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Abstract: We investigate the shadows cast by a sort of new regular black hole which are characterized
by an asymptotic Minkowski core and sub-Planckian curvature. First, we extend the metric with
spherical symmetry to the one of rotating Kerr-like black holes and derive the null geodesics with
a circular orbit near the horizon of the black hole. Then, we plot the shadows of black holes with
different values for the deviation parameter. It is found that the size of the shadow shrinks with
the increase in the deviation parameter, while the shape of the shadow becomes more deformed. In
particular, by comparing with the shadow a Bardeen black hole and Hayward black hole with the
same parameter values, we find that, in general, the shadows of black holes with Minkowski cores
have larger deformations than those with de Sitter cores, which potentially provides a strategy to
distinguish these two sorts of regular black holes with different cores by astronomical observation
in the future.

Keywords: regular black hole; black hole shadow; shadow cast

1. Introduction

The release of the first photo of black hole shadows by the Event Horizon Telescope
(ETH) cooperation team announced the coming of a new age for measuring the nature
of astrophysical black holes [1,2]. Just recently, the ETH collaboration released a photo
of the supermassive black hole Sgr A*, which provides overwhelming evidence for the
existence of a black hole at the center of the Milky Way [3,4]. Now, it is fair to say that
more and more astronomical evidence has been making it possible for people to justify
various theoretical thoughts on black holes through the experimental observation of black
hole shadows. As a matter of fact, the shadows of different black holes were previously
explored theoretically in [5–11], and a recent review on this topic can be found in [12].
For instance, the shadow of a Schwarzschild black hole was first studied by Synge in [5]
and Luminet in [6]. Unsurprisingly, they found that its shadow was a perfect circle. A little
bit later, the shadow of the Kerr black hole was studied in [7,8]. Its shadow is no longer
circular but has a deformation in the direction of rotation, which provides an abundant
structure for the shadow of black holes, and in principle, one may obtain the nature of
rotating black holes by observing its shadow, such as the mass, spin and charge of black
holes [13–17]. By virtue of black hole shadows, some fundamental problems on the nature
of gravity have also been explored, such as modified gravity, the candidates for dark matter
and the quantum effect of gravity, among others [18–29].

Recently, investigation of the shadows has been extended to regular black holes as
well, including rotating Bardeen and Hayward black holes [30–33]. In history, regular black
holes are proposed to resolve the singularity problem in classical general relativity. Taking

Symmetry 2022, 14, 2415. https://doi.org/10.3390/sym14112415 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14112415
https://doi.org/10.3390/sym14112415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7392-8641
https://orcid.org/0000-0002-0386-6307
https://doi.org/10.3390/sym14112415
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112415?type=check_update&version=1


Symmetry 2022, 14, 2415 2 of 15

the quantum effects of gravity into account, it is believed that these singularities could be
removed or avoided. Before a well-defined theory of quantum gravity could be established,
people constructed various regular black holes without singularity at the phenomenological
level [34–40]. These regular black hole models are characterized by a finite Kretschmann
scalar curvature. Currently, as far as we know, there exist various ways to classify regular
black holes either by their symmetry [41,42] or by their asymptotic behavior near the center
of the black hole. In this paper, we classify regular black holes into two classes according to
the latter. One is the regular black holes with asymptotic de Sitter cores, such as Bardeen
black holes, Hayward black holes as well as Frolov black holes. The other one is regular
black holes with asymptotic Minkowski cores, which are characterized by an exponentially
suppressing Newton potential.

