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Abstract: In order to design an active deformation mirror for projection objective aberration imaging
quality control, a topology optimization design method of active deformation mirrors based on
discrete orthogonal Zernike polynomials is proposed in this paper. Firstly, in order to solve the
problem that continuous Zernike polynomials do not have orthogonality on the discrete coordinates
inside the unit circle, which causes the instability of topology optimization results, discrete orthogonal
Zernike polynomials are used to characterize the active deformation mirror wave aberrations. Then,
the optical and structural deformations are combined to establish an optical-mechanical coupling
topology optimization model with the help of the variable density method to derive the sensitivity
of the mathematical model. Finally, a wave aberration corrected deformation mirror in an optical
machine system is used as an arithmetic example for topology optimization, and the results show
that the absolute value of the Zernike coefficient Z4 after optimization is improved by nearly one
order of magnitude compared with the value before optimization, and the vibration characteristics of
the optimized structure meet the design requirements. The optimization effect is significant, which
improves the optical performance of the deformed mirror and provides a new scheme for the design
of the deformed mirror structure which has a certain practical value for engineering.

Keywords: topology optimization; Zernike polynomials; active deformation mirror; wave aberration;
extreme ultraviolet lithography

1. Introduction

Lithography is the core technology of very large-scale IC manufacturing. With the
development of integrated circuit transistors of 22 nm, 10 nm, 7 nm or even smaller sizes,
the traditional immersion lithography has gradually failed to meet the production require-
ments and the cost of other lithography technologies such as double lithography is rising
rapidly which makes the professionals in the industry once again expect extreme ultraviolet
lithography (EUVL) to support the continuation of Moore’s law in semiconductor manu-
facturing, and EUVL is recognized as the technology with the most potential to achieve
integrated circuit manufacturing technology to enter nodes below 1 nm [1,2].

The resolution of the projection objective lens, the core component of the EUVL mask
aligner, is increasing higher and higher, which constantly challenges the limits of the
existing technologies making it is urgent to develop new technologies. The resolution (RES)
of the projection objective is related to the working wavelength λ, numerical aperture NA,
and process factor k1, which is expressed as

RES = k1
λ

NA
(1)
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Equation (1) guides the development direction of lithographic projection objectives
of shorter working wavelengths, larger numerical apertures, and smaller process factors.
The development route of decreasing wavelengths and increasing numerical apertures has
brought great challenges to the design and manufacture of the projection objective, the core
component of a mask aligner [3].

Limited by the diffraction effect, the existence of wave image aberration can always
cause the redistribution of light from the center of the image to the diffraction ring. It
usually causes edge rounding, distortion, line length shortening, line width deviation of
sparse and dense lines, and line width differences between transparent and opaque masks
in spatial images, which seriously affects the resolution of the EUVL projection system.

In order to control the objective aberration and make the imaging quality approach the
diffraction limit, the active deformation mirror is used as the wavefront correction device
to compensate the wavefront aberration in the projection objective lens, which has become
a problem that must be solved by researchers of lithography objectives. Using structural
optimization design methods to design active deformation mirrors including size optimiza-
tion, shape optimization, and topology optimization, has become an important current
research topic [4]. Size optimization and shape optimization methods are easy to operate
and are widely used, however they can only change the size, shape, and morphology of the
active deformation mirror, and cannot optimize the topological configuration of the active
deformable mirror structure, so the optimization benefit is low. Topology optimization, by
designing the shape, number, and distribution position of the internal holes of the structure,
obtains the optimal topological configuration of the structure, while optimizing the shape of
the external boundary of the structure. Its biggest advantage is that under the premise that
the specific structure is unknown, according to the known boundary conditions and load
conditions, the optimal topology can be obtained after optimization, which also provides
designers with new design schemes and optimal material allocation schemes.

Topology optimization is one of the most advanced techniques because it has many
variables and can remove unnecessary units. Common methods include the homogeniza-
tion method, variable density method, evolutionary algorithm ESO, and level set method.
The homogenization method realizes the addition and deletion of microstructures through
the growth and decline of microstructure size, and finally obtains the macroscopic topo-
logical configuration. It is suitable for material configuration optimization design, but the
sensitivity of solving macroscopic equivalent elastic tensor and structural response function
is complicated [5–7]. The variable density method is inspired by the homogenization
method. It establishes the relationship between density and elastic modulus, takes the
material density as the topological optimization design variable, and obtains the optimal
distribution of structural materials through the presence or absence of materials. Compared
with the homogenization method, the variable density method can directly obtain the
relationship between the unit density and the elastic modulus without solving it again,
which greatly reduces the variables of optimization design, simplifies the optimization
solution process, and improves the calculation efficiency [8–12]. The evolutionary ESO
method realizes structural topology optimization by imitating the biological evolution
process and gradually deleting invalid or inefficient materials. The evolutionary ESO
method avoids using mathematical programming to solve large-scale design variables,
which greatly improves the efficiency of the optimization solution. Compared with the
variable density method, the ESO method lacks strict mathematical theory proof, and
its universality, robustness, and numerical stability are inferior to those of the variable
density method. Usually, reasonable parameters need to be set in order to obtain satisfac-
tory results [13,14]. The level set method solves the Hamilton–Jacobi partial differential
equation to obtain the level set function of the extended domain, and then obtains the
topological configuration of the structure. The advantages of the level set method are that
in the process of structural topology optimization, the topological changes of geometric
boundaries of materials can be handled naturally, the checkerboard effect can be overcome,
the configuration of topology optimization results is clear, there are no gray units, and



