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Abstract: Widely available real-time data from the sensors of IoT infrastructure enables and increases
the adoption and use of cyber-physical production systems (CPPS) to provide enterprise-wide status
information to promptly respond to business opportunities through real-time monitoring, supervision
and control of resources and activities in production systems. In CPPS, the failures of resources are
uncertainties that are inevitable and unexpected. The failures of resources usually lead to chaos on
the shop floor, delayed production activities and overdue orders. This calls for the development of an
effective method to deal with failures in CPPS. An effective method to assess the impacts of failures
on performance and create an alternative plan to mitigate the impacts is important. Robustness,
which refers to the ability to tolerate perturbations, and resilience, which refers to the capability to
recover from perturbations, are two concepts to evaluate the influence of resource failures on CPPS.
In this study, we developed a method to evaluate the influence of resource failures on CPPS based on
the concepts of robustness and resilience. We modeled CPPS by a class of discrete timed Petri nets. A
model of CPPS consists of asymmetrically decomposed models of tasks. The dynamics of tasks can
be represented by spatial-temporal networks (STN) with a similar but asymmetrical structure. A joint
spatial-temporal networks (JSTN) model constructed based on the fusion of the asymmetrical STNs
is used to develop an efficient algorithm to optimize performance. We characterized robustness and
resilience as properties of CPPS with respect to the failures of resources. We analyzed the complexity
of the proposed method and conducted experiments to illustrate the scalability and efficiency of the
proposed method.

Keywords: robustness; resilience; cyber-physical production system; uncertainty; failure

1. Introduction

Cyber-physical systems (CPS) provide a paradigm for monitoring, supervision and
control of resources and activities in enterprises by exploiting the real-time data acquired
from sensors. This makes managers grasp the enterprise-wide status and realities of the
current situation in real-time and facilitates decision-making. Cyber-physical production
systems (CPPS) are cyber-physical systems applied to manufacturing systems to move
toward Industry 4.0. A cyber-physical production system consists of two parts: the physical
and cyber worlds. A cyber-physical production system relies on computational components
in the cyber world and physical components in the physical world that are seamlessly
integrated through communication and control and interact with each other to sense,
monitor and control the changing state of the real world [1].

As a CPS consists of components interconnected through a network and information
infrastructure, it relies on actuation commands and sensor measurements to be sent over
the network and correctly received. Due to the interconnected system of systems nature of
CPS, the operation of CPS is subject to a variety of uncertainties [2] and is vulnerable to
different types of attacks [3]. Uncertainties, such as unexpected or unforeseen events due
to the faults of components or failures of machines, often have impacts on the operation of
CPS. Several methods have been developed to tackle uncertainties in CPS. For example,
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the study of [2] classifies uncertainties into eight categories and divides the methods to
handle uncertainties into seven classes to pave the way for the design of uncertainty-aware
self-adaptive components in CPS. The study [4] focused on modeling uncertainties, and [5]
proposed a distributed fault-tolerant controller based on a distributed fault estimation
observer to compensate for faults. Besides uncertainties, the appearance of different types
of attacks, such as denial-of-service or integrity attacks, poses a challenge to the design of
CPS. Different schemes or methods have been proposed to maintain the operation of CPS
in the presence of different types of attacks. For example, in [6], the authors proposed a
scheme consisting of a detection unit and a control unit to prevent actuation attacks. For
another example, in [7], the authors proposed a method to ensure safety for the overall
system without relying on any detection algorithm in case all the actuator commands and
sensor measurements were compromised. The recent developments mentioned above
indicate that the design of resilient CPPS has become an important issue.

Depending on the context, the meaning of “resilience” varies. For a human being,
“resilience” refers to the ability to withstand adversity and recover quickly from difficulties.
For CPS, “resilience” may refer to the ability to take proper actions to prevent disruption
from attacks and ensure operation in the presence of unexpected events or uncertainties.
The resilience concept has been applied in the context of CPS to develop effective methods
either to accommodate changes due to uncertainties, such as failures of machines, resources
or subsystems, or to prevent CPS from attacks and respond to attacks. Ensuring the
resiliency of CPS against different types of uncertainties and attacks has been an important
research issue in recent years. Although both the ability to accommodate changes due to
uncertainties in CPS and the ability to prevent CPS from potential attacks are important
issues for resilient CPS, in this study, we focused on the development of a method to
deal with the failures of resources in CPS under the premise that some method has been
implemented in CPS to ensure resilience against attacks.