Our current work is motivated to answer the following question: How does one
diagnose a detected black hole to be an ordinary black hole with singularity rather than
a regular black hole without singularity? Without a doubt, this is a very crucial issue in
the nature of detecting black holes and has a significant impact on the theory of gravity.
Unfortunately, since the singularity hides inside the horizon, it is currently impractical to
distinguish these two kinds of black holes by diving into the black hole or detecting any
signal coming out from the interior of the horizon. Nevertheless, with the accumulation of
the observation data on detected black holes, we wonder if one can distinguish a regular
black hole from a traditional black hole with singularity by observing the shadows of
black holes. Therefore, investigating the shadows of regular black holes theoretically, as
performed in this manuscript, could shed light on this issue and improve our understand-
ing of the observation data of detected black holes. Previously, the shadows of regular
black holes with de Sitter cores were investigated in [30], and the study of shadows has
also been extended to regular black holes with Minkowski cores [43–45]. However, the
black holes with Minkowski cores previously studied in the literature have a shortcoming.
From the viewpoint of quantum gravity, the Kretschmann scalar curvature of a regular
black hole should be sub-Planckian everywhere and at any time, whereas the Kretschmann
scalar curvature of the previously discussed black hole with a Minkowski core is mass-
dependent such that its Kretschmann scalar curvature could easily exceed the Planck mass
density by increasing the mass of the black hole. This implies that the regular black holes
with Minkowski cores previously used to study black hole shadows only make sense for
small masses at the Planck scale [39]. On the other hand, the Kretschmann scalar curva-
tures of Bardeen black holes and Hayward black holes which have de Sitter cores are
mass-independent [39]. The scalar curvatures of these sorts of black holes exhibit distinct
behavior. Thus, in the previous literature, no one could compare the shadows of these two
sorts of black holes. In this paper, we intend to investigate the shadow of a regular black
hole with a Minkowski core characterized by a mass-independent Kretschmann scalar cur-
vature [39] and compare it with the shadow of one with the same parameter values but with
a de Sitter core.

We organized this paper as follows. In the next section, we extend the regular black
hole with spherical symmetry proposed in [39] to the rotating Kerr-like one and then obtain
the null geodesics with a circular orbit near the horizon of a black hole with the Hamilton–
Jacobi formalism. In Sections 3 and 4, we will investigate the shadows of regular black holes
with (γ = 2/3, n = 2) and (γ = 1, n = 3), respectively, and compare them with the shad-
ows of Bardeen and Hayward black holes with the same parameter values. Furthermore,
we will compute the upper limit of the deviation from the circularity and compare our
theoretical results with the observation data for the shadow of a supermassive black hole at
the center of the galaxy (M87*) by the ETH. It is found that the shadows of regular black
holes are highly compatible with the shadow observed by the ETH as well. Our conclusions
and discussions are given in Section 5.
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2. Rotating Kerr-like Regular Black Hole with a Minkowski Core

In [39], we proposed a new sort of regular spherically symmetric black hole with the
following metric:

ds2 = − f (r)dt2 + f (r)−1dr2 + r2(dθ2 + sin2 θdφ2), (1)

with

f (r) = 1− 2m(r)
r

, (2)

where m(r) takes the form of
m(r) = Me−gn Mγ/rn

. (3)

We set G = 1 throughout this paper. We remark that the above metric form can be
understood as the solution of the Einstein field equation, in which the gravitational field is
coupled to a nonlinear Maxwell field. The physical source of a regular black hole could be
interpreted as a nonlinear electromagnetic field [46]. The generic form of the stress–energy
tensor and a discussion on the violation of the strong energy condition is presented in [39].

This sort of regular black hole exhibits the following two prominent characteristics.
First, the exponentially suppressing form of the Newton potential leads to a non-singular
Minkowski core at the center of the black hole, which was originally proposed in [38], but
with the specific form of γ = 0, n = 2. Secondly, under the condition 3/n < γ < n, the
Kretschmann scalar curvature can always be sub-Planckian regardless of the mass of the
black hole once the parameter g is appropriately fixed. Finally, the correspondence of such
regular black holes to the ones with asymptotic de Sitter cores was pointed out in [39],
where m(r) took the form of

m(r) =
Mr

n
γ

(rn + γgn Mγ)1/γ
. (4)

Specifically, γ = 2/3, n = 2 leads to a Bardeen black hole, while γ = 1, n = 3 leads to
a Hayward black hole.

