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Abstract: Partial differential equations arising in engineering and other sciences describe nature
adequately in terms of symmetry properties. This article develops a numerical method based on the
Laplace transform and the numerical inverse Laplace transform for numerical modeling of diffusion
problems. This method transforms the time-dependent problem to a corresponding time-independent
inhomogeneous problem by employing the Laplace transform. Then a local radial basis functions
method is employed to solve the transformed problem in the Laplace domain. The main feature of the
local radial basis functions method is the collocation on overlapping sub-domains of influence instead
of on the whole domain, which reduces the size of the collocation matrix; hence, the problem of ill-
conditioning in global radial basis functions is resolved. The Laplace transform is used in comparison
with a finite difference technique to deal with the time derivative and avoid the effect of the time
step on numerical stability and accuracy. However, using the Laplace transform sometimes leads
to a solution in the Laplace domain that cannot be converted back into the real domain by analytic
methods. Therefore, in such a case, the Laplace transform is inverted numerically. In this investigation,
two inversion techniques are utilized; (i) the contour integration method, and (ii) the Stehfest method.
Three test problems are used to evaluate the proposed numerical method. The numerical results
demonstrate that the proposed method is computationally efficient and highly accurate.

Keywords: Laplace transform; diffusion problems; local radial basis functions; contour integration
method; trapezoidal rule; Stehfest’s method

1. Introduction

Advection-diffusion equations (ADEs) have an important role in many physical sys-
tems, i.e., vorticity, heat, energy, mass and fluid flow [1]. Symmetry is a fundamental
property of nature and its phenomena; in physics, it ensures the existence of conservation
laws, and, in mathematics, it means a transformation from one solution to another [2].
ADEs are able to adequately describe physical and biological processes and have symmetry
properties [3]. Furthermore, many physical phenomena relating to the transformation of
energy during advection and diffusion processes can be described by ADEs [4]. It is a 1D
PDE which demonstrates the advection and diffusion of mass, vorticity, heat and energy [5],
etc. ADEs can be utilized to describe heat transfer in draining film [6], the dispersion
of traces in porous media [7], the transfer of pollutants in the atmosphere [8], and water
transmission in soil [9]. In this investigation, we consider an ADE of the form [10,11]:

∂C(x, t)
∂t

+ θ̄
∂C(x, t)

∂x
− ᾱ

∂2C(x, t)
∂x2 = h(x, t), x ∈ Ω, t > 0, (1)
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with initial condition
C(x, 0) = C0(x), x ∈ Ω,

and Dirichlet boundary conditions

LBC(x, t) = g(x, t), x ∈ ∂Ω, (2)

where Ω is the domain and ∂Ω is its boundary, L = ∂
∂x + ∂2

∂x2 and LB are the linear
differential and boundary operators; θ̄ and ᾱ are the advection and diffusion coefficients,
respectively, where θ̄ is an arbitrary constant and ᾱ is a positive constant. Whereas, C(x, t)
is the concentration and h(x, t), g(x, t) are given smooth functions.

ADEs have been studied by many authors, and various approximate and analytic
techniques have been developed for the solution of 1D ADEs [12]. Kumar et al. [13,14]
studied the analytic solution of 1D ADEs with variable coefficients. Zoppou and Knight [15]
investigated the analytic solution of an ADE with variable coefficients. In [16], the analytic
solution of 2D ADE, arising in cytosolic calcium concentration distribution, was examined.
Further information on other analytic methods for ADEs can be found in [17–19] and the
references therein.

However, in many situations, the analytic solution of ADEs is difficult to obtain. Nu-
merical techniques are then used to approximate the solution of ADEs. The numerical
investigation of the solutions of ADEs has been considered by many researchers, and nu-
merous methods have been proposed. These include the stable explicit finite difference
method (FDM) [20], the implicit FDM [21], the compact FDM [10], the cubic trigonometric
B-splines method [11], the finite element method (FEM) [22], and the boundary element
method [23]. The numerical solutions of ADEs are difficult to obtain due to: (i) the first-
and second-order derivatives with respect to space variables. Depending on the values
of ᾱ and θ̄, the equation becomes parabolic for diffusion-dominated and hyperbolic for
advection-dominated processes. Traditionally used FDMs face problems when oscillations
and smoothing of the wave front are introduced [24,25]; (ii) since all the methods depend
on a mesh, it is necessary to construct a fine mesh for optimal results. However, mesh gener-
ation is the most time-consuming part of the solution process and, for complex geometries,
problems can occur with implementation.