Cyber-physical production systems operating in the real world must face changes and
unexpected events, mostly arising from uncertainties inside or outside the system. Different
types of uncertainties, such as failures, network delay, noise, etc., have negative effects
on the operation of cyber-physical production systems [2]. Besides the issue of designing
controllers to ensure operations in cyber-physical production systems, the development
of methods to deal with uncertainties is important as well. The existence of uncertainties
in cyber-physical production systems sparks new research directions in the research com-
munity to develop effective methods to deal with uncertainties. In the literature, there are
studies on modeling and methods to tackle uncertainties in the context of cyber-physical
systems [4,5,8–11]. Uncertainties lead to changes in cyber-physical production systems.
Some of the uncertainties arise from entities in cyber-physical production systems whereas
others may come from the external environment. In cyber-physical production systems,
resources are not always reliable and may fail at any point in time. That is, failures of
resources are inevitable and unexpected. In cyber-physical production systems, resource
failures refer to the malfunction of resources, such as machines, robots, AGVs, material
handling systems, etc., that make the resources stop working either partially or completely.
In this study, as we focused on the assessment of the impacts on the operations of CPPS,
resource failures refer to situations that lead to the unavailability of resources to perform
operations. The failures of resources constitute one important source of uncertainties in
cyber-physical production systems. This requires a mechanism to handle the exception and
find an alternative solution.

Robustness [12] and resilience [13] are two concepts for evaluating the impacts of un-
certainties on cyber-physical production systems. Robustness refers to the ability to tolerate
perturbations whereas resilience refers to the capability to recover from perturbations. For
cyber-physical production systems, an effective method should be developed to support the
operations in the presence of uncertainties. In the previous study [14], the control problem
for the nominal situation in cyber-physical production systems was studied. However, the
problem of dealing with uncertainties in cyber-physical production systems has not been
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explored. Although the preliminary studies [15,16] shed light on the development of a
method to assess the impact of resource failures, there still lacks an in-depth study on the
analysis of the robustness and resilience properties of cyber-physical production systems.
In this study, we proposed a method for evaluating the impact of failures on performance
based on the preliminary results presented in [15,16] and the concepts of robustness [12]
and resilience [13].

There are some characteristics specific to cyber-physical production systems. The
workflows in cyber-physical production systems are production processes that require the
allocation of resources to process operations as needed. The functions of resources can be
flexibly configured, and resources are shared among different operations. The precedence
constraints between operations impose strict constraints on the processing of operations.
These characteristics make cyber-physical production systems different from cyber-physical
systems. In production processes, several in-process parts may contend with one another
for limited shared resources. Improper allocation of resources may bring cyber-physical
production systems to undesirable states, such as blocking and circular waiting. Due to the
complex interactions between the resources and workflows of production activities, care
should be taken to control the operations in cyber-physical production systems to achieve
the goal of production, i.e., to meet order requirements without entering undesirable states.
Petri nets are a tool widely used to model manufacturing systems [17]. Discrete timed
Petri nets are a variant of Petri nets that can be used to model and control cyber-physical
production systems [14,15,18,19]. In this study, we adopted discrete timed Petri nets as the
tool to model and analyze cyber-physical production systems. To deal with the failures of
resources in cyber-physical production systems, we extended the class of discrete timed
Petri nets proposed in [19] with an uncertainty model. Although this study was developed
based on the preliminary results presented in [15], it was different from [15] in that it
included several theorems and numerical results to verify the computational feasibility of
the proposed approach, which were not included in [19].

A model of CPPS consists of asymmetrically decomposed models of tasks. The
dynamics of tasks can be represented by spatial-temporal networks (STN) with a similar
but asymmetrical structure. A joint spatial-temporal networks (JSTN) model constructed
based on the fusion of asymmetrical STNs was used to develop an efficient algorithm to
optimize performance. The results of the experiments showed that the JSTN model created
by the fusion of asymmetrically decomposed STN models of tasks significantly improved
the efficiency of the solution algorithm.

