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Abstract: The development of automated systems for detecting defects in and damage to buildings is
ongoing in the construction industry. Remaining aware of the surface conditions of buildings and
making timely decisions regarding maintenance are crucial. In recent years, machine learning has
emerged as a key technique in image classification methods. It can quickly handle large amounts of
symmetry and asymmetry in images. In this study, three supervised machine learning models were
trained and tested on images of efflorescence, and the performance of the models was compared.
The results indicated that the support vector machine (SVM) model achieved the highest accuracy in
classifying efflorescence (90.2%). The accuracy rates of the maximum likelihood (ML) and random
forest (RF) models were 89.8% and 87.0%, respectively. This study examined the influence of different
light sources and illumination intensity on classification models. The results indicated that light
source conditions cause errors in image detection, and the machine learning field must prioritize
resolving this problem.

Keywords: digital image; supervised machine learning; support vector machine; maximum likelihood;
random forest; efflorescence detection

1. Introduction

A humid environment that rains often can easily result in fault problems for build-
ings, such as efflorescence on wall surfaces, scaling on concrete, cracks, and corrosion on
reinforcement. Such outer appearance defects on buildings are unsightly and affect the
structural safety and the living quality of residents. The degradation of building surfaces
is common. Therefore, the routine detection and quantification of surface defects is cru-
cial for engineering personnel because these routine operations enable them to conduct
maintenance work on time. Efflorescence is a type of defect that often occurs on building
surfaces. In addition to being unsightly, efflorescence poses hazards toward structures,
may jeopardize users’ health, and lowers their work efficiency. Efflorescence indicates the
locations of pores, cracks, water seepage, and water leakage in structures. In summary,
efflorescence is a key indicator of building degradation.

Efflorescence may result in an unsightly outer appearance but seldom affects the mechan-
ical properties or durability of concrete. However, when efflorescence is left unattended for a
long time or when no effective measures are adopted to eliminate efflorescence, it can corrode
and spall concrete on the building’s surface. Efflorescence is often accompanied by other
defects, such as cracking or spalling [1]. However, no test standards currently can be used
to evaluate efflorescence in concrete masonry units or mortar [2]. Therefore, the ASTM [3]
method is sometimes used for efflorescence sampling and testing. This method involves
observing the efflorescence potential of concrete masonry units through visual inspection. No
information has been presented on either the precision or bias of the efflorescence test method
because the test result is nonquantitative. Therefore, this method cannot effectively confirm
efflorescence and detect the area and quantity of efflorescence present.
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Generally, building damage detection relies on human visual inspection to measure
and evaluate defects. For example, Ada et al. [4] used visual inspection for RC damage
after a fire (such as spalling, net-like cracks, and bared reinforcement). However, because
manual inspection mainly involves human operations, it is time-consuming, unreliable, and
costly [5]. Even for seasoned and trained personnel, performing manual visual inspections
remains laborious and inefficient. Bianchini et al. [6] noted that technical personnel’s
subjectivity is inevitably dependent on experience level, and this affects evaluation results.
This is true even when carefully drafted and reliable manuals are used for evaluation.
Therefore, the development of sensor-based automatized detection is imperative because
it can lower dependence on manual measurement, reduce inspection time, and enhance
inspection accuracy. Automatized digital image recognition is more efficient, consistent,
accurate, and objective than human visual inspection.

Zhu and Brilakis [7] noted that overcoming the limitations of human building image
inspections requires matching methods that rely on the visual features of materials and
features contained in images for automatized information retrieval. Academics have proposed
many visual-based methods that can detect damage. These methods mainly involve using
image-processing techniques (IPTs) to compensate for the complexity of a task [8,9]. Within the
past decade, advancement in the image-processing ability of digital cameras and computers
has enabled researchers and industry personnel to process digital images effectively and
extract useful information from these images. Cha et al. [10] pointed out that many IPTs are
already used to detect civil infrastructure defects, extract defect features, and partially replace
human on-site inspections (e.g., cracks on concrete surfaces and steel parts).

For image recognition and detection, some factors must be considered to effectively
analyze the features and spectral properties of images. These factors include the material,
quantity, scope, shape, texture, tone, and color of objects. Particularly, colors and textures
are commonly used as classifying indicators because they can accurately describe the
surface of objects in images [7]. However, certain damage features have colors similar to
building surfaces. For example, most efflorescence appears to be white, whereas concrete is
gray. Differentiating between the two can be difficult and results in a high misjudgment or
misclassification probability. Enhancing the detection accuracy rate is a pressing problem
that remains to be solved through classification techniques. Symmetry plays an important
role in image processing and establishes supervised machine learning that incorporates
symmetry into models, resulting in improved performance. Furthermore, since the propor-
tion of data with different labels is often unbalanced, incorporating symmetry into machine
learning models addresses this issue while promoting model accuracy.

Machine learning algorithms are commonly used in image recognition and classi-
fication, including in the detection of building damage. Damage classification involves
the use of samples of training data to predict discrete class labels [11]. Support vector
machine (SVM) and random forest (RF) can be used for classification tasks involving small
training data sets. SVM can be used to overcome the problems of high dimensionality
and insufficient training samples, whereas RF does not require extensive fine-tuning of
hyperparameters and is able to learn complex classification functions. Other machine learn-
ing techniques commonly used for image classification are artificial neural networks [12],
principal component analysis [13], and cluster analysis [14].