Due to the complexity of mesh generation, remarkable work has recently been un-
dertaken on the development of mesh-free or mesh-less methods. Numerous mesh-free
methods for approximating the solutions of PDEs in different fields of engineering and
other fields have been developed. The major advantages of mesh-less methods are: (i) they
do not require a mesh, which can be challenging in 3D-space cases; (ii) they are more
suitable than mesh-based methods in cases of large deformations or moving discontinuities.
One of the common features of all mesh-less methods is their ability to construct a func-
tional interpolation or approximation entirely from information about a set of dispersed
nodes between which there is no predetermined connectivity or relationship. Various
mesh-less methods have been developed to date. These include, the Galerkin mesh-free
methods [26], the boundary knot method [27], the singular boundary method [28], and
the local point interpolation method [29].

Another group of mesh-less methods that are based on radial basis functions (RBFs),
represents one of the best tools for obtaining the numerical solutions to various real
world problems [30–34]. The main characteristics of RBFs are their smoothness, spectral
convergence and ease of implementation. RBF-based mesh-less methods are divided
into two categories: global mesh-less methods (GRBFMs) and local mesh-less methods
(LRBFMs). In GRBFMs, the solution is approximated using the linear combinations of
RBFs; these methods involve full system matrices that are often ill-conditioned. Due to the
involvement of full system matrices the approximation of large-scale problems becomes
difficult for some RBF methods. The condition number of the system matrices increases as
the number of interpolation nodes increases. Another factor is the use of infinitely smooth
basis functions with arbitrary shape parameters [35]. The accuracy of the approximation
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and the conditioning of the system matrix depends on the value of the shape parameter.
For GRBFMs, how to select an optimal shape parameter is still an open question [36].

In 2003, Shu et al. [37] proposed LRBFMs to solve 2D Navier–Stokes equations.
In LRBFMs, the collocation is made in overlapping sub-domains, which reduces the size of
the system matrix, and then these small system matrices are solved for each node. Subse-
quently, LRBFMs have been applied to numerous problems in engineering and other science
subjects, such as compressible flow problems [38], incompressible flow problems [39], arbi-
trarily shaped membranes [40], boundary value problems [41], and diffusion problems [42].
The main drawback of LRBFMs is that this method does not work for elliptic problems
in a straightforward way. In addition, these LRBFMs are employed to approximate the
solutions of time-dependent PDEs coupled with a time-stepping scheme. The drawback of
the time-stepping technique is that it does not always lead to a stable solution. The finite
difference time-stepping scheme is stable if the errors remain constant or decay during
computation. In addition, in the finite difference time-stepping scheme, the accuracy is
achieved at a very small time step and, hence, this scheme encounters an exponential
increase in computing costs. To overcome this drawback of the time-stepping technique,
the Laplace transform (LT) is used.

Some remarkable work has been published in the literature on the combination of LT
with different space-discretization methods to avoid time-instability problems. Examples of
this approach include the boundary particle method [43], Kansa’s method [44], the LRBFM
on unit sphere method [45], the FDM [46], the spectral method [47], and the FEM [48,49].
In this study, we propose LRBFMs coupled with LT for the approximation of the solution
of 1D linear ADEs. For the numerical inversion, we use two well-known methods: (i) the
contour integration method; and (ii) Stehfest’s method.

2. Implementation of the Method

In our numerical scheme, there are three main steps: (a) implementation of the Laplace
transform, (b) implementation of a local RBF method, and (c) numerical inversion of the
Laplace transform.

2.1. (a): Laplace Transform (LT)

The LT transforms the time-dependent advection diffusion equation from a time
domain to an inhomogeneous time-independent problem to an LT domain.

Let C(x, t), t > 0 be a piecewise continuous, and let Ĉ(x, s) be its LT, which is defined as

Ĉ(x, s) = L {C(x, t)} =
∫ ∞

0
e−stC(x, t)dt, (3)

where s denotes the LT parameter. The LT of dC(x,t)
dt is given as

L

{
dC(x, t)

dt

}
= sĈ(x, s)− C0 (4)

Employing the LT to (1) and (2), we get

sĈ(x, s)− C0 −LĈ(x, s) = ĥ(x, s), (5)

and
BĈ(x, s) = ĝ(x, s). (6)

Simplifying (5) and (6), we get

(sI −L)Ĉ(x, s) = Ĝ1(x, s), (7)

LBĈ(x, s) = ĝ(x, s), (8)
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where
Ĝ1(x, s) = C0 + ĥ(x, s),

where I is the identity operator, L is the linear differential operator and LB is the boundary
differential operator. To solve the system (7) and (8), first, we discretize the operators L
and LB using LRBFM, then the system (7) and (8) is solved for each s in the LT domain.
Finally, the solution of the problem can be obtained via inverse LT.