In this paper, in order to obtain a non-circular shadow with distortions, we extend the
above metric with m(r) given in Equation (3) to describe a rotating Kerr-like black hole.
We employ the Newman–Janis algorithm [47–53] for a static, spherical regular black hole
in Equation (1) and obtain a rotating regular black hole. For a spherical symmetric metric
(Equation (1)), we introduce du = dt− dr/ f (r) to find the null coordinates {u, r, θ, φ}. The
metric becomes

ds2 = − f (r)du2 − 2dudr + r2
(

dθ2 + sin2 θdφ2
)

. (5)

The inverse metric gµν can be represented by a null tetrad
(
lµ, nµ, mµ, m†µ

)
as

gµν = −lµν
nv − lvnµ + mµm†ν + mvm†µ, (6)

with the relation

lµlµ = nµnµ = mµmµ = lµmµ = nµmµ = 0, lµnµ = −mµm†µ = −1. (7)

Then, the null tetrad
(
lµ, nµ, mµ, m†µ

)
can be expressed as

lµ = δ
µ
r , nµ = δ

µ
u −

f (r)
2

δ
µ
r , mµ =

1√
2r2

(
δ

µ
θ +

i
sin θ

δ
µ
φ

)
. (8)

The following complex coordinate transformation

r′ = r + ia cos θ, u′ = u− ia cos θ, (9)
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is used for the null tetrad
(
lµ, nµ, mµ, m†µ

)
to become

l′µ = δ
µ
r , n′µ = δ

µ
u −

f̃ (r)
2

δ
µ
r ,

m′µ =
1√

2(r′ − ia cos θ)2

(
ia sin θ

(
δ

µ
u − δ

µ
r

)
+ δ

µ
θ +

i
sin θ

δ
µ
φ

)
,

(10)

with

f̃ (r) = 1− 2m(r)r
Σ

, (11)

where Σ = r2 + a2 cos2 θ and a is denoted as the spin parameter of an axisymmetric black
hole. Using Equation (10), we can obtain a new inverse metric g′µν as follows:

g′µv = −l′µn′ν − l′νn′µ + m′µm′†ν + m′νm′†µ, (12)

whose explicit metric formula is

ds2 = − f̃ (r)du2 − 2dur′ + 2a sin2 θ
(

f̃ (r)− 1
)
dudφ + 2a sin2 θdrdφ

+
(
r′ − ia cos θ

)2dθ2 + sin2 θ
[(

r′ − ia cos θ
)2

+ a2 sin2 θ
(
2− f̃ (r)

)]
dφ2.

(13)

Finally, we apply the following transformations to obtain the metric in Boyer–
Lindquist coordinates:

du = dt′ − Σ + a2 sin2 θ

Σ f (r) + a2 sin2 θ
dr, dφ = dφ′ − a

Σ f (r) + a2 sin2 θ
dr, (14)

where Σ = r2 + a2 cos2 θ. The new metric is given by

ds2 =− f̃ (r)dt2 +
Σ

Σ f̃ (r) + a2 sin2 θ
dr2 − 2a sin2 θ(1− f̃ (r))dφdt

+ Σdθ2 + sin2 θ
[
Σ− a2( f̃ (r)− 2) sin2 θ

]
dφ2.

(15)

By substituting Equation (11) into Equation (15), we obtain a rotating regular black
hole in Boyer– Lindquist coordinates:

ds2 = −
(

1− 2m(r)r
Σ

)
dt2 − 4am(r)r sin2 θ

Σ
dtdφ +

Σ
∆

dr2

+ Σdθ2 +

(
r2 + a2 +

2a2m(r)r sin2 θ

Σ

)
sin2 θdφ2,

(16)

with
∆ = r2 − 2m(r)r + a2. (17)

In this Kerr-like metric, a is the rotation parameter, and obviously, as a→ 0, it returns
to the metric given in Equation (1). Now, we plot the shadows of these sorts of black holes
by closely following the route presented in [30], where the shadows of black holes with
different mass functions m(r) were investigated for Bardeen and Hayward black holes.

First, we consider the null geodesics near the horizon of the black hole. We start with
a Lagrangian system for a photon

L =
1
2

(
ds
dσ

)2
=

1
2

gµν ẋµ ẋν, (18)



Symmetry 2022, 14, 2415 5 of 15

where σ is an affine parameter along the geodesics. Over a Kerr-like black hole back-
ground, ∂/∂t and ∂/∂φ are killing vectors, and thus there are two conservative quantities
corresponding to the energy and the angular momentum of the photon, respectively:

E = −pt = gtt ṫ,

Lz = pφ = gφφφ̇.
(19)

We can easily find

Σ
dt
dσ

= a
(

Lz − aE sin2 θ
)
+

r2 + a2

∆

[(
r2 + a2

)
E− aLz

]
,

Σ
dφ

dσ
=

(
Lz

sin2 θ
− aE

)
+

a
∆

((
r2 + a2

)
E− aLz

)
.