Although using images to recognize building damage has always been an active
research domain and images are extensively used to evaluate quality in the operational
and maintenance stages, research on the use of images to detect concrete efflorescence and
comprehensive comparative research on selection of the most effective machine learning
techniques is lacking. In this study, the researchers acquired images through digital camera–
based remote sensing. Through this, the researchers could conduct low-cost and high-
quality building damage detection experiments. In addition, the researchers conducted
sample training and testing through different supervised machine learning methods and
later analyzed the testing results to evaluate the performance of supervised machine
learning methods for concrete efflorescence detection (classification).
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2. Literature Review

In the past, some researchers generally used numerical analysis to simulate various
damage conditions, such as: cracks [15,16], corrosion [17] and spalling [18]. Because
machine learning and computer vision techniques have gradually developed over the
past few years, machine vision–based surface defect inspection systems [19] and health
monitoring [20] are increasingly common. Therefore, some researchers have used dig-
ital images and machine vision algorithms to measure the spalling defects of concrete
facilities [21]. Brilakis et al. [22] pointed out that before calculating image features, required
elements must be identified using appropriate material detection algorithms. In addition,
recognition of patterns and target objects based on certain features (e.g., shape, texture, or
color values) have matured as IPTs. Although IPTs have only recently been applied for civil
engineering and building construction, selecting the best machine learning algorithm is
necessary to develop any reliable image identification [23].

Machine learning applications in various research domains have greatly advanced in
recent years. Research domains with significant achievements regarding the application of
machine learning include human face recognition, autonomous cars, speech recognition,
image identification, and machine translation. Machine learning involves computers
autonomously learning certain tasks and performing measurement techniques to gradually
improve techniques from experience. Among machine learning types, supervised machine
learning involves learning or establishing a model from training data according to a
predetermined direction or problem to be solved to infer new instances based on the model.

Supervised algorithms train themselves to detect patterns by using various manually
annotated data or images. The training images typically depict the object of interest in
several poses to cover all its possible outer appearances [24]. Classification is an image
recognition task often used for conventional supervised machine learning. Good represen-
tative features are learned directly from labeled surface defect images through supervised
learning. The discriminative feature representation of surface defects is the basis for de-
tection systems, whereas classification precision is the main consideration for detection
systems [25]. Finally, users can evaluate the quality of classification models (results) by
using a confusion matrix and some evaluation indicators.

The classification approaches learn patterns of objects through supervised machine
learning techniques from a set of distinctive features, a set of positive training examples,
and a set of negative training examples [26]. Classification is the process of dividing
data sets into categories or groups through adding labels. The purpose of classification is
to examine all data characteristics and divide the data into several categories according
to predefined categorization principles to allow a categorization model to automatically
predict future data. Image classification mainly involves performing a spectral form of
identification by using real data. Target categories that must be discriminated are first
determined, and the training area for each category is selected. Finally, images are classified
based on the spectral statistical values (including color and texture) of each sample area.

Supervised machine learning methods commonly used in classification models include
the support vector machine (SVM), maximum likelihood (ML), decision tree (DT), and
random forest (RF) methods. An example of unsupervised machine learning methods is
cluster analysis. From algorithm differences, artificial neural network (ANN) can be divided
into supervised ANNs (e.g., back-propagation neural network (BPNN) and probabilistic
neural network (PNN)) and unsupervised ANNs (e.g., Kohonen neural network).

SVMs are nonparametric classifiers. Over the past few decades, SVMs have been
the most commonly used method for image classification and recognition because SVMs
exhibit favorable generalizability and do not require huge numbers of training samples. For
the small scale training of data sets, SVMs are the most preferred classifiers [27]. Halfawy
and Hengmeechai [26] reported that the application of SVMs has allowed researchers
to recognize and classify sewer defects by using a small number of training data. In
addition, SVMs exhibit high classification accuracy and are feasible for high dimensions [28].
Therefore, SVMs can learn high dimensional data with the help of Lagrange multipliers
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to achieve excellent generalization performance [29]. SVMs exhibit superior classification
and recognition ability for complex structures and multiclass classifications to those of
other types of classifiers. For example, Kim et al. [30] compared and analyzed three
machine learning methods (i.e., SVMs, Gaussian mixture model, and ANN), and the results
indicated that SVMs are advantageous for detecting the constitution of concrete structures
in colored images. Chen et al. [31] combined SVMs and Fourier transformation (SVMRA)
that proposed a novel effective method for recognizing nonuniformly illuminated images of
rust. This new method was compared to two other expanded machine learning approaches
(i.e., simplified k-means algorithm and neuro-fuzzy recognition approach), and the results
indicated that SVMRA recognized rust on steel bridges most effectively.

ML is a supervised classification method based on the Bayes’ theorem. It involves
assigning pixels to a category with the maximum likelihood by using a discriminant func-
tion. Thus, the training samples are used to derive the optimized probability model that
is used for classification. When enough training samples are dispensed and the data set
features are normally distributed, ML can produce accurate classification results [32]. In
some instances, a single classifier cannot effectively handle classification and regression
problems. To achieve effective results in such instances, several different learning methods
must be combined. A combination of learning methods can be applied to enhance the
robustness and accuracy of a model, which is known as ensemble learning. RF is classifiers
comprising classification and regression trees (CART) and are an ensemble learning tech-
nique. The training process of RF is identical to that of CART. The main difference between
the two methods is the randomly selected subset of candidate variables. In RF, a randomly
selected subset of candidate variables provides the optimal choice of variables for each
classification. Therefore, RF can operate with high efficiency in large data sets and measure
feature importance in each category [33]. RF is applied as classifiers and is used extensively
in various facility detection and building image classification operation [34–36].

ANNs do not need to assume that features are normally distributed because they can
learn patterns in the data set by using neurons and networks to enhance a new model’s
ability to classify accurately. Among ANN types, BPNNs are a highly complex classification
technique that can construct models from nonlinear functions [37]. Yeh [38] adopted BPNNs
to diagnose damage in prestressed concrete piles. Tam et al. [39] adopted a PNN developed
by Specht to classify main reasons for damage in prestressed piles. Zhu and Brilakis [7]
performed concrete region recognition by using an ANN-based classifier. A database of
actual construction site images was used to test the overall validity of the concrete region
detection method. The results indicated that an average precision and recall of 80% could
be achieved. Kohonen networks were developed to measure the carbonation depth from
the concrete images [40]. Mathavan et al. [41] proposed an unsupervised learning technique
called the Kohonen map to detect cracks in 2D road images. Some researchers have applied
ANNs to detect road surface cracks and defects [42,43]. However, noisy data reduce the
accuracy of ANNs during image classification, and an extensive amount of time is needed
for training [24].