This study was different from our previous works in that the structure of the proposed
models allowed for more complex patterns of resource usage that could not be represented
by the models proposed in [14,18]. Although resources may be shared between different
operations in [14,18], a resource held by a task in operation could always be released and
returned to the idle state without waiting for the other resources required for the next
operation of the task in the models in [14,18]. The characteristics of the models proposed
in [14,18] only hold for some restricted classes of production processes. For most production
processes, the “hold-and-wait” situation is common. “Hold-and-wait” refers to the situation
in which a task is holding a single resource or multiple resources while simultaneously
waiting for one or more of the others required to perform the next operation. For example, a
task in the output buffer of a machine may hold the input buffer and simultaneously waits
for a robot to remove the task from the output buffer. That is, the task holds a resource
(the output buffer) and waits for the next resource (the robot) to process the next operation.
However, the models proposed in [14,18] could not model the “hold-and-wait” situation.
The “hold-and-wait” situation could be captured and represented in the CPPS models
of this study. The structure of the CPPS models used in this study is the same as the
one proposed in [19]. This study was different from [19] in that the work of [19] focused
on the development of a control method for nominal CPPS whereas this study explores
a robustness property and a resilience property of the CPPS with respect to failures of
resources. This study was an extended study based on the preliminary results of [15,16].
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The contributions of this study are threefold: (i) to propose a model to capture resource
failures for a class of cyber-physical production systems based on discrete timed Petri nets,
(ii) to develop a method to analyze the influence of resource failures on nominal operations
and performance of the cyber-physical production systems without relying on different
variants of state class graphs or timed extended reachability graph, which suffers from state
explosion problems and (iii) to uncover a robust property and a resilience property of cyber-
physical production systems, characterize a polynomial lower bound on computational
complexity to test these properties and verify the validity of the lower bound by results
of experiments.

In the rest of this paper, we first review existing studies relevant to cyber-physical
systems and cyber-physical production systems in Section 2, the literature review section.
In Section 3, we present the formal description of the robust problem and resilience problem
in cyber-physical production systems. In Section 4, we introduce the approach to analyzing
the resilience and robustness properties of cyber-physical production systems. The com-
putational complexity required to check the conditions of the resilience and robustness
properties is also analyzed in Section 4. The examples and computational experiences
based on the proposed method be presented in Section 5. We discuss the results in Section 6
and conclude this paper in Section 7.

2. Literature Review

We reviewed literature relevant to this study in this section. Our review is divided into
two parts. The first part of this section is related to research issues in cyber-physical systems.
In particular, we summarized the state of the art of studies on robustness and resilience in
cyber-physical systems. We provided review on studies of robustness properties of Petri
nets in the second part of this section as the tool adopted to study robustness property and
resilience property of cyber-physical systems was a variant of Petri nets.

Widely available real-time data from sensors of IoT infrastructure enables and sig-
nificantly increases adoption and use of cyber-physical systems to provide enterprise-
wide status information to respond to business opportunities promptly. The paradigm
of cyber-physical systems has been applied in different sectors, including aerospace [20],
security [21], energy [22], healthcare [23], manufacturing [24] and transportation [25], and
has opened the door for the creation of other potential applications [26].

Cyber-physical systems largely consist of cyber components and physical components
that are connected through networking and interact with each other to achieve some
goals. Cyber-physical systems operate based on the computation and intelligence of
cyber components based on real-time information from sensors to manage and control the
physical components in the real world. Although this architecture provides flexibility to
deal with changes and demands, it also sparked several research issues. These research
issues include the integration of cyber-physical systems and Internet of Things [27], the
modeling of cyber components [28,29], the design of controllers [30] and applications of
cyber-physical systems in robotic process automation [31]. A review of cyber-physical
systems is found in [32].

Uncertainties from the real world usually led to unexpected events that may take place
at any point in time and impact the operations of cyber-physical systems. The development
of effective strategies and methods to handle and respond to uncertainties or unexpected
events is an important research issue. Several concepts have been proposed to deal with
uncertainties in cyber-physical systems. These concepts include the robustness [12] and re-
silience of cyber-physical systems [13,33–37]. For cyber-physical systems, robustness refers
to the ability to tolerate perturbations whereas resilience refers to the capacity to recover
from perturbations. There are a growing number of studies on handing uncertainties in
cyber-physical systems [2,4,5,8–11]. For example, [2] provided an overview of approaches
to dealing with uncertainties in the design of CPS through a review of relevant scientific
projects with industrial leadership, classification of uncertainties and methods used to deal
with them.
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In [2], the authors classified uncertainties into eight categories: (U1) network and
delays, (U2) missing information, (U3) noise, (U4) violating operational boundaries, (U5)
ambiguity and ill-definition, (U6) failures, (U7) inconsistency and (U8) other uncertainties
related to the context. The authors also classified the methods to handle uncertainties into
seven classification categories: (HU1) data filtering and estimation, (HU2) statistics and
probability, (HU3) (re)configuration, (HU4) machine learning and neural networks, (HU5)
verification, (HU6) human-in-the-loop and (HU7) declarative programming. For example,
in [5], the authors considered cyber-physical systems (CPS) with actuator faults and pro-
posed a distributed fault-tolerant controller based on a distributed fault estimation observer
to compensate for faults. In [4], the authors proposed probabilistic extensions of CCSL
called pCCSL to MARTE/CCL to model uncertainties where pCCSL was a probabilistic ex-
tension of CCSL and MARTE was the OMG standard for modeling real-time and embedded
applications. In [8], the authors extended the restricted use case modeling methodology
and its supporting tool to specify uncertainty. In [9], the authors proposed a confidence-
based logic by using historical observations to express the degree of confidence of the
occurrence of a future event. The work in [10] summarized several existing techniques for
addressing uncertainty in self-adaptive systems and outlined a relevant research agenda
for uncertainty management. Hardware-in-the-loop testing is important for cyber-physical
systems but is impacted by the uncertainties. In [11], the authors provided uncertainty-
aware analysis methods to check the well-behavedness of hardware-in-the-loop testing. In
the literature, handling uncertainties due to failures in cyber-physical systems has been
studied in [18]. Cyber-physical production systems (CPPS) are cyber-physical systems
applied in manufacturing systems. Due to complex interactions between resources and
activities, dealing with uncertainties due to failures in cyber-physical production systems
presents a challenge. In this study, we focused on handling uncertainties due to failures in
cyber-physical production systems based on the preliminary results reported in [16].

