valued map via
certain properties [13]. Ma in [14] considered three pairs of local and non-local group
constraints for Ablowitz–Kaup–Newell–Segur matrix eigenvalue problems and generated
three reduced non-local integrable non-linear Schrödinger hierarchies. They performed two
group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems to derive
a class of novel reduced non-local reverse-spacetime integrable modified Korteweg–de
Vries equations [15].

A number of authors have sought innovative approaches to improve the various
types of fractional-order differential equations. Stability analysis of fractional differential
equation (FDE) solutions was introduced to address this issue. In 1940, Ulam developed
the novel concept of stability analysis to apply stability theory. In 1941, Hyers [16] then
generalized the concept using a more advanced approach. Rassias [17,18] amplified the
concept for the previously mentioned range to incorporate more types of stability, such
as Ulam–Hyers–Rassias (UHR) and generalized Ulam–Hyers–Rassias (GUHR). In bio-
mathematics, applications of tripled systems of fractional-order epidemic models, such as
susceptible-infected-susceptible and susceptible-infected-recovered models, with Caputo
fractional-order derivative [19], have been developed. Papers [20–25] provide additional
information on these stabilities and their applications.
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In this paper, we demonstrate the requirements for at least one solution and analyze
its stability for the following fractional hybrid delay differential equations (FHDDEs) with
non-homogeneous initial conditions and second-order quadratic perturbations

CDϑ
+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))
= Ω1(ς, z(νς), c(νς), s(νς)),

CDξ
+0(c(ς)−Λ2(ς, z(ς), c(ς), s(ς)))
= Ω2(ς, z(νς), c(νς), s(νς)),

CDδ
+0(s(ς)−Λ3(ς, z(ς), c(ς), s(ς)))
= Ω3(ς, z(νς), c(νς), s(νς)),

(2)

under conditions

z(ς)
∣∣∣
ς=0

= z0, c(ς)
∣∣∣
ς=0

= c0, s(ς)
∣∣∣
ς=0

= s0, (3)

where ς ∈ ג = [0, τ], τ > 0, CD+0 is Caputo’s derivative, ϑ, ξ, δ ∈ (0, 1), z0, c0, s0 are real
numbers, ν = (0, 1) is a delay parameter and Λi, Ωi : R3×ג → R (i = 1, 2, 3) are non-linear
continuous functions. In addition, the hybrid fixed point theorem and other non-linear
functional analysis outcomes are used to construct compatible criteria for the existence and
uniqueness of the solution. The proposed system (2) is subjected to stability analysis in
many directions. Finally, an example is presented to support our findings.

A brief outline of the paper is as follows: Section 2 provides the definitions and pre-
liminary facts necessary for the analysis. We also review several definitions and properties
of fractional-order integral and differential operators that will be utilized afterwards. In
Section 3, we prove the existence of the problem (2). The existence, uniqueness and UH
stability results for the problem (2) are also investigated. An example is given in Section 4.
A concluding section completes the paper.

2. Preliminaries

In this section, we present notations and basic definitions which are useful for the deriva-
tion of our results. For supporting material to the current work, please see [3,11,26,27]. The
Riemann–Liouville fractional integral of order ϑ∈ R+, for a function z(ς) : [0, τ] → R is
given by

Iϑz(ς) =
1

Γ(ϑ)

∫ ς

0
(ς− u)ϑ−1z(u)du,

provided that an integral exists. The Caputo derivative of order ϑ∈ R+ for z(ς) on [0, τ] is
defined by

CDϑ
+0z(ς) =

1
Γ(σ− ϑ)

∫ ς

0
(ς− u)σ−ϑ−1z(σ)(u)du,

where σ = [ϑ] + 1 and [ϑ] is the integer part of ϑ.

Lemma 1 ([1]). Differential operators and fractional-order integral are connected with the equa-
tion below

Iϑ
[

CDϑ
+0z(ς)

]
= z(ς) + a0 + a1ς + a2ς2 + · · ·+ aσ−1ςσ−1,

for any ai ∈ R (i = 0, 1, 2, . . . , σ− 1), here σ = [ϑ] + 1.

LetX,Y,Z be Banach spaces having all continuous functions from →ג R with a norm

‖z‖ = max
{
|z(ς)| : ς ∈ ג

}
, ‖c‖ = max

{
|c(ς)| : ς ∈ ג

}
, ‖s‖ = max

{
|s(ς)| : ς ∈ ג

}
.
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Then the product Ξ = X × Y × Z is also a Banach space with the norm ‖(z, c, s)‖ =
‖z‖+ ‖c‖+ ‖s‖, for each (z, c, s) ∈ Ξ.
As in Theorem 2.4 in [9], we can state the following Theorem.

Theorem 1. Let O be a closed and bounded set so that O ⊂ Ξ and the two operators < : Ξ→ Ξ,
= : O→ Ξ fulfil the following axioms

(1) < is a contraction;
(2) = is continuous and compact;
(3) (z, c, s) = <(z, c, s) +=(z, c, s) for each z, c, s ∈ Ξ, implies z, c, s ∈ O.

Then the operator equations (z, c, s) = <(z, c, s) +=(z, c, s) have a solution in O.

We now assume the following hypotheses in order to develop the results linked to the
presence of the solution as well as to the study of functional stability:

(H1) For positive real values ω, γ and κ, the functions Λ1, Λ2 and Λ3 satisfy the inequalities
below: ∀ ς ∈ ג and z, z, c, c, s, s ∈ R,

|Λ1(ς, z, c, s)−Λ1(ς, z, c, s)| ≤ ω(|z− z|+ |c− c|+ |s− s|),

|Λ2(ς, z, c, s)−Λ2(ς, z, c, s)| ≤ γ(|z− z|+ |c− c|+ |s− s|),

|Λ3(ς, z, c, s)−Λ3(ς, z, c, s)| ≤ κ(|z− z|+ |c− c|+ |s− s|);

(H2) For continuous functionals pi, bi, di, ei (i = 1, 2, 3) : [0, 1] → R, the functions Ω1, Ω2
and Ω3 fulfil the following constraints

|Ω1(ς, z(νς), c(νς), s(νς))| ≤ p1(ς) + b1(ς)|z(ς)|+ d1(ς)|c(ς)|+ e1(ς)|s(ς)|,

|Ω2(ς, z(νς), c(νς), s(νς))| ≤ p2(ς) + b2(ς)|z(ς)|+ d2(ς)|c(ς)|+ e2(ς)|s(ς)|,

|Ω3(ς, z(νς), c(νς), s(νς))| ≤ p3(ς) + b3(ς)|z(ς)|+ d3(ς)|c(ς)|+ e3(ς)|s(ς)|;

(H3) We present the notations below to prevent lengthy calculations and to help the reader
comprehend the main results.