2.2. (b): Local RBF Method

Here, we propose a local RBF method for approximating the 1D ADEs in Laplace
space. This method provides a linear system that is sparse and well-conditioned. For the set
{Ĉ(xi) : i = 1, 2, 3, ..., N}, where {xi : i = 1, 2, 3, ..., N} ⊂ Ω, the local RBF approximation
of Ĉ(x) is of the form,

Ĉ(xi) = ∑
xj∈Ωi

αi
j ϕ(‖xi − xi

j‖), (9)

where αi = {αi
j}n

j=1, ϕ(r), r > 0 is the radial kernel. Ωi is the sub-domain which contains
the node xi and its neighboring n nodes around it. Thus, we get N number linear systems
of order n× n as

Ĉ(xi
1)

Ĉ(xi
2)

.

.

.
Ĉ(xi

n)


=



ϕ11 ϕ12 . . . ϕ1n
ϕ21 ϕ22 . . . ϕ2n

. . . .

. . . .

. . . .
ϕn1 ϕn2 . . . ϕnn





αi
1

αi
2
.
.
.

αi
n

, i = 1, 2, 3, ..., N, (10)

which can be written as,
Ĉi = Φiαi, i = 1, 2, 3, ..., N, (11)

the matrix Φi has entries di
kj = ϕ(‖xi

k − xi
j‖), where xi

k, xi
j ∈ Ωi; each of the above systems

is then solved for the αi = {αi
j}n

j=1. The index i denotes that the nodes belong to the local
domain Ωi of each node xi. In addition, for L we have,

LĈ(xi) = ∑
xj∈Ωi

αi
jLϕ(‖xi − xi

j‖), (12)

From Equation (12), we have
LĈ(xi) = νi · αi, (13)

where αi is a column vector of order n and νi is a row vector of order n having elements of
the form

νi = Lϕ(‖xi − xi
j‖), xi

j ∈ Ωi, (14)

From Equation (11), we have
αi = (Φi)−1Ĉi, (15)

From (13) and (15), we have
LĈ(xi) =νi(Φi)−1Ĉi

=ΘiĈi,
(16)

where,
Θi = νi(Φi)−1, (17)

thus, the operator L has an approximation via local radial basis functions at each node xi as

LĈ ≡ DĈ, (18)
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where D denotes the sparse matrix of order N which approximates the linear differential
operator L. A similar procedure can be applied to the boundary operator LB as

LBĈ ≡ BĈ, (19)

substituting Equations (18) and (19) in Equations (7) and (8), we get

(sI −D)Ĉ(x, s) = Ĝ1(x, s), (20)

BĈ(x, s) = ĝ(x, s), (21)

Solving the system (20) and (21) for each point s, we will obtain the approximate solution
Ĉ(x, s). Finally, we obtain the solution C(x, t) of the problem defined in Equations (1) and
(2) using the numerical inverse LT.

2.3. (c): Inverse Laplace Transform

This section is about numerical inverse LT methods. In this investigation, we use two
numerical inverse LT methods: (i) the contour integration method; and (ii) Stehfest’s method.

(i) Contour Integration Method

In the contour integration method, the solution C(x, t) is obtained via the inverse LT
given as

C(x, t) =
1

2πι

∫ ζ+ι∞

ζ−ι∞
estĈ(x, s)ds =

1
2πι

∫
Γ

estĈ(x, s)ds, t > 0, (22)

where Γ is an appropriately selected contour of integration in a complex plane. The solution
of the problem (1) and (2) mainly depends on Γ. For optimal solution of (22), an optimal
contour parabolic or hyperbolic may be utilized. Various contour integration methods are
developed for the approximation of the inverse Laplace transform. However, in this study,
we utilize two recently proposed contours in [47,48]. The parabolic contour is given as

s(υ) = η(1 + ιυ)2 (ΓP), (23)

where η is an unknown parameter. In [48], the authors proposed a contour given as

s(υ) = χ + ε− χ sin(ς− ιυ), for−∞ < υ < ∞, (Γh) (24)

where χ > 0, π
2 < α1 < π, 0 < ς < α1 − π

2 , ε ≥ 0.
Using Equations (23) and (24) in Equation (22), we have

C(x, t) =
1

2πι

∫ ∞

−∞
es(υ)tĈ(x, s(υ))s′(υ)dυ (25)

Equation (25) is solved via the trapezoidal rule, with step k as

CApp(x, t) =
1

2πi

Mp

∑
j=−Mp

kes(υj)tĈ(x, s(υj))ś(υj), υj = jk. (26)

2.4. Error Analysis
2.4.1. Parabolic Contour

Here, we discuss the error analysis of our scheme. We consider the integral

I =
∫ ∞

−∞
G(ϑ)dϑ,
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and its infinite and finite approximations

Ik = k
∞

∑
k=−∞

G(jk), Ik;Mp = k
Mp

∑
j=−Mp

G(jk).