To develop a method to deal with uncertainties due to failures in cyber-physical
production systems, a proper modeling tool must be used. The modeling tool should be
able to capture characteristics of asynchronous, synchronous and current events in cyber-
physical production systems. Petri nets are a class of modeling tool for modeling production
systems [17]. Many variants of Petri nets have been proposed in the past decades and
widely used in a wide variety of applications. Depending on whether time semantics is
supported, Petri nets are classified into untimed Petri nets and timed or time Petri nets.
For example, color Petri nets [38] are a class of untimed Petri nets that extend Petri nets
by allowing information to be attached into each token and changed after transition firing.
Time Petri nets [39] and timed Petri nets [40] endow Petri nets with the capability to model
firing time in the nets. If the firing time is deterministic, the timed Petri nets are called
deterministic timed Petri nets [41]. Timed Petri nets with stochastic firing times are called
stochastic timed Petri nets [42]. Deterministic timed Petri nets are used in scheduling
problems whereas stochastic timed Petri nets are used in performance evaluation. For the
problem of dealing with uncertainties due to failures, we adopted a class of deterministic
timed Petri nets. For modeling cyber-physical production systems, we needed to use timed
Petri nets as timing is an important factor in the evaluation or optimization of performance.
As the cyber-world model of cyber-physical production systems works in discretized world,
it was assumed that the time horizon was divided into periods, and the duration of each
period was the same. The way time was discretized was similar to the one used in [43].
We adopted discrete timed Petri nets in which the firing time of a transition was specified
by periods. The model adopted in this study extended the one in [18] by allowing more
complex resource sharing patterns in CPPS. As uncertainty model was not considered
in [19], the model used in this study extended the one in [19]. This study focused on the
analysis of the impact on operations of complex production processes in CPPS and was
different from [37], which studied fault tolerance of service-oriented architecture to support
real-time fault detection and recovery for CPS. This study was different from [35] as [35]
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only provided a design method and resilient architecture for CPPS, without addressing the
issue, to assess the impact on CPPS due to failures of resources.

The proposed approach was different from the existing ones in the literature as it was
not based on the concept of state class [44] proposed by Berthomieu and Menasche or its
variants, such as the timed aggregate graph proposed by Klai et al. [45] or the approximated
timed reachability graph [46] proposed by Lefebvre. Although all the above approaches
can be applied to general time Petri nets, they suffer from state explosion problems and can
be applied to small problems only. Our approach tackled the complexity issue by exploiting
the structure of the deterministic timed Petri nets. Therefore, our approach is scalable with
respect to the problem size according to the experimental results presented later.

3. Resilience Problem and Robustness Problem Formulation for a Class of CPPS

In this section, a problem formulation based on discrete timed Petri nets for the analysis
of robustness properties of a class of CPPS was introduced. The robustness analysis problem
was formulated on the premise of a given nominal discrete timed Petri net model of CPPS.
It focused on the analysis of the influence of disturbance due to resource failures on the
operations and performance of the nominal system. In this study, we first introduced the
nominal model of a class of CPPS and then introduced an uncertainty model to formulate
the robustness and resilience problems.

Table 1 lists the variables and symbols used in this study.

Table 1. Symbols and Notations.