Professionals in industry have effectively used deep learning to analyze numerical
data and predict outcomes [44–46]. However, when the input data are image-based,
conventional machine learning methods can detect targets after training on small image
data sets. Deep learning models require intensive calculations and large image data sets to
automatically learn from training data. In addition, the black box nature of deep learning
algorithms, which is linked to the use of hidden layers, leads to a loss of interpretability.
Researchers can understand the operation of different parts of parametric machine learning
algorithms as well as the parameters of such algorithms, which, in principle, can be
manually tuned if their effects are thoroughly understood [47]. Machine learning is still
favored by researchers when dealing with image classification problems because machine
learning algorithms have low computational complexity and high interpretability.
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3. Research Methods and Materials

Supervised classification is a machine learning task that infers the relationship between
“objects” and “labels” through inducing a training set, which is a collection of objects with
known labels. In the future, such generalizations can be used to classify objects with
unknown labels [48]. When supervised machine learning is used to classify images, the
preconfiguration of an image’s pixel color/texture value is not necessary. Supervised
machine learning classifies images from the statistical spectral values of training samples.
Its main procedures include confirming materials to be detected, image capturing and
processing, selecting classification approaches, selecting training samples (area), extracting
features, and evaluating classification performance. Among various procedures, selecting
an appropriate classification approach directly influences classification results.

3.1. Machine Learning Classifiers

The supervised classification requires the manual selection of a training area, and
remaining areas not selected are classified using classification algorithms [49]. This type
of supervised feature learning enables the model to learn about specific data features and
manifest these features directly from image pixels [50].

3.1.1. Support Vector Machine (SVM)

SVMs are a machine learning method proposed by Vapnik [51] from statistical learning
theory and a supervised classification algorithm. The main principle of SVMs is to mark
hyperplanes in a sample space. The linear equation for marking hyperplanes is as displayed
in Equation (1). In the equation, the training sample sets D = {xi, yi}; yi = {−1, + 1} and
w = (w1, w2, . . . , wn) represent normal vectors, and they can determine the direction of
hyperplanes. b represents the bias value and can determine the distance between the
hyperplane and original point (0, 0). The distance between any point in the sample space
and the hyperplane is r.

If these training data are linear and separable, two parallel hyperplanes separating
the two types of data can be selected. The two hyperplanes are wT + b = 1 and wT + b = −1
(Figure 1). The area between hyperplanes is known as the margin, and the distance is
2/‖w‖. To maximize the distance between hyperplanes, the ‖w‖must be minimized. The
hyperplane in the middle of the maximum margin is the “Optimal hyperplane”. To ensure
that the sample data points are all outside the margin area of the hyperplanes, a researcher
must ensure that all training samples fulfill one of the conditions stated in Equation (1). To
find the maximum margin hyperplane, parameters w and b fulfilling Equation (2) must be
obtained, and the value of 2/‖w‖must be maximized.
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wTx + b = 0 (1){
wTxi + b ≥ + 1, yi = +1
wTxi + b ≤ −1,yi = −1

(2)

3.1.2. Maximum Likelihood (ML)

ML classification assumes that statistical data in all categories of each band are nor-
mally distributed, and the probability of a pixel belonging to a certain category is calculated
and specified accordingly. Each pixel is assigned to the category with the highest probabil-
ity (i.e., the maximum likelihood). If the highest probability is smaller than the assigned
threshold value, the pixel remains unclassified or unknown. Therefore, ML classification
can be achieved by calculating the discriminant function in Equation (3) for each pixel in
an image [52].

P(ω|i ) = (2π)−n/2

∣∣∣∣∣ ∑
i

∣∣∣∣∣
−1/2

exp
[
−1

2
(ω−mi)

T∑−1
i (ω−mi)

]
(3)

In Equation (3), i represents the category, m represents the number of categories, ω is n
dimension image data (n is the number of bands), P(ωi) is the probability that category ωi
appears in the image, and all categories are assumed to be equal. |Σi| is the determinant
of the covariance matrix of category ωi data. Σi−1 is the inverse matrix, and mi is the mean
vector. These training pixels can provide the mean values and covariance of spectrum
bands used for estimation. These data are then used to assign pixels to a category.

Classification involves identifying the category in which a sample x exhibits the
largest likelihood function value. The sample can then be classified into the category.
The largest value in the matrix is chosen, and x is assigned to the category. The rules of
determining whether x should be classified as belonging to i or j categories are explained in
Figure 2 (single dimension and using two categories as examples: i and j). (1) When x > x0,
P(x|j) > (x|i), x is then classified into the j category. (2) When x < x0, P(x|j) < (x|i), x is then
classified into the i category. (3) When x = x0, P(x|j) = (x|i), the probability of classifying x
into either i or j categories is equal.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 23 
 

 

 

Figure 2. Diagram of ML decision rule. 

3.1.3. Random Forest (RF) 

The RF algorithm is based on the CART concepts. During CART training, a variable 

is randomly selected, and a subset containing the kth variable is randomly selected from 

the variable set at the node of the tree. Subsequently, an optimal variable selected from 

this subset is used for splitting. Although the RF training process is identical to that of 

CART, when selecting the splitting variable in RF, the optimal variable is selected from 

the variable set (assuming there are dth variables) of the current node. If k = d with a con-

ventional CART, when k = 1, a variable is randomly selected for splitting, which typically 

suggests that k = log2 d [53]. 

RFs create nonlinear decision boundaries through ensemble learning. This technique 

involves training many DTs on random subsets of training data. The forest is represented 

by the many created and trained DTs, and the final classification is the statistical mode of 

predictions collected by the trees [54]. Meyer et al. [55] noted that the subset of predicting 

variables is randomly selected at each split to distinguish the correlation between trees. 