Symmetry 2022, 14, 2469 3 of 18

the finite element mesh and optimization solution are separated. However, each iteration
needs to solve the complex Hamilton–Jacobi differential equation by difference, which
leads to low-computational efficiency and complicated optimization [15–17].

Scholars at home and abroad have done substantial research on the application of the
topology optimization method in lightweight optical systems [18–22]. Li Chengliang et al. [15]
took the surface RMS value as the optimization objective and adopted the level set method
to carry out the topology design of the large-aperture mirror. Park et al. use Zernike
polynomials to describe the mirror surface shape and takes the mean square difference
between the actual and ideal deformation of the mirror surface as the objective function
to develop a topology optimization model for the main reflector support structure of a
multispectral camera system [23]. The topology optimization results of Park et al. vary with
the volume constraints and the topological configuration of the reflector support structure,
and the topology optimization result is an unstable problem. Preliminary analysis of the
problem is that it may be caused by the Zernike fitting equation constructed directly with
finite element discrete nodes, ignoring the fact that the Zernike polynomials do not have
the nature of orthogonality in the discrete coordinates inside the unit circle, resulting in a
serious pathology in the condition number of the equation coefficient matrix. Small changes
in optimization variables will lead to large changes in the Zernike polynomial fitting coeffi-
cient, which will lead to large changes in the optimal value of objective function. Finally, the
results of the topology optimization show that the topology optimization is unstable. Sahu
et al. used the Zernike polynomial coefficient as optimization constraints and HyperWorks
to realize topology optimization of a 1.2 m space mirror support structure [24]. Sahu et al.
consider the influence of structural design on optical aberration from the perspective of
constraint. There is a big error of constraint conditions in the optimization process, which is
still unable to meet the requirements of imaging quality for wave aberration. Koppen et al.
carried out research on the topology optimization method of two-dimensional mirror sup-
port structures [25]. In their study, the mean square deviation of actual deformation and
ideal deformation was taken as the objective function, and the relationship between the
optimization objective function and the surface shape error was expounded. However, the
topology optimization problem with wave aberration as the optimization objective was still
not solved in the objective function, and this method only optimizes the two-dimensional
plane model. In addition, these studies only used the topology optimization results as a
reference for the layout and lightweight design of stiffeners.

In order to design active deformation mirrors suitable for aberration imaging quality
control of projection objective, this paper proposes an active deformation mirror topology
optimization design method based on optical force coupling. Firstly, to address the problem
that the Zernike polynomials are not orthogonal in the discrete coordinates inside the unit
circle and the small changes of the optimization variables will lead to large changes of the
wave aberration and thus cause the topological optimization results to be unstable, the
discrete orthogonal Zernike polynomials are used to characterize the wave aberration of
the active deformation mirror. Then, the optical and structural deformation are combined,
and the optical and mechanical coupling topology optimization model is established using
the variable density method, and the sensitivity of the mathematical model is deduced.
Finally, the wave aberration correction deformable mirror in an opto-mechanical system
is taken as an example, and the optimal topology configuration of the deformable mirror
satisfying the convergence condition is obtained based on the variable density algorithm
under the weight constraint condition, which provides conceptual design and reference for
the opto-mechanical structure design.

2. Mathematical Model for Topology Optimization of Wave Aberration Structure

Optical wave aberration, which is commonly used to assess the quality and the shape
of the wave aberration, is rather complicated and in general it is difficult to use its simple
function accurately, in all kinds of approximate method by Zernike polynomials in the
circle domain orthogonal to each other, and the low-order model and the corresponding
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seidel aberration in optical design become important to describe the wave aberration of the
description method [26].

The relationship between the Zernike polynomial and the Seidel aberration is
as follows.

SeidelTilt.mag =
√

Z2
2 + Z2

3

SeidelTilt.angle = a tan( Z3
Z2
)

SeidelFocus.mag = 2Z4 − 6Z9

SeidelAsti.mag = 2
√

Z2
5 + Z2

6

SeidelAsti.angle =
1
2 a tan( Z6

Z5
)

SeidelComa.mag = 3
√

Z2
7 + Z2

8

SeidelComa.angle = a tan( Z8
Z7
)

SeidelSphe.mag = 6Z9

(2)

where, mag represents size, and tilt, focus, Asti, coma, and sphe respectively represent tilt,
defocus, primary astigmatism, primary coma, and primary spherical aberration in Seidel
aberration. Z2 and Z9 are Zernike polynomial coefficients.