`i = sup
ς∈[0,1]

|Λi(ς, 0, 0, 0)|, i = 1, 2, 3, (4)

and ηi = supς∈ג|pi(ς)|, i = 1, 2, 3,

Jz = sup
ς∈ג

{
|bi(ς)| : i = 1, 2, 3

}
,

Jc = sup
ς∈ג

{
|di(ς)| : i = 1, 2, 3

}
,

Js = sup
ς∈ג

{
|ei(ς)| : i = 1, 2, 3

}
, (5)

and J = max{Jz, Jc, Js}.

Definition 1. A function < : Ξ → Ξ is called ρ−Lipschitz for a positive real value ρ if the
inequality below holds

|<(z, c, s)−<(z, c, s)| ≤ ρ
(
|z− z|+ |c− c|+ |s− s|

)
,

∀ (z, c, s), (z, c, s) ∈ Ξ. Moreover, < is said to be a strict contraction if ρ < 1.
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Definition 2. A solution z(ς) ∈ C[0, τ] of the FDE that is described as
CDϑ

+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))
= Ω1(ς, z(νς), c(νς), s(νς)), ς ∈ ,ג

z(ς)
∣∣∣
ς=0

= z0,

(6)

• is UH stable if, for a constant ℵϑ,ξ,δ,D > 0, so that, for each ε > 0, and for every solution
z(ς) ∈ C[0, τ], with the inequality below∣∣∣CDϑ

+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))−Ω1(ς, z(νς), c(νς), s(νς))
∣∣∣ ≤ ε, (7)

ς ∈ ,ג there is a unique solution µ ∈ C[0, τ] of the FDE (6) with a constant ℵϑ,ξ,δ,D > 0, so
that ‖z− µ‖ ≤ ℵϑ,ξ,δ,D.

• is UHR stable, if we have } : (0, ∞) → R+, (}(0) = 0), so that, for every solution
z(ς) ∈ C[0, τ] of (7), there is a unique solution µ ∈ C[0, τ] of the FDE (6) with a constant
ℵϑ,ξ,δ,D > 0, so that ‖z− µ‖ ≤ ℵϑ,ξ,δ,D}(ε).

We provide the following definitions of UHR and GUHR stability for our considered
system (6)

Definition 3. FDE (6) is called

• UHR stable with respect to w ∈ C([0, τ],R) if there is a non-zero positive real value ℵw,D
and for every ε > 0, so that, for each solution z(ς) ∈ C[0, τ] of the inequality∣∣∣CDϑ

+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))−Ω1(ς, z(νς), c(νς), s(νς))
∣∣∣ ≤ εw(ς),

where ς ∈ ,ג there is a solution µ ∈ C[0, τ] of the FDE (6) with a constant ℵw,D > 0, so that
|z− µ| ≤ ℵw,Dw(ς), for each ς ∈ .ג

• GUHR stable with respect to w ∈ C([0, τ],R) if there is a positive real number ℵw,D, so that,
for each solution z(ς) ∈ C[0, τ] of the inequality∣∣∣CDϑ

+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))−Ω1(ς, z(νς), c(νς), s(νς))
∣∣∣ ≤ w(ς),

where ς ∈ ,ג there is a solution µ ∈ C[0, τ] of the FDE (6) with a constant ℵw,D > 0, so that
|z(ς)− µ(ς)| ≤ ℵw,Dw(ς), for ς ∈ .ג

3. Main Results

The following section considers the conditions in which the underlying FHDDEs (2)
can be solved. We begin by proving the following lemma.

Lemma 2. Let Θ : →ג R, then the solution of the FHDE
CDϑ

+0[z(ς)−Λ1(ς, z(ς), c(ς), s(ς))] = Θ(ς), ϑ ∈ (0, 1], ς ∈ ,ג

z(ς)
∣∣∣
ς=0

= z0,
(8)

takes the form

z(ς) = z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+ Λ1(ς, z(ς), c(ς), s(ς)) + Iϑ[Θ(ς)]. (9)

Proof. Applying the integral Iϑ on CDϑ
+0z(ς) and using Lemma 1, we have
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z(ς)−Λ1(ς, z(ς), c(ς), s(ς)) =
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Θ(u)du + b0, b0 ∈ R. (10)

From the initial conditions z(ς)|ς=0 = z0, the Equation (10) transfers to (9) as

z(ς) = z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+ Λ1(ς, z(ς), c(ς), s(ς)) +
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Θ(u)du.

Theorem 2. It should be noted that, according to Lemma 2, the proposed system FHDDEs (2) is
equivalent to the integral system below, ς ∈ ,ג

z(ς) = z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+Λ1(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du,

c(ς) = c0 −Λ2(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+Λ2(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ξ−1

Γ(ξ)
Ω2(u, z(νu), c(νu), s(νu))du,

s(ς) = s0 −Λ3(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+Λ3(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)δ−1

Γ(δ)
Ω3(u, z(νu), c(νu), s(νu))du.

(11)

Now, we have a theorem to produce the required result for at least one solution of the
problem (2).

Theorem 3. Problem (2) has at least one solution under assumptions (H1)–(H3) if the following
condition is met

Υ :=
(

ω + γ +κ +
τϑ

Γ(ϑ + 1)
+

τξ

Γ(ξ + 1)
+

τδ

Γ(δ + 1)

)
J < 1. (12)

Proof. Suppose a closed bounded set

O =
{
(z, c, s) ∈ O : ‖(z, c, s)‖ ≤ R

}
⊂ Ξ,

where [
ψ1 + ψ2 + ψ3 + `1 + `2 + `3 +

τϑ

Γ(ϑ+1) +
τξ

Γ(ξ+1) +
τδ

Γ(δ+1)

]
1−

(
ω + γ +κ + τϑ

Γ(ϑ+1) +
τξ

Γ(ξ+1) +
τδ

Γ(δ+1)

)
J

≤ R,

and

ψ1 = |z0 −Λ1(ς, z(ς), c(ς), s(ς))|ς=0,

ψ2 = |c0 −Λ2(ς, z(ς), c(ς), s(ς))|ς=0,

ψ3 = |s0 −Λ3(ς, z(ς), c(ς), s(ς))|ς=0. (13)
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Let < : Ξ→ Ξ and = : O→ Ξ be operators defined by

<(z, c, s) = (<1(z, c, s),<2(z, c, s),<3(z, c, s)),

=(z, c, s) = (=1(z, c, s),=2(z, c, s),=3(z, c, s)).