(20)

The Hamilton–Jacobi equation for a null geodesic is given by

∂S
∂σ

= −H, (21)

where S is the Jacobi action and the Hamilton for a photon has the form

H = pµ ẋµ −L =
1
2

gµν pµ pν = 0, (22)

with pµ ≡ ∂S
∂xµ being the conjugate momentum of the photon. The system we consider is an

integrable system, and thus the action can be expressed as

S = −Et + Lzφ + Sr(r) + Sθ(θ). (23)

By substituting Equations (16) and (23) into Equation (22), we obtain(
dSθ

dθ

)2
+ ∆

(
dSr

dr

)2
−
(

1
∆

(
r2 + a2

)2
− a2 sin2 θ

)
E2

+
4am(r)r

∆
EL + L2

(
1

sin2 θ
− a2

∆

)
= 0.

(24)

Due to the fact that coordinates r and θ are separable, we can rewrite Equation (24) as

∆
(

dSr

dr

)2
− 1

∆

(
r2 + a2

)2
E2 +

4arm(r)
∆

EL− a2

∆
L2

=−
(

dSθ

dθ

)2
− a2E2 sin2 θ − L2

sin2 θ
= K,

(25)

where K is the Carter constant. The relationship between xµ and pµ is

dxµ

dσ
= pµ. (26)

Thus, the geodesic equation of motion for r and θ is given by

Σ
dr
dσ

= ±
√
R,

Σ
dθ

dσ
= ±
√

Θ,
(27)
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with
R =

[(
r2 + a2

)
E− aLz

]2
− ∆

[
K+ (Lz − aE)2

]
,

Θ = K+ cos2 θ

(
a2E2 − L2

z

sin2 θ

)
,

(28)

The critical condition for unstable circular orbits is given byR(r) = 0 and dR(r)/dr = 0,
and we introduce ξ = Lz/E and η = K/E2 to determine unstable circular orbits.
We can easily obtain the parameters ξ and η as follows:

ξ =

(
a2 − 3r2)m + r

(
a2 + r2)(1 + m′)

a(m + r(−1 + m′))
,

η =− r3

a2 (r
3 + 9rm2 + 2

(
2a2r + r3

)
m′ + r3m′2

− 2m(2a2 + 3r2 + 3r2m′))
(
m + r

(
−1 + m′

))−2,

(29)

where m is the function of r and the prime denotes the derivative with respect to the
radius r.

Following [30], we introduce celestial coordinates (α, β) to visualize the black
hole shadow:

α = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

)
,

β = lim
r0→∞

(
r2

0
dθ

dr

)
,

(30)

where r0 is the distance between the black hole and the observer and θ0 is the inclination
angle between the rotating axis of the black hole and the observer’s line of sight. For the
limit r → ∞, the celestial coordinates have the following simple form:

α = −ξ csc θ0,

β = ±
√

η + a2 cos2 θ0 − ξ2 cot2 θ0.
(31)

3. Shadow of a Regular Black Hole with γ = 2/3 and n = 2

In this section, we study the shadow cast by a regular black hole with γ = 2/3 and
n = 2, which exhibits the same asymptotical behavior as a Bardeen black hole at a large
scale in the radial direction.

In Figure 1, we plotted the silhouettes of the shadows for various values of the rotation

parameter a/M and the deviation parameter g/
(√

3
2 M2/3

)
, which are understood to be

dimensionless quantities. First, by comparing the left plot with the right one, we find that
with the increase in the rotation parameter a/M, the left side of the silhouette of the shadow
was more inclined to the vertical axis, which is similar to the phenomenon observed in [30].
Secondly, from both plots in Figure 1, we noticed that for the same rotation parameter a/M,

the size of the shadow shrank with the increase in the deviation parameter g/
(√

3
2 M2/3

)
.

Moreover, the silhouette of the shadow was more deformed for the larger values of a/M

and g/
(√

3
2 M2/3

)
.