Symbol/Variable Meaning

Φ The order deadline
Π The number of periods in the time horizon
τ The index of a period, τ ∈ {1, 2, . . . , Π}

g(τ) Penalty function for earliness for τ ≤ Φ
h(τ) Penalty function for lateness for τ > Φ

J The total number of different task subnets
J The set of indices of task subnets, J = {1, 2, . . . , J}
j A type of task subnet, j ∈ J

Dj
The requested quantity of the products (demand) to be produced by
type-j task subnets, j ∈ J = {1, 2, . . . , J}

∆Dj
The quantity of type-j products associated with f∆ influenced by
resource failures ∆m for each j ∈ J

∆D ∆D = ∑
j∈J

∆Dj

GJj The model of type-j task subnet, GJj = (Pj,Tj,Fj,mj0,µj)
Nj Total operations in GJj
N N = ∑

j∈J
Nj

R Total resource types
R The set of indices of different types of resources, R = {1, 2, . . . , R}
r The index of a resource type, ∀r ∈ R = {1, 2, . . . , R}
k The k-th operation performed by a resource
‖ A merging operator to merge two or more Petri nets

GRr A model of type-r resource subnet, GRr = (Pr,Tr,Fr,mr0,µr)

Crt
The nominal capacity of type-r resources in period t; Crt was set to
mr0(r) for all t

C̃rt The residual capacity of type-r resources in period t

G
A CPPS model, G = (P, T, F, m0, µ) = GJ‖GR with GJ = ‖

j∈J
GJj and

GR = ‖
r∈R

GRr

m0 An initial marking of G
m A marking of G
m f A final marking
Gc Gc = (P, T, F, m0, µ, u): A CPPS model under a control policy u
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Table 1. Cont.

Symbol/Variable Meaning

Tc The set of controlled transitions in G = (P, T, F, m0, µ); Tc ⊆ T
R(m0) The set of markings reachable from m0

u A control policy of G;u: R(m0)→ Z|Tc |

δ A |P| dimensional perturbation vector
δi The i−th element δi of the perturbation vector δ

ωil
A discrete time failure interval, ωil = [αil βil ], where i ∈ {1, 2, . . . , |P|}
and l ∈ {1, 2, . . . δi}

ω
All discrete time failure intervals ωil associated with δ,
wherei ∈ {1, 2, . . . , |P|} and l ∈ {1, 2, . . . δi}.

∆(m)
The uncertainty model of captured resource failures for a reachable
marking m, ∆(m) = (m,δ,ω).

Γpr

Γpr = {
1 i f p ∈ P ∩ (Pr\{r})
0 otherwise ; Γpr was equal to one if p was involved

in an operation of type-r resources, and Γpr was equal to zero
otherwise.

Ωplτ

Ωplτ = { 1 i f τ ∈
[
αpl βpl

]
0 otherwise

; Ωplτ was equal to one if the l−th failure

at place p influenced the capacity of the corresponding resources in
period τ, and Ωplτ was equal to zero otherwise.

STN j(Vj, Aj)
The directed graph of the spatial-temporal network (STN) of type-j task
subnet, j ∈ J = {1, 2, . . . , J}; Vj was the set of vertices, and Aj was the
set of arcs in the STN of type-j task subnet.

JSTN(V, A)
The directed graph of a joint spatial-temporal network (JSTN); V was
the set of vertices, and A was the set of arcs in the JSTN.

a(v, w),(v, w),a An arc from a start nodev to an end node w; it is denoted as a(v, w) and
is abbreviated as a or (v, w).

f A solution of the nominal optimization problem (NOP)

f (a), f (a(v, w)),
f (v, w)

f (a(v, w)) denotes the value of the solution f of NOP on the arc a
=a(v, w) =(v, w) of JSTN(V, A). f (a(v, w)) is abbreviated as f (v, w) or
f (a) whenever it is clear from the context

s The start node of JSTN(V, A)
ej The end node for type-j task in JSTN(V, A);j ∈ J

V(v) The subset of nodes in V directed connected to v;v ∈ V\{s}\{ej∀j ∈ J}

Vj(s)
Vj(s) = {w

∣∣∣(s, w) ∈ Aj} is the set of end nodes of the outgoing arcs
stemming from s in Aj.

Vj(ej)
Vj(ej) = {w

∣∣∣(w, ej) ∈ Aj} is the set of start nodes of the incoming arcs
ending with node ej in Aj.

3.1. A Nominal Model for a Class of CPPS

We used discrete timed Petri nets as the cyber world models to describe the production
processes of a class of CPPS with different types of tasks and a set of distinct types of
resources. The construction of the cyber world model of CPPS was easily performed by
using a bottom-up approach. The bottom-up approach first starts with the construction
of the cyber world model of each type of tasks, called a task subnet, and continues to
construct the cyber world model of each type of resource, called a resource subnet. The
above bottom-up approach created a set of task subnets, GJj and j ∈ J, and a set of resource
subnets, GRr and r ∈ R. Note that each task subnet, GJj and j ∈ J, and each resource
subnet, GRr and r ∈ R, were described by discrete timed Petri nets. Each task subnet, GJj
and j ∈ J, described the workflow of a production process whereas each resource subnet
GRr and r ∈ R, described the production activities (operations) that could be performed
by the specific type of resources. The cyber world model of the class of CPPS considered
in this study was constructed by taking into account the interactions between each task
subnet, GJj and j ∈ J, and each resource subnet, GRr and r ∈ R.
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Definition 1. [Task subnet]: A type-j task subnet, j ∈ J , is a discrete timed Petri net
GJj = (Pj, Tj, Fj, mj0, µj), where Pj = {pjn