Then, we get, ς ∈ ,ג

<1(z(ς), c(ς), s(ς)) = Λ1(ς, z(ς), c(ς), s(ς)),

<2(z(ς), c(ς), s(ς)) = Λ2(ς, z(ς), c(ς), s(ς)),

<3(z(ς), c(ς), s(ς)) = Λ3(ς, z(ς), c(ς), s(ς)), (14)

and for ς ∈ ,ג 

=1(z(ς), c(ς), s(ς)) = z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du,

=2(z(ς), c(ς), s(ς)) = c0 −Λ2(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+
∫ ς

0

(ς− u)ξ−1

Γ(ξ)
Ω2(u, z(νu), c(νu), s(νu))du,

=3(z(ς), c(ς), s(ς)) = s0 −Λ3(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+
∫ ς

0

(ς− u)δ−1

Γ(δ)
Ω3(u, z(νu), c(νu), s(νu))du.

(15)

From (14) and (15), we obtain operator equations as

<(z, c, s) +=(z, c, s) = (z, c, s), ∀ ς ∈ ,ג

that is (
<1(z, c, s),<2(z, c, s),<3(z, c, s)

)
+
(
=1(z, c, s),=2(z, c, s),=3(z, c, s)

)
= (z, c, s),

this implies that

<1(z, c, s) +=1(z, c, s) = z, <2(z, c, s) +=2(z, c, s) = c, <3(z, c, s) +=3(z, c, s) = s.

Now, we show that < and = fulfil the hypotheses of Theorem 1. For this, we prove that
< is Lipschitz on Ξ with ω + γ + κ > 0, and = : O → Ξ is completely continuous. Let
(z, c, s) ∈ Ξ, then from (H1), we obtain that

|<1(z, c, s)−<1(z, c, s)| = |Λ1(ς, z, c, s)−Λ1(ς, z, c, s)|
≤ ω(|z− z|+ |c− c|+ |s− s|)
≤ ω(‖z− z‖+ ‖c− c‖+ ‖s− s‖),

∀ ς ∈ .ג Taking supremum over ς, we have

‖<1(z, c, s) −<1(z, c, s)‖ ≤ ω(‖z− z‖+ ‖c− c‖+ ‖s− s‖), (16)

∀ (z, c, s), (z, c, s) ∈ Ξ. Similarly, we can write
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‖<2(z, c, s) −<2(z, c, s)‖ ≤ γ(‖z− z‖+ ‖c− c‖+ ‖s− s‖), (17)

and

‖<3(z, c, s) −<3(z, c, s)‖ ≤ κ(‖z− z‖+ ‖c− c‖+ ‖s− s‖), (18)

∀ (z, c, s), (z, c, s) ∈ Ξ. Thus, < is Lipschitz on Ξ with a positive constant ω + γ + κ,
from (16)–(18), one gets

‖<(z, c, s) −<(z, c, s)‖ ≤ (ω + γ +κ)(‖z− z‖+ ‖c− c‖+ ‖s− s‖).

For continuity of =, suppose that (zβ, cβ, sβ) is a sequence in O converging to (z, c, s) ∈ O,
based on the Lebesgue dominated convergence theorem, we can write

lim
β→∞
=1
(
zβ, cβ, sβ

)
(ς) = lim

β→∞

[
z0 −Λ1(ς, z(ς), c(ς), s(ς))

∣∣∣
ς=0

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1
(
u, zβ(νu), cβ(νu), sβ(νu)

)
du
]

= z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
lim

β→∞
Ω1
(
u, zβ(νu), cβ(νu), sβ(νu)

)
du

= z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du = =1(z, c, s)(ς), ∀ ς ∈ .ג

Analogously, we get, for each ς ∈ ,ג

lim
β→∞
=2
(
zβ, cβ, sβ

)
(ς) = =2(z, c, s)(ς),

lim
β→∞
=3
(
zβ, cβ, sβ

)
(ς) = =3(z, c, s)(ς).

Now, we shall show =(zβ, cβ, sβ) is equicontinuous. So, we must conclude that = is
equicontinuous and uniformly bounded on O. Assume (z, c, s) ∈ O is any solution, then by
(H2), we have

∣∣=1(z, c, s)(ς)
∣∣ = ∣∣∣∣z0 −Λ1(ς, z(ς), c(ς), s(ς))

∣∣∣
ς=0

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

∣∣∣∣
≤
∣∣∣∣z0 −Λ1(ς, z(ς), c(ς), s(ς))

∣∣∣
ς=0

∣∣∣∣
+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)

∣∣∣Ω1(u, z(νu), c(νu), s(νu))
∣∣∣du

≤ ψ1 + sup
ς∈ג

∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
|p1(u)|du + JR τϑ

Γ(ϑ + 1)
,

which leads to

‖=1(z, c, s)‖ ≤ ψ1 +
(η1 + JR)τϑ

Γ(ϑ + 1)
. (19)
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Follows the same scenario, we have

‖=2(z, c, s)‖ ≤ ψ2 +
(η2 + JR)τϑ

Γ(ϑ + 1)
(20)

and

‖=3(z, c, s)‖ ≤ ψ3 +
(η3 + JR)τϑ

Γ(ϑ + 1)
. (21)

Therefore, from (19)–(21), we obtain that

‖=(z, c, s)‖ ≤ ψ1 + ψ2 + ψ3 +
(η1 + η2 + η3 + 3JR)τϑ

Γ(ϑ + 1)
.