The optical element in its support structure, under the action of load and the external
environment causes the deformation of the optical element. The optical element deforma-
tion control of the imaging quality is described by wave aberration. The deformation of the
structure topology optimization technology to structure topology optimization model was
set up, to describe wave aberration enable Zernike polynomial coefficients of the objective
function to establish the topology optimization model. By linking the image quality control
of optical system with structural topology optimization, a mathematical model of wave
aberration structure topology optimization is formed. The mathematical model based on
the finite element discrete form is as follows:

min f (U, ρ̃) = LT
1 Zcoe f f (U, ρ̃) (3)

s.t.KU = F (4)

Z f undZcoe f f = L2U (5)

Vmin ≤ V =

∫
Ω ρ̃edΩ

V∗
≤ Vmax (6)

0 ≤ ρ̃ ≤ 1 (7)

The specific form of Equation (5) is as follows:

Z f und1(r1, θ0)Zcoe f f 1 + Z f und2(r1, θ0)Zcoe f f 2 + · · ·+ Z f undN(r1, θ0)Zcoe f f N = U(r1, θ0)
Z f und1(ri, θj)Zcoe f f 1 + Z f und2(ri, θj)Zcoe f f 2 + · · ·+ Z f undN(ri, θj)Zcoe f f N = U(ri, θj)

· · ·
Z f und1(rI , θJ)Zcoe f f 1 + Z f und2(rI , θJ)Zcoe f f 2 + · · ·+ Z f undN(rI , θJ)Zcoe f f N = U(rI , θJ)

(8)

Z f und =


Z f und1(r1, θ0) Z f und2(r1, θ0) · · · Z f undN(r1, θ0)
Z f und1(ri, θj) Z f und2(ri, θj) · · · Z f undN(ri, θj)

· · · · · · · · ·
Z f und1(rI , θJ) Z f und2(rI , θJ) · · · Z f undN(rI , θJ)

 (9)

The Zernick polynomial Z(r, θ), which can be resolved as a function of the radial
coordinate r and the angular coordinate θ, is as follows.

Z f undk(r, θ) = Zm
n (r, θ) =

√
n + 1Rm

n (r)eimθ

Rm
n (r) =

(n−m)/2
∑

s=0

(−1)s(n−s)!
s!( n+m

2 −s)!( n−m
2 −s)!

rn−2s (10)
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where Z f und is the matrix of the Nth-order Zernike polynomial basis functions and Zcoe f f
is the vector of the Nth-order Zernike polynomial coefficients, which is obtained by
Equation (5) using the least-squares method. Equation (4) is the finite element equilib-
rium equation, K is the overall stiffness matrix of the finite element discrete equation, U is
the displacement solution vector of the finite element discrete equation, F is the equivalent
nodal load, and Equation (6) is the volume constraint. The vectors L1 and L2 are vectors or
matrices containing only 0 and 1 to extract the corresponding Zernike polynomial coeffi-
cients and displacements, ρ̃ are the optimal design variables and r, θ are polar coordinates.

The interpolation model is based on the improved SIMP method, which has the advan-
tages of simple modelling, convenient solution, high-computational efficiency, universality,
and portability. The interpolation model is as follows:

E = Emin + ρ̃P
e (E0 − Emin) (11)

where E is the macroscopic modulus of elasticity of the material; Emin is a very small
positive value used to ensure the nonsingularity of the overall stiffness matrix; E0 is the
modulus of elasticity of the solid material; p is the penalty factor; and ρ̃e is the relative
physical density of element e. ρ̃e = 1 indicates a solid cell and ρ̃e = 0 indicates that the
cell has no material distribution. Here ρ̃e is expressed as a function of the nodal design
variable ρ̃e.

The Lagrange multiplier method is used to process the constrained optimization
model. The Lagrangian function is as follows:

L(U, ρ̃) = LT
1 Zcoe f f + λT

1 (KU − F) + λT
2 (Z f undZcoe f f − L2U) (12)

The derivatives of the Lagrangian function concerning the optimized design variables
are found as follows:

∂L
∂ρ̃ = LT

1
∂Zcoe f f

∂U
∂U
∂ρ̃ + λT

1
∂K
∂ρ̃ U + λT

1 K ∂U
∂ρ̃ + λT

2 Z f und
∂Zcoe f f

∂U
∂U
∂ρ̃ − λT

2 L2
∂U
∂ρ̃

= λT
1

∂K
∂ρ̃ U + (LT

1 + λT
2 Z f und)

∂Zcoe f f
∂U

∂U
∂ρ̃ + (λT

1 K− λT
2 L2)

∂Û
∂ρ̃

(13)

Here the adjoint equation is introduced as

LT
1 + λT

2 Z f und = 0 (14)

λT
1 K− λT

2 L2 = 0 (15)

The derivative of the Lagrangian function with respect to the optimized design vari-
ables is simplified as