It is instructive to compare the differences between the shadows cast by two different
types of black holes, namely a Bardeen black hole and aregular black hole with γ = 2/3
and n = 2. Thus, we plotted the shadows of these two black holes with the same parameter
values, as illustrated in Figure 2. Interestingly, we found the silhouette of the shadow cast
by the black hole with γ = 2/3 and n = 2 was more deformed than that of the Bardeen
black hole, although in general, their sizes and shapes were quite similar. From the insets in
Figure 2, one finds that they had a distinct trajectory on the left edge of the circle. Such a dis-
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crepancy may be understood as the reflection of their different structures inside the horizons
of black holes, where the former has a Minkowski core while the latter has a de Sitter core.
In particular, in [39], it was disclosed that for a regular black hole with γ = 2/3 and n = 2,
the position with the maximum Kretschmann scalar curvature ran away from the core of
the black hole, while for the Bardeen black hole, the position of the maximal Kretschmann
scalar curvature was maintained at the center of the hole. In this sense, a regular black hole
with γ = 2/3 and n = 2 may become more attractive to photons such that the silhouette of
the shadow is more deformed in comparison with that of a Bardeen black hole.

a/M=0.5, g/( 3

2
M2/3)=0

a/M=0.5, g/( 3

2
M2/3)=0.6

a/M=0.5, g/( 3

2
M2/3)=0.7

-4 -2 0 2 4 6

-4

-2

0

2

4

α/M

β
/M

a/M=0.8, g/( 3

2
M2/3)=0

a/M=0.8, g/( 3

2
M2/3)=0.3

a/M=0.8, g/( 3

2
M2/3)=0.4

-2 0 2 4 6

-4

-2

0

2

4

α/M

β
/M

Figure 1. The silhouette of the shadow cast by the regular black hole with γ = 2/3 and n = 2 for

various values of g/
(√

3
2 M2/3

)
with θ0 = π/2. For the left plot, the rotation parameter a/M is

fixed at a/M = 0.5, while for the right plot, it is fixed at a/M = 0.8.

Furthermore, in order to measure the size and deformation of the shadow quantita-
tively, we introduce two observables to characterize the shadows of black holes, namely
the shadow radius Rs and the distortion parameter δs [14], which are given by

Rs =
(αt − αr)

2 + β2
t

2(αt − αr)
,

δs =

(
α̃r − αp

)
Rs

,

(32)

where (αt, βt), (αr, 0),
(
αp, 0

)
are the coordinates of the shadow vertices at top, right and left

edges, respectively, while (α̃r, 0) represents the coordinates of the left edges of the reference
circle.

The schematic diagram is shown in Figure 3. In Figure 4, we find that the shadow

radius Rs monotonically decreased as a function of g/
(√

3
2 M2/3

)
for both sorts of regular

black holes, while the distortion parameter δs monotonically increased with the increase
in the deviation parameter. In particular, we found that for larger values of the deviation
parameter, the difference between the two black holes became more pronounced, and the
shadow cast by the regular black hole with γ = 2/3 and n = 2 had more distortion than
that cast by the Bardeen black hole.
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Bardeen

n=2

-2 0 2 4 6

-4

-2

0

2

4

α/M

β
/M

-3.0-2.8-2.6-2.4-2.2-2.0

-3

-2

-1

0

1

2

3

α/M

β
/M

Bardeen

n=2

-2 0 2 4 6

-4

-2

0

2

4

α/M
β
/M

-2.30-2.25-2.20-2.15-2.10-2.05-2.00

-2

-1

0

1

2

α/M

β
/M

Figure 2. The shadows of the black hole with γ = 2/3 and n = 2 and the Bardeen black hole with

θ0 = π/2. For both black holes, the parameters were fixed at a/M = 0.6 and g/
(√

3
2 M2/3

)
= 0.64

in the left plot, while they were a/M = 0.9 and g/
(√

3
2 M2/3

)
= 0.32 in the right plot. The insets

zoom in on the part near the left edge of the circle.