The quantities ET = |Ik;Mp − Ik| and Ed = |I − Ik| are called the truncation and discretiza-
tion errors. The proof of the discretization error of the proposed numerical scheme is based
on the following theorem:

Theorem 1 ([47]). Let s = ξ + ιρ, where ξ, ρ ∈ R. Let G(s) be analytic in the strip−a1 < ρ < a2,
for some a1, a2 > 0, with G(s)→ 0, as |s| → ∞. Let for Q+, Q−, G(s) satisfies∫ ∞

−∞
|G(ξ + ιr)|dξ ≤ Q+, (27)

∫ ∞

−∞
|G(ξ − ιz)|dξ ≤ Q−, (28)

∀ 0 < r < a1, 0 < z < a2. Then

|Ik − I| ≤
Mp(+)

exp( 2πa1
k )− 1

+
Mp(−)

exp( 2πa2
k )− 1

.

Remark 1. In the literature, G is typically a real valued function, a1 = a2, Q+ = Q− = Q, say,
then we obtain an estimate given as

Ed = |Ik − I| ≤ 2Q
exp( 2πa1

k )− 1
.

For the best approximation of Ed in [47], the authors obtained the best parameters.
They obtained the optimal values of η and k by asymptotically equalizing the discretization
and the truncation errors. The optimal values of the parameters given by

k =
1

Mp(1 + 8ω)1/2 , $ =
πMp

4T(8ω + 1)1/2 , ω =
T
t0

,

thus, we have the following estimate

Γp(est) = |CApp(x, t)− C(x, t)| = O
(

e−
(

2πMp
1√

8ω+1

))
, (29)

For more details, readers are referred to [47]. In our numerical experiments, Mp is

defined as m =
2Mp

k , where k and m correspond to the quadrature step and the nodes,
respectively.

2.4.2. Hyperbolic Contour

For the contour Γh, the authors in [48] obtained the optimal parameters, with the error
estimate given as

Γh(est) = |CApp(x, t)− C(x, t)| = O
(
`(σr Mh)e−vMh

)
, (30)

where v = r̄
b (1− ϑ), r̄ = 2rπ, 0 < ϑ < 1, τ = t0/T, `(x) = max(log(1/x), 1), σr =

(τ sin(θ − r)) ϑr̄
U , where U satisfies cosh(U )(ϑτ sin(θ)) = 1, k = U/Mh, 0 < t0 ≤ t ≤ T,

and χ = ϑr̄Mh/(UT).
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2.4.3. (ii) Stehfest’s Method

In this section, we utilize Stehfest’s method for inverting the LT numerically. Stehfest’s
method was developed in the 1960s. It is one of the most popular methods for numerical
inversion of the LT. This method is fast and gives good results for smooth functions. The
solution C(x, t) can be approximated via Stehfest’s method as

CApp(x, t) =
ln2

t

Ms

∑
i=1

wiĈ(x, s), (31)

where wi are given by

wi = (−1)
Ms
2 +i

min(i, Ms
2 )

∑
h=b i+1

2 c

h
Ms
2 (2h!)

(Ms
2 − h)!h!(h− 1)!(i− h)!(2h− i)!

. (32)

Here, Ms, referred to as Stehfest’s number, should be even. Solving (20) and (21) for the
parameters s = ln2

t i, i = 1, 2, ..., Ms in the Laplace domain. Using (31), the original solution
can be obtained.

The Gaver–Stehfest algorithm has some attractive properties: (i) the approximations
of any function using this algorithm are linear in values of the transform; (ii) it requires the
values of the transform function for real s only; (iii) the computation of the coefficients is
very easy; and (iv) the approximations using this algorithm are exact for constant functions.
In the literature, use of this algorithm is reported by many authors [50,51], where it has
been demonstrated that the method converges very rapidly for non-oscillatory functions.

2.4.4. Error Analysis

In this section, we present an error analysis of our proposed numerical scheme. In step
(a), we use the LT which is analytic and in this step no error occurs. Errors in our method
occur in step (b) and (c). In step (b), we use the local RBs method, which has an error

estimate O(σ
1

εQd ), 0 < σ < 1, where Qd and ε denote the fill distance and the shape
parameter [52]. In step (c), Stehfest’s numerical inversion for the LT is used. An error
analysis of this method is described in [53,54], in which the authors report the effect of
parameters on the numerical efficiency and accuracy. They concluded that “If β significant
digits are required, suppose Ms = d2.2βe positive integer. Set the precision of the system at
υ = d1.1Me. Then given the transform Ĉ(x, s) and the argument t, calculate CApp(x, t) in
(31)”. On the basis of these conclusions, the following error estimation is obtained:

Remark 2 ([43]). If the error of the input data is 10−υ+1 ≤ ‖Ĉ−CApp‖
‖CApp‖

≤ 10−υ, with MS a

positive even integer via υ = d1.1Mse. Then the error is 10−β+1 ≤ ‖Ĉ−CApp‖
‖CApp‖

≤ 10−β, where

Ms = d1.1βe.