Thus, = is a uniformly bounded operator on O. Now, assume that ς, α ∈ ג with ς < α, then,
for each (z, c, s) ∈ O, we can write∣∣=1(z, c, s)(ς)−=1(z, c, s)(α)

∣∣
≤
∫ ς

0

(ς− u)ϑ−1 − (α− u)ϑ−1

Γ(ϑ)

∣∣∣Ω1(u, z(νu), c(νu), s(νu))
∣∣∣du

+
∫ α

ς

(α− u)ϑ−1

Γ(ϑ)

∣∣∣Ω1(u, z(νu), c(νu), s(νu))
∣∣∣du

≤ 2(η1 + JR)
Γ(ϑ + 1)

(
ςϑ − αϑ + 2(α− ς)ϑ

)
,

which yields that

‖=1(z, c, s)(ς)−=1(z, c, s)(α)‖ ≤ 2(η1 + JR)
Γ(ϑ + 1)

[
ςϑ − αϑ + 2(α− ς)ϑ

]
. (22)

Similarly, we get

‖=2(z, c, s)(ς)−=2(z, c, s)(α)‖ ≤ 2(η2 + JR)
Γ(ϑ + 1)

[
ςϑ − αϑ + 2(α− ς)ϑ

]
(23)

and

‖=3(z, c, s)(ς)−=3(z, c, s)(α)‖ ≤ 2(η3 + JR)
Γ(ϑ + 1)

[
ςϑ − αϑ + 2(α− ς)ϑ

]
. (24)

If ς→ α, then the right sides in (22)–(24) tend to zero. Furthermore, =1,=2,=3 are bounded
and continuous. Hence, from (22)–(24), we get

‖=1(z, c, s)(ς) −=1(z, c, s)(α)‖
+ ‖=2(z, c, s)(ς)−=2(z, c, s)(α)‖
+ ‖=3(z, c, s)(ς)−=3(z, c, s)(α)‖ → 0, as ς→ α,

that is, ‖=(z, c, s)(ς)−=(z, c, s)(α)‖ → 0, as ς→ α. Hence, = is uniformly continuous for
each ς ∈ ג and (z, c, s) ∈ O. So, = is equicontinuous in O. According to the Arzelá–Ascoli
Theorem, = is compact and, hence, completely continuous. Now, in order to show the
postulate (H3) of Theorem 1, let (z, c, s) ∈ O and, using the postulate (H1), we have
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|<(z, c, s)(ς) +=(z, c, s)(ς)|
≤ |<(z, c, s)(ς)|+ |=(z, c, s)(ς)|
≤ |<1(z, c, s)(ς)|+ |<2(z, c, s)(ς)|+ |<3(z, c, s)(ς)|
+ |=1(z, c, s)(ς)|+ |=2(z, c, s)(ς)|+ |=3(z, c, s)(ς)|
+ ψ1 + ψ2 + ψ3 + |Λ1(ς, z(ς), c(ς), s(ς))|
+ |Λ2(ς, z(ς), c(ς), s(ς))|+ |Λ3(ς, z(ς), c(ς), s(ς))|

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
|Ω1(u, z(νu), c(νu), s(νu))|du

+
∫ ς

0

(ς− u)ξ−1

Γ(ξ)
|Ω2(u, z(νu), c(νu), s(νu))|du

+
∫ ς

0

(ς− u)δ−1

Γ(δ)
|Ω3(u, z(νu), c(νu), s(νu))|du,

it follows that

|<(z, c, s)(ς) +=(z, c, s)(ς)|
≤ ψ1 + ψ2 + ψ3

+ |Λ1(ς, z(ς), c(ς), s(ς))−Λ1(ς, 0, 0, 0)|
+ |Λ2(ς, z(ς), c(ς), s(ς))−Λ2(ς, 0, 0, 0)|
+ |Λ3(ς, z(ς), c(ς), s(ς))−Λ3(ς, 0, 0, 0)|
+ Λ1(ς, 0, 0, 0) + Λ2(ς, 0, 0, 0) + Λ3(ς, 0, 0, 0)

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)

(
|p1(u)|+ b(u)|z(u)|

+ d(u)|c(u)|+ e(u)|s(u)|
)

du

+
∫ ς

0

(ς− u)ξ−1

Γ(ξ)

(
|p2(u)|+ b(u)|z(u)|

+ d(u)|c(u)|+ e(u)|s(u)|
)

du

+
∫ ς

0

(ς− u)δ−1

Γ(δ)

(
|p3(u)|+ b(u)|z(u)|

+ d(u)|c(u)|+ e(u)|s(u)|
)

du. (25)

Passing supremum over ג in (25), we have

‖<(z, c, s) +=(z, c, s)‖ ≤ ψ1 + ψ2 + ψ3 + (ω + γ +κ)JR

+ `1 + `2 + `3 +
(η1 + JR)τϑ

Γ(ϑ + 1)
+

(η2 + JR)τξ

Γ(ξ + 1)
+

(η3 + JR)τδ

Γ(δ + 1)
≤ R. (26)

Hence, all the hypotheses of Theorem 1 are fulfilled. Then the system of FHDDEs (2) has a
solution in O.

4. Stability Results

This section focuses on demonstrating and analyzing the necessary and required
criteria for UH, GUH, UHR and GUHR stability in the proposed three-fold problem
solution (2).
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Definition 4. For ε = (ε1, ε2, ε3) > 0, a (z, c, s) ∈ < is called a solution of

∣∣∣CDϑ
+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))

−Ω1(ς, z(νς), c(νς), s(νς))
∣∣∣ < ε1,∣∣∣CDξ

+0(c(ς)−Λ2(ς, z(ς), c(ς), s(ς)))

−Ω2(ς, z(νς), c(νς), s(νς))
∣∣∣ < ε2,∣∣∣CDδ

+0(s(ς)−Λ3(ς, z(ς), c(ς), s(ς)))

−Ω3(ς, z(νς), c(νς), s(νς))
∣∣∣ < ε3,

for each ς ∈ ,ג if there are three functions a1,a2,a3 ∈ C[0, τ] which only depend on z, c, s, so that,
∀ ς ∈ ,ג

(i) |a1(ς)| ≤ ε1, |a2(ς)| ≤ ε2, |a3(ς)| ≤ ε3;
(ii) The perturbed system is defined by

CDϑ
+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))
= Ω1(ς, z(νς), c(νς), s(νς)) + a1(ς),

CDξ
+0(c(ς)−Λ2(ς, z(ς), c(ς), s(ς)))
= Ω2(ς, z(νς), c(νς), s(νς)) + a2(ς),

CDδ
+0(s(ς)−Λ3(ς, z(ς), c(ς), s(ς)))
= Ω3(ς, z(νς), c(νς), s(νς)) + a3(ς).