The best predictor from a random subset is used at the respective split to partition data to 

obtain an optimal trade-off between insufficient data and overlearning. 

3.2. Material and Image Processing 

In this study, images and camera data mainly served as visual supplementary mate-

rials to help with defect recognition and evaluation. The maximum measurement distance 

of the portable camera sensing method was approximately 5 m. However, this method 

was useful for rapid space data collection, size estimation, and three-dimensional model 

construction [56]. The image sensor of the digital camera used in the current study could 

record image data (RGB) through manual operation by personnel or by being fixed to a 

camera stand. Because of characteristics such as being highly pixelated, compact, and eas-

ily portable, digital cameras are suitable for conducting sensing operations in locations 

where surfaces must be examined rapidly or where space is limited. Cameras can be used 

to sense various facilities within a small region. Therefore, digital cameras have already 

been extensively used to inspect the surface quality of buildings and civil infrastructures 

[57–60]. 

Figure 2. Diagram of ML decision rule.



Symmetry 2022, 14, 2384 7 of 21

3.1.3. Random Forest (RF)

The RF algorithm is based on the CART concepts. During CART training, a variable is
randomly selected, and a subset containing the kth variable is randomly selected from the
variable set at the node of the tree. Subsequently, an optimal variable selected from this
subset is used for splitting. Although the RF training process is identical to that of CART,
when selecting the splitting variable in RF, the optimal variable is selected from the variable
set (assuming there are dth variables) of the current node. If k = d with a conventional
CART, when k = 1, a variable is randomly selected for splitting, which typically suggests
that k = log2 d [53].

RFs create nonlinear decision boundaries through ensemble learning. This technique
involves training many DTs on random subsets of training data. The forest is represented
by the many created and trained DTs, and the final classification is the statistical mode of
predictions collected by the trees [54]. Meyer et al. [55] noted that the subset of predicting
variables is randomly selected at each split to distinguish the correlation between trees.
The best predictor from a random subset is used at the respective split to partition data to
obtain an optimal trade-off between insufficient data and overlearning.

3.2. Material and Image Processing

In this study, images and camera data mainly served as visual supplementary materials
to help with defect recognition and evaluation. The maximum measurement distance of
the portable camera sensing method was approximately 5 m. However, this method
was useful for rapid space data collection, size estimation, and three-dimensional model
construction [56]. The image sensor of the digital camera used in the current study could
record image data (RGB) through manual operation by personnel or by being fixed to a
camera stand. Because of characteristics such as being highly pixelated, compact, and easily
portable, digital cameras are suitable for conducting sensing operations in locations where
surfaces must be examined rapidly or where space is limited. Cameras can be used to
sense various facilities within a small region. Therefore, digital cameras have already been
extensively used to inspect the surface quality of buildings and civil infrastructures [57–60].

The surface complexity of the detected object, remote sensing environmental condi-
tions, image resolution, and image-processing and classification methods all affect the
detection results. In addition, if the optical axis of the optical camera is not perpendicular
to the surface, the steep angle causes differences in the distance between the camera and
surface to increase [61]. Therefore, when detecting concrete efflorescence by using a camera
in the current study, building surfaces were recorded using orthographic projection. This
reduced distance and area distortion caused by a tilted sensing angle. In addition, wall
surfaces illuminated by natural light sources were selected. Finally, concrete surfaces
perpendicular to the building floor were selected as sensing objects. All images were
3264 × 2448 pixels in size.

Image data consists of different classes and pixel values, and the distributions of
classes and pixel values may vary. Pixel values can vary widely even within the same class.
Therefore, scaling the input data to a certain range or normalizing the distribution of the
data (to obtain a mean of 0 and a standard deviation of 1) is often necessary. In this study,
image feature values were standardized through feature scaling to improve the efficiency
and accuracy of machine learning models.

The supervised machine learning procedures in the current study were divided into
two parts (Figure 3). (1) For the training model, supervised machine learning methods first
needed image color values (RGB) as the base line, and the pixels were manually labeled
for the efflorescence features in the image. The classifiers extracted training samples of
damage features from these regions. (2) For the testing model, because different features in
the research area exhibit spectral properties containing different colors, predicting variables
(features) were calculated from the image. The actual efflorescence was labeled as the
standard sample, and testing involved using the pixels of the original image. Finally, the
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performance of the three machine learning methods (i.e., SVM, ML, and RF) for detecting
efflorescence was evaluated.
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4. Model Evaluation Indicators

Hüthwohl and Brilakis [62] revealed that none of the metrics can reliably distinguish
healthy and unhealthy concrete currently. Therefore, in addition to evaluating classification
performance by using the most commonly used confusion matrix, this study evaluated clas-
sification performance by using other indicators from the confusion matrix. The classifier
can be ensured to exhibit satisfactory generalizability and be able to evaluate the prediction
accuracy of classifiers by examining confusion matrices [63]. A confusion matrix (Table 1)
compared prediction data from the classification model against actual data. The columns
represent predicted results, whereas the rows represent actual classification results. In
summary, the confusion matrix can be used to evaluate the classification performance of
the models. It is a method suitable for evaluating supervised classification methods.
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Table 1. Confusion matrix of classification model.