The key steps of the proposed numerical scheme are presented in the following
Algorithm 1:
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Algorithm 1: The necessary steps of the proposed numerical scheme
1: Input: The computational domain, the time derivative in [0, 1], the final time,

the initial shape parameter and the other parameter of the given model,
the inhomogeneous function, and initial boundary conditions.

2: Step 1: Reduce the problem defined in Equations (1) and (2) to an equivalent
time-independent problem defined in Equations (7) and (8) by employing the
Laplace transform.

3: Step 2: Discretize the linear differential operator L and boundary operator LB
using Equations (18) and (19).

4: Step 3: Solve the system of Equations (20) and (21) in parallel for each point s.
5: Step 4: Compute the approximate solution using (26) or (31).
6: Output: The approximate solution is CApp(x, t).

3. Stability

In this section, we discuss the stability of the system (20) and (21) by writing it in
discrete form as

GĈ = p, (33)

where G is obtained using the local radial basis functions method. The stability constant
for the discrete system (33) is defined as

σ = sup
Ĉ 6=0

‖Ĉ‖
‖GĈ‖

, (34)

where the value of the constant σ is finite for any discrete norm ‖.‖ defined on RN .
Equation (34) implies

‖G‖−1 ≤ ‖Ĉ‖
‖GĈ‖

≤ σ. (35)

For the pseudoinverse G† of G, we have

‖G†‖ = sup
v 6=0

‖G†v‖
‖v‖ . (36)

Therefore,

‖G†‖ ≥ sup
v=GĈ 6=0

‖G†GĈ‖
‖GĈ‖

= sup
Ĉ 6=0

‖Ĉ‖
‖GĈ‖

= σ. (37)

Equations (35) and (37) give the upper and lower bounds for σ. For the system (33), the
pseudoinverse may be difficult to calculate, but it ensures the stability. We can utilize the
command condest in MATLAB for estimating ‖G−1‖∞, thus

σ =
condest(G′)
‖G‖∞

(38)

4. Numerical Examples

To validate the proposed numerical methods, we consider three test problems. The MQ
RBFs defined by ϕ =

√
r2 + ϑ2 are used in this paper. For the optimal shape parameter, the

uncertainty principal due to [55] is utilized. We performed our experiments in MATLAB
R2018a on a Windows 10 (64 bit) PC equipped with an Intel(R) Core(TM) i5-3317U CPU @
1.70 GHz and with 4 GB of RAM. The performance of our method is tested using the L∞
error norm which is denoted and defined by

Errormax = ‖C(xi, t)− CApp(xi, t)‖∞,
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where CApp(x, t) and C(x, t) are the numerical and analytical solutions, respectively.

4.1. Problem 1

Here, we consider a 1D diffusion equation of the form

∂C(x, t)
∂t

− ∂2C(x, t)
∂x2 = exp(x)(2t− t2), t > 0, 0 < x < 1, (39)

with the initial and boundary data

C(x, 0) = 0,

and
C(0, t) = t2,

C(1, t) = exp(1)t2.

The analytical solution is
C(x, t) = exp(x)t2.

The results obtained along the parabolic contour are shown in Table 1, and along the
hyperbolic contour are shown in Table 2. Similarly, the results obtained using Stehfest’s
method are presented in Table 3. For the contours, we obtained the quadrature nodes
using the MATLAB command υ = −Mh : k : Mh. In our experiments, different parameter
values are used which are ς = 0.15410, χ = 2, c = 0.1, r = 0.13870, ϑ = 0.10, and t ∈ [0.5, 5].
Various nodes in the local and global domains are selected for the numerical experiments.
Figure 1a–d depicts the numerical and exact solutions of problem 1, computed using
the hyperbolic contour with parameter values Mh = 50, N = 30, n = 12. Figure 2a,b
displays the exact and numerical space-time solutions of problem 1, computed along
the hyperbolic contour with parameter values Mh = 50, N = 40, n = 12. Figure 3a
shows a comparison between the errors of problem 1 obtained using the three inversion
techniques. It is observed that the performance of the two contour integration methods
is better than for Stehfest’s method. Figure 3b shows the plot of error versus the nodes
Mp along the parabolic contour. Similarly Figure 4a shows the plot of error versus Mh
using the hyperbolic contour. A comparison between the observed and theoretical error is
shown in Figure 4b; a good agreement between the error and the error estimate is observed.
Figure 4c shows a plot of error versus Ms using Stehfest’s method. In Figure 5a, the plot
shows error versus t using the hyperbolic path. Figure 5b depicts a plot of error versus t
using Stehfest’s method. From all the figures and tables, a very high accuracy and stability
is evident. However, it is observed that the results along the hyperbolic path are more
accurate than that of the results along the parabolic path and using Stehfest’s method.
The results demonstrate that the method is capable of approximating the solution of this
type of equation efficiently.