∂L
∂ρ̃

= λT
1

∂K
∂ρ̃

U (16)

In the numerical implementation of the SIMP method, there are two kinds of numerical
instability problems: chessboard format and grid dependence. The method of filtering
sensitivity and density can effectively avoid numerical instability [27]. In this paper, the
weighted filtering method is adopted to filter sensitivity and density. The expression of
sensitivity filtering is as follows:

∂̂ f
∂ρj

=
1

max(γ, ρj) ∑
i∈Nj

Hji
∑

i∈Nj

Hjiρi
∂ f
∂ρi

(17)

where f represents the objective function or constraint function, ρi and ρj are the densities
of node i and node j, respectively, γ is a small positive value (generally desirable γ = 10−3)



Symmetry 2022, 14, 2469 6 of 18

to avoid zero values in the denominator, Nj is the set of all neighboring nodes within a
radius rmin with node j as the origin, Hji is the weighting factor, and the expression is:

Hji = max(0, rmin − ‖xj − xi‖) (18)

where Xj and Xi are the positions of node j and node i, respectively. The expression of
density filtering is as follows:

ρ̃j =
1

∑
i∈Ni

Hji
∑

i∈Nj

Hjiρi (19)

The unit density ρi before filtering is called the design variable, and the unit density ρ̃j
after filtering is called the physical density.

It should be noted that when density filtering is used, the objective function and con-
straint function values in the optimization model are calculated using the physical density,
i.e., the filtered density is calculated. When density filtering is applied, the derivatives
of the objective function and constraint function concerning the design variables can be
obtained by the chain rule.

∂ f
∂ρj

= ∑
e∈Nj

∂ f
∂ρ̃i

∂ρ̃i
∂ρj

= ∑
e∈Nj

1
∑

i∈Ne

Hei
Hje

∂ f
∂ρ̃i

(20)

One of the most important aspects in solving the accompanying Equations (14) and (15)
is the calculation of the included Zernike coefficients based on the collected surface shape
or wavefront data, called Zernike fitting. The circular Zernike polynomial is orthogonal on
the unit circle and the coefficients can be solved directly from Equation (21) to obtain the
results as follows:

1
π

1∫
0

2π∫
0

Z f undi(r, θ)Z f undj(r, θ)rdθdr = δij (21)

δij is Kronecker compliance. The coefficient can be solved directly from Equation (22)
as follows:

Zcoe f f =
1
π

1∫
0

2π∫
0

w(r, θ)Z f undi(r, θ)rdθdr (22)

where w(r, θ) =
N
∑

i=1
Zcoe f f iZ f undi(r, θ).

It is ensured that the coefficients do not interfere with each other during the calculation
process to ensure the accuracy of the calculation results. However, the actual situation is
that the surface shape or wavefront information is not a continuous function but discrete
data. The surface shape value corresponds to the sampling point (rk, θk) is w(rk, θk). The
surface data are expressed as

w(r, θ) =
N

∑
i=1

Zcoe f f iZ f undi(r, θ) + ∆w(rk, θk) (23)

Supposing the number of sampling points is M. Equation (22) is transformed by
wk ≡ w(rk, θk) as follows:

Zcoe f f j =
1
M

M

∑
k=1

wkZ f undjk (24)
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If the Zernike polynomial maintains orthogonality when the data are discretized, the
orthogonality condition in the discrete case becomes as follows:

1
M

M

∑
k=1

Z f undikZ f undjk = δij (25)

However, the case of limited data sampling points can occur as follows:

1
M

M

∑
k=1

Z f undikZ f undjk 6=
1
π

1∫
0

2π∫
0

Z f undi(r, θ)Z f undj(r, θ)rdθdr = δij (26)

Zernike polynomial after discretization loses orthogonality. Therefore, there is al-
ways a theoretical error when calculating the coefficients of the Zernike polynomial using
Equation (26). To solve the above problem, the method of Nth order Legendre polynomi-
als [28] is used in this paper to construct the discrete orthogonal Zernike polynomials.

The equation for a polar coordinate r(ηk) is as follows:

rk =

√
1 + ηk

2
∈ (0, 1), k = 1, 2, . . . , N (27)

where ηk satisfies Equation (28) as follows:

PN(ηk) = 0, ηk ∈ (−1, 1), k ∈ 1, 2, . . . , N (28)

PN is a Legendre polynomial of order N. The order N is chosen to be the same as the
order of the Zernike polynomial, and Equation (28) shows that ηk is the root of the equation
formed by the Legendre polynomial of order N.

The equation for the polar coordinates θ is as follows:

θj =
2π j

2N − 1
, j = 0, 1, . . . , 2N − 2 (29)

The coordinates of the discrete points are constructed as follows:

X =
{

xjk = (rk, θj), k = 1, 2, . . . , N, j = 0, 1, . . . , 2N − 2
}

(30)

n+|m|
2 + n′−|m′ |

2 ≤ 2N − 1
n−|m|

2 + n′+|m′ |
2 ≤ 2N − 1

n, n′ ∈ N m, m′ ∈ Z
(31)

When Equation (31) is satisfied, the discrete points have the following properties.