Actual
Classification Results (Predicated)

PA (%) OE (%)A B

A True Positive (TP) False Negative (FN) TP/(TP + FN)
(Sensitivity) FN/(TP + FN)

B False Positive (FP) True Negative (TN) TN/(FP +TN)
(Specificity) FP/(FP +TN)

UA (%) TP/(TP + FP)
(Precision) TN/(FN + TN) AUC =

Mean PA

Accuracy =
(TP + TN)/(TP +
TN + FP + FN)

Assume that the classification model possesses two categories: A and B. When the
classifier-predicted category is consistent with the actual category, the result is true (T). If
the predicted and actual categories are inconsistent, the result is false (F). When a positive
example is detected, the result is positive (P); by contrast, when a negative example is
detected, the result is negative (N). Correct confusion matrix–based classification contains
two scenarios (predictions). In the first scenario, the actual category is A, and the predicted
category is also A. Such a result is a true positive (TP). In another scenario, the actual
category is B, and the predicted category is also B. This is a true negative (TN). Two
scenarios also involve misclassification errors (i.e., misjudgment). In the first scenario, the
actual category is A, but the predicted category is B. This is a false negative (FN). The
error when an element that should be classified into a certain category (A or B) but is
actually not categorized into the correct category is an omission error (OE). The opposite of
an OE is producer’s accuracy (PA). In the other scenario, the actual category is B but the
predicted category is A. This is a false positive (FP). The error when an element should not
be classified into a certain category (A or B) but is actually categorized into a category by
mistake is a commission error (CE). The opposite of a CE is user’s accuracy (UA).

TP here refers to the quantity of correctly detected desired efflorescence pixels, whereas
TN is the quantity of correctly detected non desired efflorescence pixels. FP is the quantity
of incorrectly detected desired efflorescence pixels, and FN is the quantity of incorrectly
detected non desired efflorescence pixels. In addition, the confusion matrix could calculate
the accuracy, precision, recall, F1, Kappa, area under the curve (AUC), and Gini coefficient
of the model. These values were then used to draw the receiver operating characteristic
(ROC) and gain chart.

4.1. Accuracy

Accuracy refers to the ratio of instances in which the correct category was predicted.
The formula for calculating accuracy is as presented in Table 2 (a). High accuracy indicates
a low misjudgment ratio for categories. Although accuracy can be used to judge the overall
correct classification rate, it is not ideal for gauging the results of unbalanced samples.
When the ratio of a certain category is low and requires further attention, this can signify
that the category exhibits a different level of importance. If judgment is only made from the
accuracy, the results can be biased toward categories with high ratios. However, valuable
information sometimes may be excavated from categories with low ratios.

Table 2. Evaluation indicators for the detection model.

Number Indicator Formula

(a) Accuracy
TP+TN

TP+TN+FP+FN

(b) Precision (P)
TP

TP+FP

(c) Recall (R)
TP

TP+FN
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Table 2. Cont.

Number Indicator Formula

(d) F1
2×P×R

P+R

(e) ROC
X-axis: FP Ratio (1-Specificity);
Y-axis: TP Ratio (Sensitivity)

(f) AUC
1
2 (

TP
TP+FN + TN

FP+TN )

(g) Gini coefficient 2 × AUC − 1

(h) Kappa

Kappa = Po − Pe
1 − Pe ; Po = Accuracy;

Pe = [(TP+FP)×(TP+FN)]+[(FN+TN)×(FP+TN)]

(TP+TN+FP+FN)2

(i) Gain X-axis: Percentage of dataset;
Y-axis: Cumulative precision

4.2. Precision and Recall

Although the accuracy can be used to measure the quality of classification models,
it cannot serve all purposes in this respect. Thus, the precision and recall rate can be
calculated and used as evaluation indicators. The formula for precision and recall are
as listed in Table 2 (b) and (c). Precision is how many instances are predicted into the
correct categories, and recall is the proportion of instances among certain categories that
are correctly predicted.

4.3. F1

An inversely proportional relationship typically occurs between precision (P) and
recall (R). High P values result in low R values. To obtain the maximum P and R values
simultaneously, the F1 value is calculated from the harmonic mean of P and R. Therefore, P
and R are considered simultaneously, and a balance between the two indicators is obtained
and used to evaluate binary classification. Compared to conventional recognition accuracy
indicators, F1 appears a reasonable indicator because the error costs of the positive and
negative samples are assigned to others in the F1 approach [64]. Because numerators of P
and R are TP, the average values of the F1 reciprocal must be used: 1/F1 = (1/P + 1/R)/2.
The formula is presented in Table 2 (d).

4.4. ROC, AUC, and Gini Coefficient

Classifiers use the Receiver Operating Characteristic (ROC) for evaluation. The ROC
curve is obtained from the confusion matrix. The X-axis represents FP ratio (1-Specificity),
whereas the Y-axis represents TP ratio (Sensitivity) (Table 2 (e)). The ROC curve represents
the relative relationship of two categories and depicts changes in the interaction conditions
of sensitivity and specificity under this relative relationship. The ROC curve can be obtained
through first plotting the operating point of each category on the X–Y plane. A curve should
be drawn linking all operating points and should pass through both the minimum (0,0) and
maximum points. ROC curve is often used to characterize the performance of imbalanced
learning, as it is insensitive to class distribution [65].

For model performance analysis, an area under the curve (AUC) improves as it
approaches 1. As the distance between the curve and reference line increases, the testing
precision also increases, and the relevant formula is presented in Table 2 (f). The AUC
is often an indicator for a measure of the prediction accuracy of classifiers. A value
approaching 1.0 (i.e., the curve approaches the upper-left corner) indicates high prediction
accuracy [26]. In addition, the AUC value can accurately evaluate the quality of models,
even with unbalanced samples. The Gini coefficient is the ratio of the area between the
ROC curve and the diagonal line and the area (0.5) of a triangle on the diagonal line. The
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Gini coefficient is also an indicator that evaluates classification performance. The Gini
coefficient can be calculated from ROC and AUC values. The formula for calculating the
Gini coefficient is presented in Table 2 (g). Generally, a Gini coefficient above 60% indicates
a satisfactory classification model.