Table 1. The Errormax using the proposed scheme along the path Γp, at t = 1.

Mp N n Errormax ϑ C. Time (s)

30 70 10 1.18 × 10−2 6.4 0.353447
40 2.55 × 10−4 6.4 0.416162
50 2.46 × 10−4 6.4 0.538895

60 20 8 3.60 × 10−5 1.4 0.271687
30 5.01 × 10−5 2.1 0.324185
40 6.04 × 10−5 2.9 0.386367
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Figure 1. Numerical and exact solutions of problem 1 at different time levels with Mh = 50, N = 30,
n = 12.
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Figure 2. (a) Numerical and (b) exact space-time solutions of problem 1 at t = 1 with Mh = 50,
N = 40, n = 12.
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Figure 3. (a) Comparison of absolute errors of problem 1 using the three inversion methods with
Mh = 80, Mp = 60, Ms = 18, n = 15, and N = 90. (b) Errormax versus Mp with Pe = 2, N = 90,
and n = 6.
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Figure 4. (a) Errormax versus Mh with n = 6, and N = 90. (b) The absolute error verses error estimate
for different values of Mh are shown, corresponding to Problem 1 with N = 90, n = 6. It is observed
that the error agrees with the error estimate. (c) Errormax versus Ms with n = 6, and N = 90,
corresponding to problem 1.
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Figure 5. (a) Errormax versus t with n = 6, N = 90 and Mh = 90. (b) Errormax versus t with n = 6,
N = 90 and Ms = 16, corresponding to problem 1.

Table 2. The Errormax using the proposed scheme along the path Γh at t = 1.

Mh N n Errormax ϑ C. Time (s)

30 20 10 5.49 × 10−4 1.7 0.202415
40 1.67 × 10−4 1.7 0.225109
50 1.45 × 10−4 1.7 0.308366
60 1.53 × 10−4 1.7 0.436627

70 30 12 7.50 × 10−5 3.0 0.843163
50 7.42 × 10−5 5.1 2.020373
80 9.54 × 10−5 8.3 4.864506

Table 3. The Errormax using the proposed scheme at t = 1.

Ms N n Errormax ϑ CPU (s)

8 70 10 6.22 × 10−2 6.4 0.346949
10 9.56 × 10−4 6.4 0.334023
12 7.99 × 10−4 6.4 0.281686
14 2.16 × 10−4 6.4 0.288764

16 50 12 1.61 × 10−4 5.1 0.225202
60 1.81 × 10−4 6.2 0.244202
70 5.04 × 10−4 7.3 0.336965
80 3.47 × 10−4 8.3 0.346112
90 6.01 × 10−4 9.4 0.418864

4.2. Problem 2

Here, a 1D equation of the form [10] is considered

∂C(x, t)
∂t

+ θ̄
∂C(x, t)

∂x
− ᾱ

∂2C(x, t)
∂x2 = 0, where 0 < x < 1, t > 0, (40)

with the initial and boundary data

C(x, 0) = āexp(−c̄x),

and
C(0, t) = āexp((b̄t)),

C(1, t) = āexp((b̄t− c̄)),
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the analytical solution of the problem is

C(x, t) = āexp((b̄t− c̄ξ)),

where

c̄ =
−β̄ +

√
β̄2 + 4ᾱb̄

2ᾱ
.