N
∑

k=1

2N−2
∑

j=0
Zm

n (rk, θj)Zm′
n′ (rk, θj)

Ak
2(2N−1)

= 1
π

2π∫
0

1∫
0

Zm
n (r, θ)Zm′

n′ (rk, θj)ρdρdθ = δnn′δmm′

Ak =
∫ 1
−1 lk(x)dx

lk(x) =
N
∏

j = 1
j 6= k

x−λj
λk−λi

(32)

where Ak is the product factor and lk(x) is the Lagrangian interpolation basis function,
λk = ηk.
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Additionally, by numerical arithmetic example (the surface of a circular optical element
with a radius of R, using a 36-term Fringe Zernike polynomial, N = 6), it can be concluded
that the errors of the Zernike polynomial coefficients Zcoeffi are of the order of 10–13. By
constructing discrete orthogonal Zernike polynomials, the problem of small changes in
sampling points leading to large changes in the free-form surface is solved because the
Zernike polynomials are not orthogonal in the discrete coordinates inside the unit circle; at
the same time, the sampling points required for the surface model are separated from the
finite element nodes, which overcomes the problem that the higher the accuracy required
for calculating the wave aberration of high-precision optical systems by the finite element
method, the more sampling points required and the larger the computational effort.

Equation (2) is approximated as convex programming by MMA, and its specific
principle is shown as follows.

f n
j (x) = rn

j +
I

∑
i=1

(
pn

ji

An
i − xi

+
qn

ij

xi − Bn
i
) (33)

pn
ji =

{
(An

i − xi)
2 ∂ fi(xn)

∂xi
, ∂ fi(xn)

∂xi
> 0

0 , ∂ fi(xn)
∂xi

≤ 0
(34)

qn
ji =

{
−(xn

i − Bn
i )

2 ∂ fi(xn)
∂xi

, ∂ fi(xn)
∂xi

< 0

0 , ∂ fi(xn)
∂xi

≥ 0
(35)

rn
j = f j(xn)−

I

∑
i=1

(
pn

ji

Un
i − xn

i
+

qn
ij

xn
i − Ln

i
) (36)

where, B and A are left and right moving asymptotes respectively, p and q are parameters
determined by the corresponding B and A, and r is the undetermined parameter. f n

j is
the approximate function of the objective function. By iterating the subproblems of the
approximate function, the optimal solution in the tolerance range can be obtained, and this
iterative convergence is very fast under reasonable settings.

The flow chart of the optimization model execution procedure is shown in Figure 1.
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3. Numerical Examples and Simulation Analysis

The process factor k1 is the comprehensive influence of illumination, mask, objective,
photoresist, exposure method, alignment, and other processes of the lithography system
on the resolution [3]. When only the influence of the objective lens on the process factor is
considered, it is reflected in the aberration control of the optical lens. With the stringent
aberration control requirements, the lithographic projection objective puts limits on static
parameters such as lens material uniformity and processing and mounting accuracy. It
is also necessary to consider the temporal change characteristics such as air pressure,
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vibration, and temperature state during the operation of the lithography machine, among
which the impact of the thermal effect on the optical path is the most difficult to control.

In the multiexposure technology of the lithography machine, multipole and user-
defined lighting modes are adopted. Due to the temperature change in the working
environment and the thermal absorption of components caused by multimode light source
irradiation, the lens is deformed and the refractive index changes, resulting in the thermal
aberration of the projection objective lens changing at any time and many types of modes.
Eliminating thermal aberration has become a difficult problem in the development of
advanced lithography machines that must be solved.

The size and form of wave aberration caused by different illumination modes are
different. A commonly used research method is to decompose the wave aberration of
the system into different aberration modes. Under two-pole illumination, the wavefront
aberration of the central field of view of the lithography objective is decomposed by Zernike
polynomial to obtain the mode of wavefront aberration. In addition to the defocus term,
clover aberration and astigmatism are the main components [29].

For simplicity, this paper only takes the astigmatism correction active deformation
mirror as an example to study the optimization theoretical method, but the whole method
can be extended to the support structure design of any mode wave aberration active
deformation mirror. The software platforms used in this manuscript are Matlab, Comsol,
and ZYGO interferometer. The initial model and size of the active deformation mirror
studied in this paper are shown in Figure 2.
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The whole model is divided into two parts: the deformation mirror and its supporting
structure. The deformation mirror is a bent moon concave lens, and its structure and
main dimensions are shown in Figure 2. To realize astigmatism correction, the supporting
structure is composed of an inner ring elastic support structure, an outer ring fixed support
structure, and eight flexible plates. The deformation mirror is supported by the inner ring
elastic support structure, eight flexible plates connecting the inner ring elastic support
structure and the outer ring fixed structure, evenly distributed along the circumference,
respectively located in θ = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, without loss of
generality. To correct astigmatism Z4 as an example, the actuators are placed in θ = 0, π,
applying the vertical paper to face the outside force, actuators are placed in θ = π/2, 3π/2,
applying the force in the vertical paper, as shown in Figure 2.