(αr ,0)(αp,0)

(αt ,βt)

(αb,βb)

(α

r ,0)

α

β

Figure 3. The schematic diagram for defining the observables to measure the size and deformation of
the shadows.
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Bardeen

n=2

0.40 0.45 0.50 0.55 0.60

4.95

5.00

5.05

5.10

g/(
3

2
M2/3)

R
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6

4.95

5.00

5.05

5.10

5.15

5.20

g/(
3

2
M2/3)

R
s

Bardeen

n=2

0.40 0.45 0.50 0.55 0.60
0.06

0.08

0.10

0.12

0.14

g/(
3

2
M2/3)

δ
s

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.04

0.06

0.08

0.10

0.12

0.14

g/(
3

2
M2/3)

δ
s

Figure 4. The shadow radius Rs as a function of g/
(√

3
2 M2/3

)
(left). The distorting parameter

δs as a function of g/
(√

3
2 M2/3

)
(right). The rotation parameter a/M is fixed at a/M = 0.6,

and θ0 is fixed at π/2.

Finally, we intend to link our theoretical investigation on the shadows of regular black
holes to the observation data detected by the ETH. For the first step, we considered the
upper limit of the deviation from circularity for the shadows of black holes. As reported
in [1,2], for the supermassive black hole M87* at the center of the galaxy M87*, the upper
limit of the deviation from circularity is ∆C . 0.1 for θ0 = 17π/180 [54,55]. The average
radius of the shadow is [18]

R̄ =
1

2π

∫ 2π

0
R(ϕ)dϕ, (33)

with

R(ϕ) =

√
(α− αc)

2 + (β− βc)
2, ϕ ≡ tan−1

(
β− βc

α− αc

)
, (34)

where αc =
|αr+αp|

2 , βc =
|βt+βb |

2 . The deviation from circularity ∆C is given by [56]

∆C =
1
R̄

√
1

2π

∫ 2π

0
(R(ϕ)− R̄)2dϕ. (35)

As shown in Figure 5, we made a contour plot for ∆C in the (a, g) plane for θ0 =
17π/180. It is obvious that the deviation was much smaller than the upper limit observed
by the ETH, indicating that the shadow of the regular black hole with γ = 2/3 and n = 2
is highly compatible with the observation data of the ETH. This implies that the current
observation data are not capable of identifying the detected black hole to be an ordinary
black hole with singularity or a regular black hole without singularity.
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Figure 5. The density plot of the deviation from circularity for the regular black hole with γ = 1 and
n = 2 in (a, g) plane with θ0 = 17π/180.

4. Shadow of the Regular Black Hole with γ = 1 and n = 3

In this section, we study the shadow of the regular black hole with γ = 1 and n = 3
in a parallel way which corresponds to a Hayward black hole at a large scale in the radial
direction.

We plotted the silhouettes of the shadows for different values of g/M2/3 in Figure 6.
Again, we found that with the increase in the values g/M2/3, the size of the shadow shrank,
while the shape of the shadow became increasingly asymmetrical with respect to the
vertical axis.
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Figure 6. The silhouettes of the shadows cast by the regular black hole with γ = 1 and n = 3 for
various values of g/M2/3 with θ0 = π/2. For the left plot, the rotation parameter a/M is fixed at
a/M = 0.5, while for the right plot, it is fixed at a/M = 0.8.

Next, we compared the differences between the shadow cast by the regular black hole
with γ = 1 and n = 3 and that of the Hayward black hole, as shown in Figure 7. Similarly,
we found that the size of the shadow cast by the regular black hole with γ = 1 and n = 3
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was smaller than that of the Hayward black hole with the same parameter values. In
addition, we plotted diagrams for the shadow radius Rs and the distortion parameter δs
for these two black holes in Figure 8. Again, we noticed that the difference between these
two types of black holes became more significant for larger values of g/M2/3. Therefore,
based on our above analysis, we intend to conclude that given the same parameter values,
the size of the shadow cast by the regular black hole with an asymptotic Minkowski core
is always smaller than that of the black hole with an asymptotic de Sitter core, but the
deformation of the shadow is greater.