The ratio of the two constants θ̄ and ᾱ is denoted by Pe, called the Péclet number, i.e.,
Pe = | θ̄ᾱ |. For a large value of Pe, the convection term is dominant and, for a small value of
Pe, the diffusion term is dominant [10]. The results using the proposed numerical scheme
along the parabolic contour are shown in Table 4, and the results obtained using Stehfest’s
method are presented in Table 5. The same set of parameter values for the contours is
used in this problem. Figure 6a,b depicts the numerical solutions of problem 2 computed
using the parabolic contour at different time levels, with Pe = 10 and Pe = 20 and other
parameter values Mp = 70, N = 30, n = 10. Figure 7a shows a comparison between the
errors of problem 2 obtained using the three inversion techniques with various values of
Pe. It is observed that the performance of the two contour integration methods is better
than for Stehfest’s method. Figure 7b shows the plot of error versus the nodes Mp along
the parabolic contour. Figure 8a shows the plot of error versus Mh using the hyperbolic
contour. A comparison between the observed and theoretical error is shown in Figure 8b;
a good agreement between error and error estimate is observed. Figure 8c shows the plot
of error versus Ms using Stehfest’s method. In Figure 9a, the plot shows error versus t
using the hyperbolic path. Figure 9b shows a plot of error versus t using Stehfest’s method.
From all the figures and tables, a very high accuracy and stability is evident. However, it is
observed that the results along the hyperbolic path are more accurate than those for the
results along the parabolic path and using Stehfest’s method. The results demonstrate that
the method is capable of approximating the solution of this type of equation efficiently.
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Figure 6. Numerical solutions of problem 2 at different time levels with Mp = 70, N = 30, n = 10.
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Figure 7. (a) Comparison of absolute errors of problem 2 for various values of Pe, with Mh = 90,
Mp = 70, Ms = 18, n = 15, and N = 90. (b) Errormax versus Mp with Pe = 2, N = 90, and n = 6.
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Figure 8. (a) Errormax versus Mh with Pe = 2, n = 6, and N = 90. (b) Absolute error verses error
estimate for different values of Mh are shown, corresponding to Problem 2 with N = 100, n = 10,
Pe = 10. It is observed that the error agrees with the error estimate. (c) Errormax versus Ms with
Pe = 2, n = 6, and N = 90, corresponding to problem 2.
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Figure 9. (a) Errormax versus t with Pe = 10, n = 6, N = 90 and Mh = 90. (b) Errormax versus t with
Pe = 10, n = 6, N = 90 and Ms = 16, corresponding to problem 2.

Table 4. The Errormax using the proposed scheme along the path Γp at t = 1.

Mp N n Errormax ϑ C. Time (s)

40 90 10 1.12 × 10−4 8.3 0.450731
50 3.54 × 10−5 8.3 0.671841
60 3.53 × 10−5 8.3 1.206206
70 3.53 × 10−5 8.3 1.150397

80 60 10 7.61 × 10−5 5.5 0.839738
70 3.61 × 10−5 6.4 0.997628

100 1.07 × 10−5 9.2 1.612720

[56] 4.41 × 10−3

Table 5. The Errormax using the proposed scheme at t = 1.

Ms N n Errormax ϑ CPU (s)

8 70 10 1.10 × 10−3 6.4 0.317848
10 1.08 × 10−4 6.4 0.332286
12 3.25 × 10−5 6.4 0.323966
14 3.64 × 10−5 6.4 0.331252

16 50 12 1.53 × 10−4 5.1 0.268543
60 1.34 × 10−4 6.2 0.321235
70 8.73 × 10−5 7.3 0.365170
80 7.73 × 10−5 8.3 0.443169
90 4.96 × 10−5 9.4 0.533850
100 2.72 × 10−5 9.4 0.558243

[56] 4.41 × 10−3

4.3. Problem 3

Here, a 1D equation of the form [10] is considered

∂C(x, t)
∂t

+ θ̄
∂C(x, t)

∂x
− ᾱ

∂2C(x, t)
∂x2 = 0, 0 < x < 2, t > 0, (41)

with the initial and boundary data
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C(x, 0) = sin(x),

and
C(0, t) = exp(−ᾱt) sin(−θ̄t),

C(2, t) = exp(−ᾱt) sin(2− θ̄t),

the analytical solution is given as

C(x, t) = exp(−ᾱt) sin(x− θ̄t).

The results obtained for various values of Pe along the hyperbolic contour are shown
in Table 6. The results obtained for Pe using Stehfest’s numerical inversion method are
presented in Table 7. Here, we use the same set of parameters used for problem 1 and
problem 2. Figure 10a–f depict the numerical and exact solutions of problem 3, computed
using Stehfest’s method, with Ms = 16, N = 100, n = 12, and Pe = 2, at different time
levels. Figure 11a,b shows the exact and numerical space-time solutions of problem 3 using
Stehfest’s method at t = 1 with Ms = 16, N = 30, n = 12, and Pe = 2. Figure 12a shows a
comparison between the errors of problem 3 obtained using the three inversion techniques
with various values of Pe. It is observed that the performance of the two contour integration
methods is better than for Stehfest’s method. Figure 12b shows a plot of error versus the
nodes Mp along the parabolic contour. Figure 13a shows a plot of error versus Mh using
the hyperbolic contour. A comparison between the observed and theoretical error is shown
in Figure 13b; a good agreement between the error and the error estimate is observed.
Figure 13c shows the plot of error versus Ms using Stehfest’s method. In Figure 14a, the
plot shows error versus t using the hyperbolic path. Figure 14b depicts a plot of error
versus t using Stehfest’s method. From all the figures and tables, a very high accuracy and
stability is evident. However, it is observed that the results along the hyperbolic path are
more accurate than the results along the parabolic path and using Stehfest’s method.