(27)

In order to obtain the results for the underlying form, we make the following assump-
tion:

(H4) The three operators Ω1, Ω2, Ω3 fulfil the more general Lipschitz type conditions below

|Ω1(ς, z(νς), c(νς), s(νς)) −Ω1(ς, µ(νς), q(νς),℘(νς))|

≤ p1(ς)
(
|z− µ|+ |c− q|+ |s− ℘|

)
,

|Ω2(ς, z(νς), c(νς), s(νς)) −Ω2(ς, µ(νς), q(νς),℘(νς))|

≤ p2(ς)
(
|z− µ|+ |c− q|+ |s− ℘|

)
,

|Ω3(ς, z(νς), c(νς), s(νς)) −Ω3(ς, µ(νς), q(νς),℘(νς))|

≤ p3(ς)
(
|z− µ|+ |c− q|+ |s− ℘|

)
,

∀ p1, p2, p3 ∈ C[0, 1].

Lemma 3. If the hypotheses (i) and (ii) are true, the solution (z, c, s) ∈ Ξ of the following
FHDDEs 

CDϑ
+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))
= Ω1(ς, z(νς), c(νς), s(νς)) + a1(ς),

CDξ
+0(c(ς)−Λ2(ς, z(ς), c(ς), s(ς)))
= Ω2(ς, z(νς), c(νς), s(νς)) + a2(ς),

CDδ
+0(s(ς)−Λ3(ς, z(ς), c(ς), s(ς)))
= Ω3(ς, z(νς), c(νς), s(νς)) + a3(ς),

under conditions z(ς)
∣∣∣
ς=0

= z0, c(ς)
∣∣∣
ς=0

= c0, s(ς)
∣∣∣
ς=0

= s0, which obeys the inequalities for

ς ∈ ג as
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∣∣∣∣z(ς)−(− z0 + Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

−Λ1(ς, z(ς), c(ς), s(ς))

−
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)∣∣∣∣ ≤ ε1

Γ(ϑ + 1)
,

∣∣∣∣c(ς)−(− c0 + Λ2(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

−Λ2(ς, z(ς), c(ς), s(ς))

−
∫ ς

0

(ς− u)ξ−1

Γ(ξ)
Ω2(u, z(νu), c(νu), s(νu))du

)∣∣∣∣ ≤ ε2

Γ(ξ + 1)
,

∣∣∣∣s(ς)−(− s0 + Λ3(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

−Λ3(ς, z(ς), c(ς), s(ς))

−
∫ ς

0

(ς− u)δ−1

Γ(δ)
Ω3(u, z(νu), c(νu), s(νu))du

)∣∣∣∣ ≤ ε3

Γ(δ + 1)
. (28)

Proof. Based on Theorem 2, we obtain a solution of the problem (27) for ς ∈ ג as

z(ς) = z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+Λ1(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
a1(ς)du,

c(ς) = c0 −Λ2(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+Λ2(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ξ−1

Γ(ξ)
Ω2(u, z(νu), c(νu), s(νu))du

+
∫ ς

0

(ς− u)ξ−1

Γ(ξ)
a2(ς)du,

s(ς) = s0 −Λ3(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+Λ3(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)δ−1

Γ(δ)
Ω3(u, z(νu), c(νu), s(νu))du

+
∫ ς

0

(ς− u)δ−1

Γ(δ)
a3(ς)du.

(29)

It is simple to obtain (28) using the solution provided by (29).

Theorem 4. Assume that (H1) and (H4) hold and consider Lemma 3 endowed with the condition
01 +02 +03 6= 1, where

01 = ω + ϕ1, 02 = γ + ϕ2, 03 = κ + ϕ3, (30)
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and

ϕ1 =
∫ τ

0

(τ − u)ϑ−1

Γ(ϑ)
p1(u)du,

ϕ2 =
∫ τ

0

(τ − u)ξ−1

Γ(ξ)
p2(u)du,

ϕ3 =
∫ τ

0

(τ − u)δ−1

Γ(δ)
p3(u)du. (31)

Then the solution of the problem (2) is UH and GUH stable.

Proof. Let (z, c, s) ∈ Ξ be an arbitrary solution of the problem (2) of FHDDEs and
(µ, q,℘) ∈ Ξ be the unique solution of the suggested problem (2). Consider

|µ(ς)− z(ς)| =
∣∣∣∣µ(ς)−(z0 −Λ1(ς, z(ς), c(ς), s(ς))

∣∣∣
ς=0

+ Λ1(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)∣∣∣∣
≤
∣∣∣∣µ(ς)−(µ0 −Λ1(ς, µ(ς), q(ς),℘(ς))

∣∣∣
ς=0

+ Λ1(ς, µ(ς), q(ς),℘(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, µ(νu), q(νu),℘(νu))du

)∣∣∣∣
+

∣∣∣∣(µ0 −Λ1(ς, µ(ς), q(ς),℘(ς))
∣∣∣
ς=0

+ Λ1(ς, µ(ς), q(ς),℘(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)
−
(

z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+ Λ1(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)∣∣∣∣,
it follows that

|µ(ς) −z(ς)|

≤ ε1

Γ(ϑ + 1)
+ |Λ1(ς, z(ς), c(ς), s(ς))−Λ1(ς, µ(ς), q(ς),℘(ς))|

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)

∣∣∣Ω1(u, z(νu), c(νu), s(νu))

−Ω1(u, µ(νu), q(νu),℘(νu))
∣∣∣du

≤ ε1

Γ(ϑ + 1)
+ ω(|µ− z|+ |q− c|+ |℘− s|)

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
|p1(ς)|(‖µ− z‖+ ‖q− c‖+ ‖℘− s‖)du.
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Hence,

‖µ− z‖ ≤ ε1

Γ(ϑ + 1)
+ ω

(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
+
(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
ϕ1. (32)

Similarly, we have

‖q− c‖ ≤ ε2

Γ(ξ + 1)
+ γ

(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
+
(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
ϕ2 (33)

and

‖℘− s‖ ≤ ε3

Γ(δ + 1)
+κ

(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
+
(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
ϕ3. (34)

From (32)–(34), we get

(1− (ω + ϕ1))‖µ− z‖ − (ω + ϕ1)‖q− c‖ − (ω + ϕ1)‖℘− s‖ ≤ ε1

Γ(ϑ + 1)
,

−(γ + ϕ2)‖µ− z‖+ (1− (γ + ϕ2))‖q− c‖ − (γ + ϕ2)‖℘− s‖ ≤ ε2

Γ(ξ + 1)
,

and

−(κ + ϕ3)‖µ− z‖ − (κ + ϕ3)‖q− c‖+ (1− (κ + ϕ3))‖℘− s‖ ≤ ε3

Γ(δ + 1)
.