Using the discrete points listed in Equation (30) to build a geometric model, the
Zernike polynomial surface shape can be calculated more accurately by taking 66 points on
the surface of the circular optical element for a 36-term Fringe Zernike polynomial with N
taken as six.

The load and boundary conditions of the model are shown in Figure 2. In the figure,
the red area is the optimization design area. The inward force perpendicular to the paper
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surface is applied at boundaries one and two with the size of 117N. The outward force
perpendicular to the paper surface is applied at boundaries three and four, with the size
of 117N. Boundary five is fixed, and the mirror is used through gravity. The material
used in the model is: the mirror body is fused quartz and the flexible support structure in
contact with the mirror body is brass. The material properties of the structure are shown in
Table 1. The objective function is the maximum absolute value of Z4 in the fourth term of
the Zernike coefficient. Through the analysis of the initial structure, it can be obtained that
Z4 is negative, and the objective function can be the minimum value of -Z4, corresponding
to Seidel astigmatic aberration.

Table 1. Performance parameters of mirror body and supporting structure materials.

Material Density
(E-6 kg/mm3)

Elastic Modulus
(kg f/mm2) Poisson’s Ratio

Fused silica 2.2 7459 0.167
Brass 8.43 20,000 0.277

In order to meet the symmetry requirements of the optimized structure during op-
timization, the symmetry constraint is applied to make the structure symmetrical along
the circumferential direction quarter to quarter. Tetrahedral mesh was adopted with the
number of 421,663, and the optimized mesh model is shown in Figure 3.

Since the optimized area is the flexible plate connecting the inner ring elastic support
structure and the outer ring fixed structure, to ensure the convergence of the finite element
analysis, Vmax = 0.7 and Vmin are taken as 0.6, 0.5, 0.4, 0.38, 0.34, and 0.3, and p = 0.3.

Because the optimization model adopts the quarter circumference symmetry model
and the optimization results are symmetric, only the quarter circumference symmetry
topology optimization results are given here. At the same time, in order to observe the
topology optimization results from a better perspective, the fixed structure of the outer
ring, the elastic support structure of the inner ring, and the deformable mirror on it are not
drawn. The changed results of the topological configuration with volume constraints are
shown in the figure. Red indicates the solid structure and blue indicates the materials to
be removed.

In this paper, the wave front difference coefficient is taken as the objective function of
the topology optimization model, and the constraint conditions are the finite element equa-
tion of force balance and volume constraint. The qualitative analysis of the optimization
model can be concluded as follows: the smaller the volume constraint value, the smaller
the structural stiffness and the smaller the objective function value. However, when the
volume constraint is less than 0.1, the continuous structure cannot be obtained. When the
volume constraint is greater than 0.5, the continuity structure can be obtained, but the
objective function value is large. The volume constraint is between 0.1 and 0.5, and the
optimization effect is obvious and general. Therefore, the result of Vmin = 0.4 is randomly
used to show the optimization process and optimization structure.

When Vmin = 0.4, the iterative process is shown in Figure 4.
The iterative process shows that the initial value of the objective function is−3.85× 10−4,