Table 6. Errormax of the proposed method for problem 3 using Γh at t = 1 for various Péclet numbers.

Mh N n Pe = 100 Pe = 1000 Pe = 10,000 Pe = 20,000

30 40 8 9.83 × 10−2 9.83 × 10−2 9.83 × 10−2 9.83 × 10−2

40 2.20 × 10−3 2.20 × 10−3 2.20 × 10−3 2.20 × 10−3

50 5.70 × 10−3 5.70 × 10−3 5.70 × 10−3 5.70 × 10−3

60 4.37 × 10−4 4.37 × 10−4 4.37 × 10−4 4.38 × 10−4

70 2.96 × 10−4 2.96 × 10−4 2.96 × 10−4 2.96 × 10−4

90 1.79 × 10−5 1.76 × 10−5 1.79 × 10−5 1.80 × 10−5

100 1.25 × 10−5 1.24 × 10−5 1.29 × 10−5 1.29 × 10−5

90 20 10 1.67 × 10−4 1.95 × 10−4 2.02 × 10−4 2.02 × 10−4

30 2.59 × 10−5 4.09 × 10−5 5.12 × 10−5 5.20 × 10−5

40 4.38 × 10−5 4.62 × 10−5 5.16 × 10−5 5.20 × 10−5

50 5.93 × 10−5 6.40 × 10−5 6.41 × 10−5 6.40 × 10−5

[10] 2.87 × 10−7 2.68 × 10−4 7.40 × 10−4
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Figure 10. Numerical and exact solutions of problem 3 at different time levels with Ms = 16,
N = 100, n = 12, and Pe = 2.
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Figure 11. (a) Numerical and (b) exact space-time solutions of problem 3 at t = 1 with Ms = 16,
N = 30, n = 12, and Pe = 2.
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Figure 12. (a) Comparison of absolute errors of problem 3 for various values of Pe, with Mh = 90,
Mp = 70, Ms = 16, n = 15, and N = 100. (b) Error versus Mp with Pe = 2, N = 90, and n = 12.
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Figure 13. (a) Error versus Mh with Pe = 2, n = 12, and N = 90. (b) The absolute error verses
error estimate for different values of Mh are shown, corresponding to Problem 3 with N = 100,
n = 5, Pe = 10. It is observed that the error agrees with the error estimate. (c) Error versus Ms with
Pe = 2, n = 12, and N = 90, corresponding to problem 3.
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Figure 14. (a) Error versus t with Pe = 10, n = 5, N = 100 and Mh = 90. (b) Error versus t with
Pe = 10, n = 5, N = 100 and Ms = 18, corresponding to problem 3.

Table 7. Errormax using the proposed scheme at t = 1 and Pe = 100.

Ms N n Errormax ϑ CPU (s)

8 70 10 1.60 × 10−1 6.4 0.334523
10 6.29 × 10−2 6.4 0.426634
12 8.80 × 10−3 6.4 0.347591
14 2.40 × 10−3 6.4 0.479109

16 50 12 2.20 × 10−4 5.1 0.361524
60 2.61 × 10−4 6.2 0.322293
70 4.20 × 10−4 7.3 0.376275
80 3.90 × 10−4 8.3 0.447432
90 3.44 × 10−4 9.4 0.718522

100 4.98 × 10−4 9.4 0.672432

5. Conclusions

In this paper, a numerical method based on the Laplace transform and local radial
basis functions was developed for numerical simulation diffusion equations. The method
employed the Laplace transform and inverse Laplace transform methods to cope with the
time derivative. This method first uses the Laplace transform to convert the given problem
into an inhomogeneous problem in the Laplace domain. Then it utilizes the local radial basis
functions for discretization of the spatial derivatives. Finally, it uses the numerical inverse
Laplace transform methods to convert the solution obtained in the Laplace domain into a
time domain. The present method is almost exact in time, having no stability restrictions,
which is a common issue in finite-difference time-stepping methods. In these methods, for
optimal accuracy, we need a very small time step. The local radial basis functions makes
this method very interesting and easy to implement. An error analysis and the results of
computation demonstrate that the present method is an efficient and competitive method
for the solution of diffusion problems, with the benefits that it is a simple, mesh-less, easy
to implement and highly accurate numerical method.
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