The inequalities above can be arranged as

 1− (ω + ϕ1) −(ω + ϕ1) −(ω + ϕ1)
−(γ + ϕ2) 1− (γ + ϕ2) −(γ + ϕ2)
−(κ + ϕ3) −(κ + ϕ3) 1− (κ + ϕ3)

 ‖µ− z‖
‖q− c‖
‖℘− s‖

 ≤


ε1
Γ(ϑ+1)

ε2
Γ(ξ+1)

ε3
Γ(δ+1)

.

Applying (30) in the above inequality, we have

 ‖µ− z‖
‖q− c‖
‖℘− s‖

 ≤
 1−01 −01 −01
−02 1−02 −02
−03 −03 1−03

−1
ε1

Γ(ϑ+1)
ε2

Γ(ξ+1)
ε3

Γ(δ+1)

. (35)

By simplification and putting D = 1− (01 +02 +03), (35) implies that

‖µ− z‖ ≤ 1− (02 +03)

D
ε1

Γ(ϑ + 1)
+

01

D
ε2

Γ(ξ + 1)
+

01

D
ε3

Γ(δ + 1)
, (36)

‖q− c‖ ≤ 02

D
ε1

Γ(ϑ + 1)
+

1− (01 +03)

D
ε2

Γ(ξ + 1)
+

02

D
ε3

Γ(δ + 1)
, (37)

‖℘− s‖ ≤ 03

D
ε1

Γ(ϑ + 1)
+

03

D
ε2

Γ(ξ + 1)
+

1− (01 +02)

D
ε3

Γ(δ + 1)
. (38)

Hence, from (36)–(38) and taking ε = max{ε1, ε2, ε3}, we have

‖(µ, q,℘)− (z, c, s)‖ ≤ ℵϑ,ξ,δ,D,
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where

ℵϑ,ξ,δ,D =
1
D

[
1

Γ(ϑ + 1)
+

1
Γ(ξ + 1)

+
1

Γ(δ + 1)

]
.

Therefore, the solution of the suggested system (2) is UH stable. In addition, suppose
that }(ε) = ℵϑ,ξ,δ,D, which yields }(ε) = 0. So the solution of the proposed problem (2) is
GUH stable.

Now, the following hypothesis is assumed to be accurate in order to obtain the
results below:

(H5) For some given functions w, r and g, assume that the inequalities below are true

Iϑw(ς) ≤ kww(ς), Iξr(ς) ≤ krr(ς), Iδg(ς) ≤ kgg(ς).

Lemma 4. If the postulate (H5) holds, the solution (z, c, s) ∈ Ξ of the following system

CDϑ
+0(z(ς)−Λ1(ς, z(ς), c(ς), s(ς)))
= Ω1(ς, z(νς), c(νς), s(νς)) + w(ς),

CDξ
+0(c(ς)−Λ2(ς, z(ς), c(ς), s(ς)))
= Ω2(ς, z(νς), c(νς), s(νς)) + r(ς),

CDδ
+0(s(ς)−Λ3(ς, z(ς), c(ς), s(ς)))
= Ω3(ς, z(νς), c(νς), s(νς)) + g(ς),

with conditions
z(ς)

∣∣∣
ς=0

= z0, c(ς)
∣∣∣
ς=0

= c0, s(ς)
∣∣∣
ς=0

= s0, (39)

obeys the relations given for each ς ∈ −)−z(ς)∣∣∣∣ג z0 + Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

−Λ1(ς, z(ς), c(ς), s(ς))

−
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)∣∣∣∣
≤ ε1kww(ς),

∣∣∣∣c(ς)−(− c0 + Λ2(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

−Λ2(ς, z(ς), c(ς), s(ς))

−
∫ ς

0

(ς− u)ξ−1

Γ(ξ)
Ω2(u, z(νu), c(νu), s(νu))du

)∣∣∣∣
≤ ε2krr(ς),

∣∣∣∣s(ς)−(− s0 + Λ3(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

−Λ3(ς, z(ς), c(ς), s(ς))

−
∫ ς

0

(ς− u)δ−1

Γ(δ)
Ω3(u, z(νu), c(νu), s(νu))du

)∣∣∣∣
≤ ε3kgg(ς). (40)

Proof. As in Lemma (3), proof can be obtained.
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Theorem 5. Under assumptions (H1), (H4), (H5) and Lemma 4 with

01 +02 +03 6= 1,

the proposed system (2) is UHR and GUHR stable provided that (30) and (31) hold.

Proof. Let (z, c, s) ∈ Ξ be a chosen point of the suggested system of FHDDEs (2) and
(µ, q,℘) ∈ Ξ be a unique solution of the considered problem (2); consider

|µ(ς)− z(ς)| =
∣∣∣∣µ(ς)−(z0 −Λ1(ς, z(ς), c(ς), s(ς))

∣∣∣
ς=0

+ Λ1(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)∣∣∣∣
≤
∣∣∣∣µ(ς)−(µ0 −Λ1(ς, µ(ς), q(ς),℘(ς))

∣∣∣
ς=0

+ Λ1(ς, µ(ς), q(ς),℘(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, µ(νu), q(νu),℘(νu))du

)∣∣∣∣
+

∣∣∣∣(µ0 −Λ1(ς, µ(ς), q(ς),℘(ς))
∣∣∣
ς=0

+ Λ1(ς, µ(ς), q(ς),℘(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)
−
(

z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

+ Λ1(ς, z(ς), c(ς), s(ς))

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
Ω1(u, z(νu), c(νu), s(νu))du

)∣∣∣∣,
it follows that

|µ(ς)− z(ς)| ≤ ε1kww(ς) +
∣∣∣Λ1(ς, z(ς), c(ς), s(ς))

−Λ1(ς, µ(ς), q(ς),℘(ς))
∣∣∣

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)

∣∣∣Ω1(u, z(νu), c(νu), s(νu))

−Ω1(u, µ(νu), q(νu),℘(νu))
∣∣∣du

≤ ε1kww(ς) + ω(|µ− z|+ |q− c|+ |℘− s|)

+
∫ ς

0

(ς− u)ϑ−1

Γ(ϑ)
|p1(ς)|(‖µ− z‖+ ‖q− c‖+ ‖℘− s‖)du.