the value of the objective function at the end of optimization is −1.15× 10−3, and the
absolute value of Z4 is improved by nearly one order of magnitude, so the optimization
effect is obvious.
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From the topology optimization results, it can be seen that when Vmin = 0.6, the inner
ring elastic support structure and the outer ring rigid fixed structure are connected by a
wedge-shaped flexible hinge at position θ = π/4, θ = 3π/4, θ = 5π/4, θ = 7π/4. When
Vmin = 0.5, the elastic support structure of the inner ring and the rigid fixed structure
of the outer ring are at θ = π/4, θ = 3π/4, θ = 5π/4, θ = 7π/4, and the wedge
angle of the wedge-shaped flexible hinge becomes sharp. When Vmin = 0.4, the inner
ring elastic support structure and outer ring rigid fixed structure in θ = π/4, θ = 3π/4,
θ = 5π/4, θ = 7π/4, and the wedge angle becomes zero and the wedge-shaped flexible
hinge becomes a rectangular notch flexible hinge. When Vmin = 0.38, the rectangular
notch flexible hinge becomes a complex flexible hinge. When Vmin = 0.34, the depth of
the inner flexible hinge in the complex flexible hinge becomes deeper. When Vmin = 0.3,
the inner flexible hinge in the complex flexible hinge is almost disconnected and a new
topology configuration appears. When Vmin is less than 0.3, the inner flexible hinge in
the complex flexible hinge breaks and the complex flexible hinge becomes a false flexible
hinge, which cannot be realized in reality. When Vmin is less than 0.2, the finite element
analysis results do not converge. The overall analysis shows that When Vmin is 0.6 to 03, the
flexible hinge changes from a wedge-shaped flexible hinge to a rectangular notch flexible
hinge and then to a complex flexible hinge, and the deformation capacity of the structure
increases as the minimum volume constraint decreases. The range of corrected astigmatic
wave aberration increases with the decrease of minimum volume constraint, but the main
topology optimization configuration does not change significantly with the decrease of
minimum volume constraint, and no new discontinuities appear. When Vmin is 0.3 to
0.2, the inner flexible hinge in the complex flexible hinge breaks and a new topological
configuration appears, and the complex flexible hinge becomes a false flexible hinge, which
cannot be realized in reality. The objective function decreases with the decrease of the
minimum volume constraint, that is, Z4 increases with the decrease of the minimum
volume constraint. The larger the range of corrected astigmatic aberration, the better the
optimization effect. Since the thickness h of the deformed mirror is 2R < 0.1 compared to the
size of the deformed mirror, the deformation w of the thin plate is also very small compared
to the thickness h. To verify the reasonableness of the topology optimization results, the
design results were analyzed using the theory of thin plate bending with small deflection.
Without loss of generality, a schematic diagram of the forces on the flat deformed mirror
microelement in polar coordinates was established, as shown in Figure 5.
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The equilibrium diagram of the forces acting on the flat plate in polar coordinates is
shown in Figure 5, where the sheer force Qr, the bending moment Mr, and the torque Mrt
at the mirror edge belong to the external forces, the bending moment Mt, and the sheer
force Qt. They need to satisfy the equilibrium equations in three spatial directions, and the
actual independent forces are only two, and two of the three are independent elements.
According to the theory of bending of thin plate with small deflection, the external and
internal forces of the deformation mirror of the plate can be solved to satisfy the following
relationship.

Mr = −D
[

∂2w
∂r2 + v

(
1
r

∂w
∂r + 1

r2
∂2w
∂θ2

)]
Mt = −D

[
1
r

∂w
∂r + 1

r2
∂2w
∂θ2 + v ∂2w

∂r2

]
Mrt = −D(1− v)

(
1
r

∂2w
∂r∂θ −

1
r2

∂w
∂θ

)
Qr = −D ∂

∂r (∇
2w)

Qt = −D ∂
r∂θ (∇

2w)

(37)

where D = Eh3

12(1−v2)
, w(r, θ) = Z5(

r
R )

2 cos(2θ), the equation can be obtained as follows:

Mr = − Eh3

6(1−v)Z5
1

R2 cos(2θ)

Mt =
Eh3

6(1+v)Z5
1

R2 cos(2θ)

Mrt =
Eh3

6(1+v)Z5
1

R2 sin(2θ)

Qr = 0
Qt = 0

(38)

Equation (38) demonstrates that in position θ = 0, π, the bending moment Mr obtains
a great value, the direction makes the deformation vertical paper face outward. At position
θ = π/2, 3π/2, the bending moment Mr obtains a minimum value in a direction such
that the deformation is perpendicular to the paper facing inward. In position θ = π/4,
θ = 3π/4, θ = 5π/4, θ = 7π/4, the deformation W(r,θ) = 0, and Mr = 0. This position
corresponds to the position where the deformation is zero, which is the support position.
The topology optimization results are consistent with these positions and with the topology
configuration designed by Hugot et al. [30] using elastic beam theory.

Considering comprehensively that the astigmatism correction ability of deformation
mirror increases with the decrease of minimum volume constraint and the characteristic
frequency of flexible hinge decreases with the decrease of minimum volume constraint,
we used the topology optimization result of Vmin = 0.4 as the reference for the final topol-
ogy optimization configuration, the main topology configuration was extracted and the
structure was designed from scratch, and the results are shown in Figure 6.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 6. Optimized structural design. 

The finite element model of the structure designed in Figure 6 was established and 
divided into tetrahedral mesh with 136,709 meshes and compared with the structure be-
fore optimization shown in Figure 2, with the comparison results shown in Table 2 

Table 2. The comparison results of the structural analysis before and after optimization. 

Structure Z4(λ = 632.8 nm) Axial Mode Natural 
Frequency (Hz) 

Z4 Vibration Shape Nat-
ural Frequency (Hz) 

Structure before optimi-
zation 

−1.8 × 10  891.906529 997.668618 

Optimized structure −1.3 × 10  590.523771 656.090888 

Then, we used the n-step rotating average method to detect the research object with 
high precision. Zygo GPI XP/DTM vertical interferometer was used in the surface shape 
detection experiment, where the working wavelength of the interferometer was 632.8 nm 
and the resolution of CCD is 1K × 1K. During the experiment, the components were as-
sembled precisely, the temperature control condition was better than 0.01 °C, the vibration 
condition was better than the VC-E standard, the repeatability of RMS measurement was 
better than 0.1nm. During the inspection, the mirror surface shape supported by the struc-
ture before and after optimization was detected. The results shown in Figure 7 are the 
measurements after removing the surface shape errors such as defocus, tilt, coma, and 
spherical aberration. 