∣∣n ∈ {0, 1, 2, . . . , Nj}} is the set of places;
Tj = {tjn

∣∣n ∈ {0, 1, 2, . . . , Nj + 1}} is the set of transitions; Fj is the flow relation; mj0 is the
initial marking; µ : Tj → Z specifies the lower bound of firing time. The structure of GJj is
sequential with tj0 as the first transition denoting the release of a task and tjNj+1 representing
removal a completed task.

Two examples of the task subnets GJ1 and GJ2 can be found in Figure 1a,b.

Definition 2. [Resource subnet]: A type-r resource subnet, r ∈ R , is a discrete timed Petri net
GRr = (Pr, Tr, Fr, mr0, µr) consisting of a number of activities represented by a circuit [17] of
transitions and places, where Pr is the set of all places in the circuits;Tr is the set of transitions in
the circuits;Fr is the flow relation; mr0 is the initial marking; µr : Tr → Z specifies the firing time
of each transition in Tr. The idle state of GRr is denoted by r.

Two examples of resource subnets GR1 and GR2 can be found in Figure 1c,d. GR1
consisted of four circuits, r1t1 p2t2, r1t3 p4t4, r1t5 p7t6 and r1t7 p9t8. GR2 consisted of two
circuits, r2t2 p3t3 and r2t6 p8t7.
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Figure 1. Examples of GJj and j ∈ J ={1,2} and GRr and r ∈ R ={1,2}: (a) GJ1; (b) GJ2; (c) GR1;
(d) GR2.

To take into account the interactions between each task subnet, GJj and j ∈ J, and each
resource subnet, GRr and r ∈ R, we adopted the composition operator “‖”, defined in [16].
The composition operator “‖” was applied to a set of discrete timed Petri nets to represent
the synchronization of resources and workflows. The definition of the composition operator
“‖” is as follows:

Definition 3. [Composition operator] [19]: Given two discrete timed PNs, G1 = (P1, T1, F1, m10, µ1)
and G2 = (P2, T2, F2, m20, µ2), the operator “‖” is used to combine G1 and G2 and is defined
as follows:
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G1‖G2 = (P, T, F, m, µ), where P = P1 ∪ P2, T = T1 ∪ T2

F(p, t) =
{

F1(p, t) i f p ∈ P1 and t ∈ T1
F2(p, t) i f ∈ P2 and t ∈ T2

, F(t, p) =
{

F1(t, p) i f p ∈ P1 and t ∈ T1
F2(t, p) i f ∈ P2 and t ∈ T2

,

m0(p) =
{

m10(p) i f p ∈ P1
m20(p) i f p ∈ P2

andµ(t) =


max(µ1(t), µ2(t)) i f t ∈ T1 ∩ T2
µ1(t), i f t ∈ T1\T2
µ2(t), i f t ∈ T2\T1

Definition 4. [Nominal cyber world model of CPPS]: The nominal cyber world model of CPPS is
a discrete timed Petri net G = (P, T, F, m0, µ) = GJ‖GR with GJ = ‖

j∈J
GJj and GR = ‖

r∈R
GRr,

obtained by merging all the task subnets and resource subnets in the system, where m0 : P→ Z|P| .
A state of G is a vector m ∈ Z|P| referred to as a marking.

The model of CPPS obtained by G = (P, T, F, m0, µ) = GJ1‖GJ2‖GR1‖GR2 is depicted
in Figure 2; GJ1, GJ2, GR1 and GR2 are defined in Figure 1.
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We illustrate the differences between the CPPS models used in this study and the
one proposed in [18] by an example. Figure 3 shows an example of the class of models
proposed in [18] extended with start and end transitions. For each transition in the model
of Figure 3, there was at most one resource required for firing the transition and there was
no “hold-and-wait” situation. However, a “hold-and-wait” situation might be required
for firing a transition in the manufacturing systems. The CPPS models proposed in this
study allowed modelling the “hold-and-wait” situation for firing a transition. For example,
resources r2 and r2 were required to fire transitions t2, t3, t6 and t7 in Figure 2. Without
a proper control policy, multiple resource requirements for firing a transition might lead
to an undesirable state. Figure 4a shows the situation after executing the firing sequence
t5t6t1t2t1t2t1 to reach an undesirable state in which no transition could be fired any longer.
Therefore, a proper control method must be used to prevent the system from visiting
undesirable states.
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Figure 4. (a) An undesirable state in which no transition could be fired any longer; (b) a nominal cyber
world model of CPPS G = (P, T, F, m0, µ) in which firing transitions t3 and t7 required allocation of
multiple resources (one type-1 and one type-3 resource).