4.5. Kappa

Cohen [66] proposed the idea of Kappa to indicate the level of approximation between
classification results and actual situations. It is extensively used to precisely estimate image
classification. Kappa is used to verify the consistency of a method through repeated tests
and measure the accuracy of two methods in classification results. Calculation of the
Kappa coefficient is based on the overall statistical consistency of the confusion matrix, and
categories not located in the diagonal lines of the confusion matrix are also considered. The
formula for calculating the Kappa coefficient is presented in Table 2 (h). In the formula,
P0 represents overall agreement probability (i.e., accuracy), and Pe represents agreement
probability occurring by chance. The Kappa coefficient ranges between +1 (completely con-
sistent) and −1 (completely inconsistent). A zero value indicates random classification [67].
Therefore, the Kappa value is regarded as an effective method for analyzing a single con-
fusion matrix or comparing differences between various confusion matrices [68,69]. In
addition, it can be used to explain the accuracy of CE and OE in classification [70].

4.6. Gain Chart

A gain chart is a commonly used classification model evaluation chart. It can be
used to analyze the classification performance of models and can help the user find the
optimal prediction model. Percentages on the horizontal axis are ordered from high to
low and represent the percentage of the testing data set. The vertical axis represents the
percentage of the actual predicted values (Table 2 (i)). A gain curve of the chart curving
upward indicates a high model gain. If the gain curve distribution exhibits a 45◦ angle, this
indicates a random model and that classification gains are nonexistent.

Machine learning models are based on constructive feedback; they obtain and pro-
cess feedback in the form of various indicators and adjust accordingly until the desired
accuracy is achieved. In addition to enabling users to distinguish the performance between
models, other important functions of such indicators include facilitating interpretation of
the results of the model and identifying the task or goal of interest. Therefore, different
evaluation indicators are selected according to the distribution and features of data. When
the distribution of classes is uneven, indicating data imbalance, precision, recall, F1, ROC,
and AUC are generally used as evaluation indicators. The samples of efflorescence in the
images used in the present study were similar to those of normal samples; therefore, the
effect of data imbalance was negligible. Accuracy was identified as the most important
indicator for evaluating the models.

5. Results and Discussion

In supervised classification, classification testing is mainly performed from training
areas selected by users. Supervised classification exhibits more stable accuracy than unsu-
pervised classification. However, detecting building damage involves classifying damage
conditions from images by using machine learning classification. Thus, classification per-
formance depends on whether users are professionally competent in image analysis and
processes. In addition, training area selection may vary according to the surface complexity
of detected objects and the intensity of light sources. Thus, even with a large amount of
training samples, selecting specific data, research domains, applied characteristics, and
presentation strategies are imperative [71].

5.1. Evaluation of Classification Models

SVMs can be used to solve many complex binary classification problems [72]. The
concrete efflorescence detection in the current study was a binary classification task. A total
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of 500 random samples were selected for sample training and testing, and the accuracy,
PA, UA, OE, and CE of the SVM were calculated and are presented in Table 3. Predicted
quantity refers to the quantity of concrete efflorescence detected in the research area of the
current study, whereas the actual (Truth) quantity refers to the amount of efflorescence
plotted manually by hand. Accuracy refers to the ratio of instances in which the correct
category was predicted. A high accuracy indicated a low misjudgment ratio for the category.
For example, the quantity of efflorescence and normal (not efflorescence) correctly predicted
by the SVM were 272 and 179, respectively. This was then divided by the total number of
samples, n = 500. Thus, the accuracy rate was 90.2%. The accuracy of ML and RF was 89.8%
and 87.0%, respectively (Tables 4 and 5). Accuracy is an indicator that comprehensively
considers TP, TN, FP, and FN measurements, which depend on the balanced quantity of
positive and negative samples [62]. The ratio of efflorescence and normal in the current
study in the random sample was 3:2. Both had a similar quantity ratio. Therefore, the
classification accuracy of the supervised machine learning method could be evaluated by
selecting the actual efflorescence area and the normal area.

Table 3. Confusion matrix of SVM efflorescence classification.

Truth
Predicated

PA (%) OE (%)
Efflorescence Normal

efflorescence 272 30 90.1 9.9
normal 19 179 90.4 9.6

UA (%) 93.4 85.6 Accuracy = 90.2%
CE (%) 6.6 14.4 n = 500

Table 4. Confusion matrix of ML efflorescence classification.

Truth
Predicated

PA (%) OE (%)
Efflorescence Normal

efflorescence 271 31 89.7 10.3
normal 20 178 89.9 10.1

UA (%) 93.1 85.2 Accuracy = 89.8%
CE (%) 6.9 14.8 n = 500

Table 5. Confusion matrix of RF efflorescence classification.

Truth
Predicated

PA (%) OE (%)
Efflorescence Normal

efflorescence 264 38 87.4 12.6
normal 27 171 86.4 13.6

UA (%) 90.7 81.8 Accuracy = 87.0%
CE (%) 9.3 18.2 n = 500

Precision is the actual quantity of efflorescence divided by its total predicted quantity
of efflorescence. For example, the actual quantity of efflorescence is 272. When this number
is divided by the SVM-predicted quantity of efflorescence (i.e., 291), a precision rate of
93.4% is calculated. Recall is the predicted quantity of efflorescence divided by its actual
quantity of efflorescence. For example, the predicted quantity of efflorescence is 272. When
this number is divided by the actual quantity of efflorescence (i.e., 291), a recall rate of 90.1%
is calculated (Table 3). As classifiers, SVMs and ML do not differ considerably in precision,
recall, PA, and UA. All three supervised machine learning methods used in this study
could accurately detect the presence of efflorescence. The researchers believed that this was
caused by the different distribution of the spectral properties (RGB) of efflorescence and



Symmetry 2022, 14, 2384 13 of 21

normal images. According to the results produced by the confusion matrices, the error rate
(i.e., OE and CE) among different classifiers were nearly similar.

F1 is typically used to evaluate the classification performance of information
retrieval [73]. Although accuracy can be used to evaluate the reliability of a classifier’s
overall performance, the classification would be biased toward categories with high quan-
tity ratios in cases of unbalanced categories. Introducing F1 enables the simultaneous
consideration of false positives and false negatives. Large measured F1 values result in
ideal identification performance. In the current study, the SVM exhibited its highest F1
value of 0.88, followed by RF (F1 = 0.874) and ML (F1 = 0.839).