Therefore,

‖µ− z‖ ≤ ε1kww(ς) + ω
(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
+ ϕ1

(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
. (41)
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Analogously

‖q− c‖ ≤ ε2krr(ς) + γ
(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
+ ϕ2

(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
(42)

and

‖℘− s‖ ≤ ε3kgg(ς) +κ
(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
+ ϕ3

(
‖µ− z‖+ ‖q− c‖+ ‖℘− s‖

)
. (43)

Now, inequalities (41)–(43) can be written in matrix form as ‖µ− z‖
‖q− c‖
‖℘− s‖

 ≤
 1−01 −01 −01
−02 1−02 −02
−03 −03 1−03

−1 ε1kww(ς)
ε2krr(ς)
ε3kgg(ς)

. (44)

Solving (44) and putting D = 1− (01 +02 +03),

max
{
kww(ς),krr(ς),kgg(ς)

}
= kww(ς)

and ε = max{ε1, ε2, ε3}, we have

‖µ− z‖+ ‖q− c‖+ ‖℘− s‖ ≤ ℵw,Dw(ς),

where ℵw,D = 3kw
D . Therefore, the solution of the suggested system (2) is UHR stable with

respect to w. Obviously, one can show that the considered Problem (2) is GUHR stable with
respect to w.

5. Supportive Example

To reinforce our study findings, we present the example below. All the experiments
were carried out in MATLAB Ver. 8.5.0.197613 (R2015a) on a computer equipped with a CPU
AMD Athlon(tm) II X2 245 at 2.90 GHz running under the operating system Windows 7.

Example 1. Define the following system of FHDDEs with τ = 1 so ς ∈ ג = [0, 1] by

CD
1
5

(
z(ς)− 1

55 (sin ς + cos|z(ς)|+ c(ς) + s(ς))
)

= ς
5
(
ς + sin

∣∣z( ς
5
)∣∣+ c

( ς
5
)
+ s
( ς

5
))

,

CD
1
6

(
c(ς)− 1

110 (cos ς + z(ς) + cos c(ς) + s(ς))
)

= ς
6
(
ς + z

( ς
5
)
+ sin

∣∣c( ς
5
)∣∣+ s

( ς
5
))

,

CD
1
7

(
s(ς)− 1

220 (e
ς + z(ς) + c(ς) + cos s(ς))

)
= ς

7
(
ς + z

( ς
5
)
+ c
( ς

5
)
+ sin

∣∣s( ς
5
)∣∣),

(45)

under conditions
z(ς)

∣∣∣
ς=0

= 1, c(ς)
∣∣∣
ς=0

=
1
2

, s(ς)
∣∣∣
ς=0

=
1
4

. (46)

Clearly, ϑ = 1
5 ∈ (0, 1), ξ = 1

6 ∈ (0, 1), δ = 1
7 ∈ (0, 1), z0 = 1 ∈ R, c0 = 1

2 ∈ R, s0 = 1
4 ∈ R.

From (45), we get
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Λ1(ς, z(ς), c(ς), s(ς)) =
1

55
(sin ς + cos|z(ς)|+ c(ς) + s(ς)),

Λ2(ς, z(ς), c(ς), s(ς)) =
1

110
(cos ς + z(ς) + cos|c(ς)|+ s(ς)),

Λ3(ς, z(ς), c(ς), s(ς)) =
1

220
(eς + z(ς) + c(ς) + cos|s(ς)|),

and

Ω1(ς, z(νς), c(νς), s(νς)) =
ς

5

(
ς + sin

∣∣∣z( ς

5

)∣∣∣+ c
( ς

5

)
+ s
( ς

5

))
,

Ω2(ς, z(νς), c(νς), s(νς)) =
ς

6

(
ς + z

( ς

5

)
+ sin

∣∣∣c( ς

5

)∣∣∣+ s
( ς

5

))
,

Ω3(ς, z(νς), c(νς), s(νς)) =
ς

7

(
ς + z

( ς

5

)
+ c
( ς

5

)
+ sin

∣∣∣s( ς

5

)∣∣∣).

Further, we can get ω = 1
55 , γ = 1

110 , κ = 1
220 , η1 = 1

5 , η2 = 1
6 , η3 = 1

7 , p1 = p2 = p3 = ς2

5 ,
using (13) we have

ψ1 =

∣∣∣∣z0 −Λ1(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

∣∣∣∣ = ∣∣∣∣1− 1
55

(
0 + cos 1 +

1
2
+

1
4

)∣∣∣∣
=

∣∣∣∣1− 1
55
× 1.2903

∣∣∣∣ = 0.9765,

ψ2 =

∣∣∣∣c0 −Λ2(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

∣∣∣∣ = ∣∣∣∣12 − 1
110

(
1 + 1 + cos

1
2
+

1
4

)∣∣∣∣
=

∣∣∣∣12 − 1
110
× 3.1276

∣∣∣∣ = 0.4716,

ψ3 =

∣∣∣∣s0 −Λ3(ς, z(ς), c(ς), s(ς))
∣∣∣
ς=0

∣∣∣∣ = ∣∣∣∣14 − 1
220

(
1 + 1 +

1
2
+ cos

1
4

)∣∣∣∣
=

∣∣∣∣14 − 1
220
× 3.4689

∣∣∣∣ = 0.2342.

using (4), we get

`1 = sup
ς∈[0,1]

|Λ1(ς, 0, 0, 0)|

= sup
ς∈[0,1]

∣∣∣∣ 1
55

(sin ς + cos|z(ς)|+ c(ς) + s(ς))
∣∣∣∣ = 0.0153,

`2 = sup
ς∈[0,1]

|Λ2(ς, 0, 0, 0)|

= sup
ς∈[0,1]