The nominal cyber world model of CPPS G = (P, T, F, m0, µ) proposed in this study
allowed modeling operations requiring multiple resources. That is, firing a transition
that required the allocation of multiple resources can be captured and represented in
the proposed nominal cyber world model of CPPS G = (P, T, F, m0, µ). The method
proposed in this study could be applied to the nominal cyber world model of CPPS
G = (P, T, F, m0, µ) in which any transition in T might require the allocation of multi-
ple resources. Figure 4b shows an example of a nominal cyber world model of CPPS
G = (P, T, F, m0, µ) in which firing transitions t3 and t7 required the allocation of multiple
resources, including one type-1 and one type-3 resource.

3.2. Robustness Problem and Resilience Problem

The nominal cyber world model of CPPS G = (P, T, F, m0, µ) might evolve from the
initial state m0 through firing transitions and bring G to a new state in different ways.
However, firing transitions arbitrarily will not bring G to a target state and may bring G
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to an undesirable state, which cripples the CPPS. To direct the CPPS to the target state, a
proper control policy must be applied. A control policy is specified by a sequence of control
actions to guide the behaviors of G to reach a target state while preventing the system from
visiting undesirable states by controlling the firing of transitions under each state reached
from the initial state. More formally, a control action is defined as follows:

Definition 5. [Control action]: Given a CPPS model G = (P, T, F, m0, µ) , a transition is called a
controlled transition if the number of times for firing the transition can be controlled by an external
controller. The set of controlled transitions in G = (P, T, F, m0, µ) is denoted as Tc , where Tc ⊆ T.
A control action c of G = (P, T, F, m0, µ) specifies the number of times each transition in Tc must
be concurrently fired and is represented by a vector in Z|Tc |.

Definition 6. [Control policy]: Given a CPPS model G = (P, T, F, m0, µ), a control policy u is de-
fined as a sequence of control actions {cn} of G = (P, T, F, m0, µ). That is, u: R(m0)→ Z|Tc | . The
CPPS model G = (P, T, F, m0, µ) operating under a control policy u is denoted by
Gc = (P, T, F, m0, µ, u). We refer to Gc = (P, T, F, m0, µ, u) as Gc = (m0, u) for brevity.

To ensure that Gc = (P, T, F, m0, µ, u) does not visit any undesirable states, the liveness
concept was introduced for a control policy, as follows:

Definition 7. [Liveness]: Gc = (m0, u) is live if, for each marking reached from m0 under u, each
transition can still ultimately be fired by progressing through some further firing sequence.

The objective of CPPS is to meet the order demand by a deadline Φ without vis-
iting any undesirable states. Suppose the order demand for type-j tasks was Dj and
j ∈ J. This requirement could be stated by specifying a final marking m f for
Gc = (P, T, F, m0, µ, u) to represent that the requested quantities of different types of
tasks were completed and stayed in the corresponding final state places of task subnets,

where m f (p) =


m0(p) i f p ∈ Po
Dj i f p ∈ PF
0 i f p ∈ P\(Po ∪ PF)

. Po is the set of idle state places of all resource

subnets and PF = {pjn|j ∈ J} is the set of final state places of all types of task subnets.
So the problem to meet the order requirements was to determine a control policy u for
Gc = (P, T, F, m0, µ, u) such that final marking m f could be reached from m0 by the deadline
Φ without visiting any undesirable states. A control policy u, under which Gc = (m0, u)
was live, ensured that no undesirable state was visited.

In the previous study [19], the connection between the existence of a live control policy
and an optimization problem called nominal optimization problem (NOP) formulated
based on the joint spatial-temporal network (JSTN) was established, where Procedure 1
in Appendix B was used to construct the joint spatial-temporal network JSTN(V, A) of
Gc = (P, T, F, m0, µ, u). The nominal optimization problem is defined in Expressions (1)
through (6) as follows:

Nominal optimization problem (NOP) based on the joint spatial-temporal network

min
f

∑
a(v,w)∈A

λ(a(v, w)) f (a(v, w)) (1)

∑
j∈J

∑
a(v,w)∈Ajrτ

f (a(v, w)) ≤ Crτ∀r ∈ R ∀τ ∈ {1, 2, . . . , Π} (2)