  
(a)  (b) 

Figure 7. The test results of mirror surface. (a) The mirror surface shape supported by the struc-
ture before optimization; (b) The mirror surface shape supported by the structure after optimiza-
tion. 

Figure 6. Optimized structural design.

The finite element model of the structure designed in Figure 6 was established and
divided into tetrahedral mesh with 136,709 meshes and compared with the structure before
optimization shown in Figure 2, with the comparison results shown in Table 2
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Table 2. The comparison results of the structural analysis before and after optimization.

Structure Z4 (λ = 632.8 nm) Axial Mode Natural
Frequency (Hz)

Z4 Vibration Shape
Natural Frequency (Hz)

Structure before
optimization −1.8× 10−4 891.906529 997.668618

Optimized structure −1.3× 10−3 590.523771 656.090888

Then, we used the n-step rotating average method to detect the research object with
high precision. Zygo GPI XP/DTM vertical interferometer was used in the surface shape
detection experiment, where the working wavelength of the interferometer was 632.8 nm
and the resolution of CCD is 1K × 1K. During the experiment, the components were
assembled precisely, the temperature control condition was better than 0.01 ◦C, the vibration
condition was better than the VC-E standard, the repeatability of RMS measurement was
better than 0.1 nm. During the inspection, the mirror surface shape supported by the
structure before and after optimization was detected. The results shown in Figure 7 are
the measurements after removing the surface shape errors such as defocus, tilt, coma, and
spherical aberration.
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From Tables 2 and 3 and Figure 7, it can be concluded that the absolute value of Z4 of
the structure designed based on the topology optimization results was improved by nearly
one order of magnitude compared with the absolute value of Z4 of the structure before
optimization, At the same time, the vibration characteristics of the optimized structure
meet the design requirements, which verifies the effectiveness of the optimization model,
and the vibration characteristics of the optimized structure meet the design requirements,
the optimization effect is remarkable.

Table 3. The test results of optimization target Z4.

The Test Results of
Optimization Target Z4

after Optimization

The Test Results of
Optimization Target Z4

before Optimization

Z4 (λ = 632.8 nm) 0.001 0.008



Symmetry 2022, 14, 2469 16 of 18

4. Conclusions

Firstly, according to the demand for a high-precision wavefront compensation to
realize the whole field of view aberration compensation process using an active free-form
surface, the objective function and design constraints of the optimization model were con-
structed based on the Zernike coefficient. On this basis, the wavefront aberration topology
optimization model with tens of thousands of design variables was established using the
topology optimization method of the variable density method. The sensitivity of Zernike co-
efficients to topology-optimized design variables is derived using the concomitant variables
method, which overcomes the computationally intensive problem of solving the sensitivity
in the topology optimization process. To address the problem that Zernike polynomials do
not have orthogonality in discrete coordinates inside the unit circle, and small changes in
sampling points lead to large changes in the solution of the free-form surface and the ac-
companying equations, discrete orthogonal Zernike polynomials were used to characterize
the free-form surface of the actively deforming mirror, which ensured the computational
accuracy and simplified the computational process by realizing the characterization of the
free-form surface of the actively deforming mirror with small samples.

Then taking a light wave aberration correction of the deformable mirror machine
system as an example, under the theoretical framework of the finite element numerical
discrete, we adopted a finite element basis function unit and a numerical integral program
implementation solution of structure deformation and Zernike coefficients in weight con-
straint conditions, based on a mobile asymptote algorithm, the optimization model into
the solution. The optimal topology configuration of the deformation mirror satisfying the
convergence condition is obtained. Using thin plate bending theory with small deflection,
the rationality of topology optimization results was analyzed from the perspective of theo-
retical analysis. At the same time, the topology optimization results are consistent with the
topology configuration designed by Hugot et al. using elastic beam theory, which verifies
the effectiveness of the algorithm.

Finally, the topology optimization results at Vmin = 0.4 were used as a topology ref-
erence to optimize the final configuration, extract the main topology configuration, and
analyzed the optimization effect and characteristic frequency using the finite element
analysis, and the mirror surface shape supported by the structure before and after opti-
mization was detected. The following results were obtained from the simulation results
and experimental results. The absolute value of the objective function Z4 was improved
by nearly one order of magnitude compared with the absolute value of the structure Z4
before optimization, while the vibration characteristics of the optimized structure met the
design requirements and the optimization effect was remarkable. The optical performance
of the deformed mirror was improved, which provided a new scheme for the design of the
deformed mirror structure and had a certain engineering practical value.

The algorithm in this paper can optimize the general free-form surface structure
topology optimization model with Zernike coefficients constrained by linear combination
and has a certain generality. Meanwhile, the Zernike coefficient of the wavefront in image
space can be considered as a target to optimize the support structure of the optical system,
so as to realize the topology optimization at the system level.
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