The X-axis of the ROC curve represents the FP rate, whereas the Y-axis of the curve
represents the TP rate. The FP rate is the probability of misjudgment when the data do
not belong to a certain category, whereas the TP rate is the possibility of making a correct
judgment when the data do belong to a certain category. Generally, large TP rates and small
FP rates are desirable. If the curve passes through the left-upper corner point at (0, 1), it
means the damage classification is perfect in accuracy [74]. The ROC curve was adopted
in the current study to examine the true and false quantity of efflorescence based on the
predicted and actual quantity of efflorescence. Therefore, the ROC curve could be used to
measure changes in the TP rate under different FP rates. For the SVM, when the FP rate
was 0.096, the TP rate was 0.901. For ML, when the FP rate was 0.101, the TP rate was 0.897.
For RF, when the FP rate was 0.136, the TP rate was 0.874 (Figure 4).
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In addition, the FP rate results vary according to the classification threshold value.
Therefore, the size of the AUC can be used as an indicator to select the optimal classification
model. The AUC can be used to verify the performance of the classification model. High
AUC values result in satisfactory model performance. If a machine learning ROC curve is
completely wrapped by another machine learning ROC curve, it confirms that the latter
exhibits more satisfactory performance than the former (e.g., in Figure 4, the ROC curve of
ML is wrapped by the ROC curve of the SVM). When two machine learning ROC curves
intersect, judging which method exhibits more satisfactory performance becomes difficult.
In such cases, the AUC value size must be compared. In this study, the SVM exhibited
the highest AUC of 0.902, followed by those of ML (AUC = 0.898) and RF (AUC = 0.869)
(Table 6). The size of the Gini coefficient is related to the AUC size (Gini = 2*AUC – 1). A
large AUC results in a large Gini coefficient and favorable model performance. The Gini
coefficient of the SVM and ML was 0.805 and 0.796, respectively, which indicates that the
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two methods exhibited similar classification model effectiveness. The Gini coefficient of
the RF method was 0.738 (Table 6).

Table 6. Classification performance of the supervised machine learning methods.

Accuracy F1 AUC Gini Kappa Gain

SVM 0.902 0.880 0.902 0.805 0.797 0.774
ML 0.898 0.874 0.898 0.796 0.789 0.771
RF 0.870 0.839 0.869 0.738 0.731 0.751

The Kappa coefficient typically ranges between 0 to 1, with 0.0–0.20 representing a
slight consistency, 0.21–0.40 indicating a fair consistency, 0.41–0.60 indicating a moderate
consistency, 0.61–0.80 indicating a substantial consistency, and 0.81–1.00 indicating nearly
perfect consistency. The Kappa coefficient of the SVM, ML, and RF was 0.797, 0.789, and
0.731, respectively (Table 6). All three methods exhibited a substantial level of consistency.
In addition, the researchers used the gain chart to evaluate the detection performance of
the first 50% of test data. The concrete efflorescence detection results indicated that the
SVM exhibited the highest performance, whereas RF exhibited the lowest performance. At
50% of the test set, the three types of supervised machine learning methods—SVM, ML,
and RF—could predict 77.4%, 77.1%, and 75.1% of the actual values (Figure 5).
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Figure 5. Gain chart of three machine learning algorithms.

Evaluating the generalizability of machine learning methods requires effective and
feasible experimental estimation methods. Evaluation standards for gauging models are
also needed to measure performance. If the aim is to identify the most ideal classification
results for specific research, a comparative study involving different classifiers is typically
needed. Therefore, the researchers of the current study adopted the six evaluation indicators
listed in Table 6 to evaluate the performance of the three supervised machine learning
algorithms (i.e., SVM, ML, and RF) during classification. Overall, the SVM exhibited
the highest concrete efflorescence detection (classification) performance, whereas ML.
RF exhibited poorer overall performance. Both the SVM and ML are statistical learning
classification methods. The SVM and ML detect the presence of concrete efflorescence
more effectively than the rule-based classification approach of RF. Thus, they produce more
ideal classification results than RF does. For example, data indicates that the SVM and ML
performed more satisfactorily than RF across all evaluation indicators.
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5.2. Efflorescence Detection Results

Step 1: The efflorescence in the image is manually labeled, and the features of the
efflorescence regions are selected as training samples. Step 2: The characteristics of efflores-
cence differ from those of normal concrete; accordingly, each model calculates the feature
values in each damage image and uses the values to detect efflorescence. Step 3: A total of
l500 checkpoints are randomly generated from the image, and the efflorescence labels are
used as the standard. Step 4: The model is evaluated on the basis of the classification results.

In this study, the researchers detected concrete efflorescence by using three supervised
machine learning methods: the SVM, ML, and RF. Two classification categories were used in
the current study: efflorescence areas (black) and normal areas (light gray). The efflorescence
detection results of the SVM, ML, and RF, as displayed in Figure 6b–d, were compared
to the original efflorescence image in Figure 6a. The three different classifiers produced
nearly similar concrete efflorescence detection results. For the visual presentation, the three
supervised classification methods did not exhibit prominent differences. Therefore, using the
confusion matrix was necessary to verify the accuracy of supervised classification methods.
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Figure 6. Efflorescence detection results of various supervised machine learning methods.