In the end, we also compared the theoretical value of deviation from circularity ∆C
for the black hole with γ = 1 and n = 3 to the results from the ETH, as shown in Figure 9.
We found that the shadow of the regular black hole with γ = 1 and n = 3 was highly
compatible with the observation data of the ETH ∆C . 0.1 for θ0 = 17π/180.
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Figure 7. The shadows of the black hole with γ = 1 and n = 3 and the Hayward black hole with
θ0 = π/2. For both black holes, the parameters were fixed at a/M = 0.6 and g/M2/3 = 0.8 in the
left plot and a/M = 0.9 and g/M2/3 = 0.41 in the right plot. The insets zoom in on the part near the
left edge of the circle.
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Figure 8. The shadow radius Rs as a function of g/M2/3 (left). The distorting parameter δs as a
function of g/M2/3 (right). The rotation parameter a/M is fixed at a/M = 0.6, and θ0 is fixed
at π/2.
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Figure 9. The density plot of the deviation from circularity for the regular black hole with γ = 1 and
n = 3 in (a, g) plane with θ0 = 17π/180.

5. Conclusions and Discussion

In this paper, we investigated the shadows cast by rotating Kerr-like regular black
holes with Minkowski cores. We plotted the silhouette of a shadow cast by a regular black
hole with (γ = 2/3, n = 2) and (γ = 1, n = 3), which corresponded to the Bardeen black
hole and Hayward black hole at large scales in the radial direction, respectively. It was
found that with the increase in the deviation parameter g, the left side of the silhouette of
the shadow was more inclined toward the vertical axis. Then, the size of the shadow and
the shape of the shadow were evaluated by the shadow radius and the distortion parameter.
It turned out that with the increase in the deviation parameter g, the shadow radius
decreased, while the deformation became more and more pronounced. This phenomenon
could be understood as follows. The traditional regular black holes can be viewed as
solutions of gravity coupled to nonlinear electrodynamics [57–59], and the parameter g in
this paper may be viewed as the charge of the nonlinear electromagnetic field. Just as the
increase in charge made the size of the black hole horizon smaller, the corresponding size
of the shadow shrank, while the shape of the shadow became more deformed [32,45,60].
Furthermore, we compared the shadows for two different types of regular black holes with
the same parameter values. In comparison with the regular black holes with de Sitter cores,
the size of the shadow was always smaller, and the deformation of the shape became more
pronounced as well. One could understand this by comparing the positions of the maximal
Kretschmann scalar curvature. As revealed in [39], for regular black holes with Minkowski
cores, the position of the maximal Kretschmann scalar curvature moves away from the
center of the black hole and is close to the horizon with the increase in the parameter g,
while for regular black holes with de Sitter cores, the position of the maximal Kretschmann
scalar curvature always remains at the center. This may lead to greater attraction of the
regular black hole with Minkowski cores to photons. As a result, the silhouette of its
shadow is indeed more distorted compared with that of a regular black hole with a de Sitter
core. Finally, we also compared the theoretical values of the deviation from circularity ∆C
for two sorts of black holes with the experimental results of the ETH and found that the
shadows of regular black holes were highly compatible with the shadows observed by the
ETH as well. Therefore, regular black holes are also possible candidates for detected black
holes, and further exploration is needed to reveal the nature of black holes observed in
astrophysics. Our work provides a theoretical basis for identifying different types of regular
black holes once more astronomical black hole images are obtained in the future. Just as
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discussed in [39], these two different types of regular black holes result from different forms
of Newtonian potential, which might imply the different forms of generalized uncertainty
relations in the theory of quantum gravity. Thus, we expect that the distinction of regular
black holes by astronomical observations would be a great hint for us to look for the
effect of quantum gravity. In particular, the exponential form of the Newtonian potential,
which gives rise to regular black holes with Minkowski cores [39], could reveal the non-
perturbative effects of quantum gravity because in the expansion of weak momentum, it
recovers the quadratic form of the momentum, which leads to regular black holes with de
Sitter cores [61].

Of course, we may investigate the shadows cast by regular black holes in the presence
of plasma, as performed for Bardeen and Hayward black holes, in [30]. It is worth pointing
out that what we analyzed in this paper is an integrable system, due to the existence of
the Carter constant. It is interesting to consider a non-integrable system surrounding a
black hole by breaking the Carter constant [62]. In this case, the trajectory of the light
near the black hole may produce chaos, which will provide more information for regular
black holes.
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