∣∣∣∣ 1
110

(cos ς + z(ς) + cos|c(ς)|+ s(ς))
∣∣∣∣ = 0.0091,

`3 = sup
ς∈[0,1]

|Λ3(ς, 0, 0, 0)|

= sup
ς∈[0,1]

∣∣∣∣ 1
220

(eς + z(ς) + c(ς) + cos|s(ς)|)
∣∣∣∣ = 0.0124,

and, by employing Equation (5), we obtain
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Jz = sup
ς∈ג

{
|bi(ς)| : i = 1, 2, 3

}
= sup

ς∈ג

ς

5
=

1
5

,

Jc = sup
ς∈ג

{
|di(ς)| : i = 1, 2, 3

}
= sup

ς∈ג

ς

6
=

1
6

,

Js = sup
ς∈ג

{
|ei(ς)| : i = 1, 2, 3

}
= sup

ς∈ג

ς

7
=

1
7

,

and so, J = max
{

1
5 , 1

6 , 1
7

}
= 1

5 . From (12), we deduce that

Υ =

(
ω + γ +κ +

τϑ

Γ(ϑ + 1)
+

τξ

Γ(ξ + 1)
+

τδ

Γ(δ + 1)

)
J

=
1
5

(
0.0181 + 0.0090 + 0.0045 +

τ
1
5

Γ
( 6

5
) + τ

1
6

Γ
( 7

6
) + τ

1
7

Γ
( 8

7
)) ' 0.6536 < 1.

One can check these numerical results in Table 1 and can see a 2D plot of υ, R ≥ and ϕi (i = 1, 2, 3)
in Figure 1a–c for τ ∈ [0, 1].

Further,[
ψ1 + ψ2 + ψ3 + `1 + `2 + `3 +

τϑ

Γ(ϑ+1) +
τξ

Γ(ξ+1) +
τδ

Γ(δ+1)

]
1−

(
ω + γ +κ + τϑ

Γ(ϑ+1) +
τξ

Γ(ξ+1) +
τδ

Γ(δ+1)

)
J

' 14.3037 ≤ R,

ϕ1 = 0.1650, ϕ2 = 0.1421, ϕ3 = 0.1247,

Therefore, assumptions (H1), (H2), (H3) hold and so, by Theorem 3, the problem (45) has at least
one solution. The red dotted lines in Figure 1b show that R must be more than 14.35 for τ ∈ [0, 1].
So, applying Theorem 3, we conclude that the proposed Problem (45)

O =
{
(z, c, s) ∈ Ξ : ‖(z, c, s)‖ ≤ R, s.t R ≥ 14.3037

}
.

In addition to,

01 = ω + ϕ1 = 0.1832, 02 = γ + ϕ2 = 0.1512, 03 = κ + ϕ3 = 0.1292,

we obtain 01 +02 +03 ' 0.4637 6= 1; this proves that the solution of (45) is UH stable, and the
proposed solution is simply demonstrated to be GUH stable.

Table 1. Numerical values of Υ and ϕi (i = 1, 2, 3) in Example 1.

ϕi(τ)

τ Υ ≤ R ϕ1 ϕ2 ϕ3

0.00 0.0064 1.7301 0.0000 0.0000 0.0000
0.10 0.4445 7.0393 0.0010 0.0010 0.0009
0.20 0.4990 8.3475 0.0048 0.0043 0.0040
0.30 0.5340 9.3498 0.0117 0.0105 0.0095
0.40 0.5603 10.2100 0.0220 0.0195 0.0175
0.50 0.5817 10.9868 0.0359 0.0317 0.0282
0.60 0.5998 11.7089 0.0536 0.0470 0.0417
0.70 0.6155 12.3928 0.0753 0.0656 0.0581
0.80 0.6295 13.0488 0.1010 0.0877 0.0773
0.90 0.6421 13.6841 0.1309 0.1131 0.0995
1.00 0.6536 14.3037 0.1650 0.1421 0.1247
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τ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Υ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(

ω + γ + κ+
τ θ

Γ (θ + 1)
+

τ ξ

Γ (ξ + 1)
+

τ δ

Γ (δ + 1)

)

J

(a) Υ

τ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

≤
R

0

5

10

15

14.35 ≤ R

(b) ≤ R

τ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ϕ
i

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

φ
1

φ
2

φ
3

(c) ϕi

Figure 1. Graphical representation of Υ ≤ R and ϕi (i = 1, 2, 3) in Example 1 for τ ∈ [0, 1].

One can check these numerical results in Table 2, which shows the numerical results of
0i (i = 1, 2, 3). A 2D plot of 0i (i = 1, 2, 3) is shown in Figure 2 for τ ∈ [0, 1].

Table 2. Numerical values of 0i (i = 1, 2, 3) in Example 1.

0i(τ)

τ 01 02 03 01 +02 +03 6= 1

0.00 0.0182 0.0091 0.0045 0.0318
0.10 0.0192 0.0101 0.0054 0.0347
0.20 0.0230 0.0134 0.0085 0.0449
0.30 0.0299 0.0196 0.0140 0.0634
0.40 0.0402 0.0286 0.0221 0.0908
0.50 0.0541 0.0408 0.0328 0.1276
0.60 0.0718 0.0561 0.0463 0.1742
0.70 0.0935 0.0747 0.0626 0.2308
0.80 0.1192 0.0967 0.0819 0.2978
0.90 0.1491 0.1222 0.1041 0.3753
1.00 0.1832 0.1512 0.1293 0.4637
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$
\m

h
o
_
i$

0

0.02

0.04

0.06

0.08

0.1
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Figure 2. Graphical representation of 0+ i for τ ∈ [0, 1] in Example 1.

Moreover, for w(ς) = r(ς) = g(ς) = ς; similarly, Theorem 5 states that the requirements of
UHR and GUHR stability can be easily satisfied.

6. Conclusions

In this paper, we defined a new fractional mathematical model of an FHDDE and
investigated the qualitative behaviors of its solutions, including existence, uniqueness and
stability. To confirm the existence criterion, we utilized the presumptions of the famous
fixed point for the operator within the hybrid case. Modeling using systems of fractional
differential equations is an important class of bio-mathematics, physics, applied chemistry
and many other areas. The field has recently been extended to FDEs as well. BVPs have
many applications in engineering and physical sciences. In addition, stability analysis
in the Ulam–Hyers sense of a given system was considered. Finally, illustrations were
provided to confirm the legitimacy of the results obtained.
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