The digital images obtained from the building surfaces contained valuable information.
The digitized surface damage areas and quantity could be used to indicate the extent
of building degradation. In the SVM efflorescence detection results, the scalar size of
the spectrum of the digital image (Figure 7a) and vector of the spectrum (Figure 7b)
were calculated, and the analysis indicated that the number of efflorescence scalar was
170 (the total quantity is 300), which constituted approximately 56.7% of the total scalar
quantity. The number of the efflorescence vector was 102 (the total quantity was 192), which
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constituted approximately 53.1% of total vector quantity. The efflorescence ratio data could
serve as a reference for facility managers to determine the scope of maintenance operations.
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Performance measurement reflects task requirements. When comparing the per-
formance of classification models, using different evaluation indicators often results in
different judgment outcomes. Therefore, the quality of models depends on the adopted
machine learning algorithm, data, and purpose. Classification reliability is largely deter-
mined by the quality of training data, which is the image quality. Kakumanu et al. [75]
noted that the color information of images may be influenced by environmental conditions,
such as changes in illumination conditions, weather, background color, and characteristics
of the camera used for computer vision. Therefore, in environments with different light
sources and illumination intensity, the image information of building damage also differs,
and these differences exert different levels of influence on machine learning detection
results. During actual building damage detection operations, controlling environmental
illumination conditions is difficult. Therefore, how different light source conditions and
illumination intensity result in misjudgment must be understood.

Because the SVM detected concrete efflorescence more effectively than did ML and
RF in this study, the researchers also compared the efflorescence detection performance
of the SVM under different light sources and illumination intensity. Under illumination
from artificial fluorescence light (Figure 8b) and nonuniform light (Figure 8c), the SVM
may misjudge normal surfaces as those with efflorescence, and as illustrated by the red
frame lines in Figure 8e,f. Various texture and color features were present on the concrete
surface. Therefore, nonuniform light sources and illumination intensity typically result
in many detection errors. When light intensity is compelling, it is difficult to distinguish
efflorescence damage from the concrete surface with reflected light [76]. The SVM exhibited
ideal efflorescence detection performance (Figure 8d) under the illumination of natural
light (Figure 8a). Therefore, light source conditions may cause errors in image detection,
and the machine learning field must prioritize resolving this problem.

Vetrivel et al. [71] stated that image-based classification methods exhibit differing
performances according to the data type or classification scheme. For example, differences
in factors such as the spectral band, supplementary data, and research area lead to different
results for all classification methods. Apart from the classification method, the features of
the image are crucial for influencing classification performance. In conclusion, classifying
or detecting images depends on the following factors: training and testing data set, image
type, image quality, and lighting conditions. Automatized surface damage detection is
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helpful for evaluating the overall quality of building condition information and helps
enhance the effectiveness of building maintenance. However, such a method cannot resolve
the entire problem and only represents one part of the complex inspection process. It
mainly assists engineering personnel to effectively and rapidly detect surface defects on
facilities. Constant and meticulous examination and adjustment still must be conducted to
enhance the overall quality of examination data.
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Figure 8. SVM detection results under different light source conditions: (a) natural light source,
(b) fluorescence light source, (c) nonuniform light source, (d) SVM efflorescence detection under
natural light source, (e) SVM efflorescence detection under fluorescence light source, and (f) SVM
efflorescence detection under nonuniform light source.

6. Conclusions

Developing automatized defect and damage detection has always been a direction
pursued by the building industry. However, the greatest challenge now is enhancing the
accuracy and effectiveness of detecting targeted objects by using high-quality sensor im-
ages and appropriate classification methods. Some researchers have attempted to develop
advanced classification methods and techniques (e.g., machine learning or deep learning)
for detection procedures such as image processing, training and testing, and evaluating
performance. For example, Crespo et al. [77] used infrared images and unsupervised
machine learning to detect efflorescence; the accuracy rates of the fuzzy k-means, k-means,
and ISODATA algorithms ranged from 80.92% to 86.25%. Instead of unsupervised ma-
chine learning, this study used SVM-, ML-, and RF-based supervised machine learning
algorithms, which can achieve higher performance because they can automatically extract
abstract features of efflorescence from images with accuracy rates of 87% to 90.2%. Re-
searchers have made remarkable progress in applying deep learning algorithms in image
recognition. Bouzan et al. [78] used unmanned arial vehicle images and a convolutional
neural network to detect efflorescence with a precision of 89%. The precision of machine
learning models in the present study ranged from 90.7% to 93.4%. Because the images and
devices used in the present study and the study by the above research differed considerably,
the studies cannot be fairly compared; however, supervised machine learning still has
certain advantages in detecting efflorescence.
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The researchers of the current study constructed a concrete efflorescence detection
model by using digital camera images and supervised machine learning methods, mainly to
make use of high-resolution images and automatized and rapid machine learning detection
methods to calculate the image data features of concrete efflorescence and subsequently
use these features as the basis of classification. Subsequently, various evaluation indicators
were used to verify the effectiveness of the classification models. The researchers adopted
six types of evaluation indicators (i.e., accuracy, F1, AUC, Gini coefficient, Kappa, and gain
chart) to comprehensively compare the classification performance of the three supervised
machine learning methods. The results indicated that the SVM exhibited the highest
concrete efflorescence detection performance, followed by ML. However, the two methods
did not differ considerably in detection performance.

The current study also captured concrete efflorescence images under different con-
ditions (e.g., natural and man-made light sources and nonuniform illumination). This
experiment aimed to gain understanding on the influence of light source conditions and
illumination intensity on classification results. This is beneficial for the development of
robust classifiers. Improving computer vision techniques can reduce noise limitations,
such as those caused by low light, low illumination intensity, nonuniform illumination,
and shadow projection to ensure the extensive applicability of the techniques. Developing
advanced image and machine learning techniques enables civil engineering personnel to
automatically detect surface defects in target objects.

Images of damage collected in real-world environments often have heterogeneous
stains and may overlap. Machine learning still has limitations in extracting features from
such images. In addition, the color of efflorescence is similar to that of some types of
concrete, and machine learning models can therefore easily confuse efflorescence with
background materials. Machine learning models have difficulty taking full advantage of the
multiple features extracted from efflorescence, resulting in a time-consuming and inaccurate
training process for the model. Therefore, the use of machine learning to process and classify
such images requires modification and feature extraction testing. Furthermore, supervised
machine learning often requires manual labeling, which is resource-intensive and not
conducive to automatic damage detection. The integration of pretrained machine learning
models into drone-based or robotic systems to achieve real-time automated detection must
be further explored in the future.
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