∑
w∈V(v)

f (a(v, w)) = 0 ∀v ∈ V\{s}\{ej∀j ∈ J} (3)

∑
w∈Vj(s)

f (a(s, w)) = Dj ∀j ∈ J (4)
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∑
w∈Vj(ej)

f (a(w, ej)) = Dj ∀j ∈ J (5)

f (a(v, w)) ∈ Z ∀a(v, w) ∈ A, where Z isthesetofnonnegativeintegers (6)

The problem of determining the existence of a control policy to keep Gc = (m0, u) live
while reaching final state m f was checked according to the following theorem [16]:

Theorem 1 ([19]). There exists a solution to the nominal optimization problem if and only if there
exists a control policy under which Gc = (m0, u) is live and can reach m f under u.

If multiple control policies exist, there exists multiple solutions. Surely, in case of
multiple control policies existing, there was at least one solution. If there were multiple
solutions, there existed multiple control policies. Theorem 1 also holds for the case of
multiple control policies or a multiple solutions situation.

In CPPS, the goal of fulfilling order requirements requires two sub-goals to be attained:
to produce the products to meet the product demand and to meet the order due date. The
occurrence of resource failures has negative impacts on CPPS. If the impacts are not great
enough, and the product demand as well as the due date can still be meet after recovering
from resource failures, the CPPS is said to be robust with respect to resource failures. If the
impacts of resource failures are so great that the due date can no longer be met even if the
product demand can be met, the CPPS is said to be resilient with respect to resource failures.
Note that in our definition, if CPPS is robust with respect to given resource failures, the goal
can still be achieved. If CPPS is not robust with respect to resource failures, but the CPPS is
resilient with respect to the resource failures, the product demand can be produced, but the
due date cannot be met. In short, we use the terms “robust” and “resilient” to distinguish
whether the original goal can be completely or partially achieved. If both the sub-goal of
producing the products to meet the product demand and the sub-goal of meeting the order
due date can be achieved in the presence of the failures, the CPPS is robust with respect to
given resource failures. If only the sub-goal to produce the products to meet the product
demand can be achieved, the CPPS is resilient with respect to the resource failures.

In this study, we focused on the resilience and robustness properties of CPPS with
respect to uncertainties due to resource failures. Resilience property of CPPS refers to the
ability to achieve the objective to reach the goal state m f in the presence of uncertainties
without visiting undesirable states. Robustness property of CPPS is concerned with the
capability to achieve the objective to reach the goal state m f by the deadline in the presence
of uncertainties without visiting undesirable states. To develop a solution method, a model
of uncertainties must be introduced for the model G of CPPS. In CPPS, uncertainties due to
resource failures are reflected in the unavailability of resources. Resource failures in CPPS
typically lead to changes in the number of available resources. In terms of the model G of
CPPS, changes in the number of available resources can be represented by perturbation in
the marking of the model G. Although the perturbation in the marking of the model G can
describe the number of resources that are unavailable due to failures, it does not describe
how long the failures last or the duration of the failures. For this reason, we introduced the
failure time interval vector to describe the duration of resource failures in CPPS. Based on
the discussions above, we introduced the following model of uncertainties.

Definition 8. [Model of uncertainties]: Given a marking m of the model G of CPPS, a model of
uncertainties is represented by a perturbation vector δ = [δp1 ,δp2 , . . . ,δp|P| ] of m with δp denoting
the perturbation due to failures at place ∀p ∈ P and a failure time interval vector ω defined by
the element ωpl =

[
αpl βpl

]
, the interval of periods for a failure at the place p, where p ∈ P and

l ∈ {1, 2, . . . , δp}. The model of uncertainties is represented by ∆(m) = (m,δ,ω). Note that
δp ≤ m(p)∀p ∈ P.
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With the model of uncertainties defined above, we defined the resilience problem and
the robustness problem in CPPS as follows.

The resilience problem in CPPS can be stated as the problem of determining whether
there exists a control policy to bring G to the marking m f without visiting any undesirable
states under ∆(m) = (m, δ,ω), where m f and the deadline Φ are the final marking and the
deadline corresponding to the given order requirements, respectively.

The robustness problem in CPPS can be stated as the problem of determining whether
there exists a control policy to bring G to the marking m f by the deadline Φ without visiting
any undesirable states under ∆(m) = (m,δ,ω), where m f and the deadline Φ are the final
marking and the deadline corresponding to the given order requirements, respectively.

Motivated by the two problems stated above, we defined the resilience and robustness
properties of CPPS as follows:

Definition 9. [Resilience with respect to uncertainties]: A CPPS is resilient with respect to ∆(m)
if there exists a control policy u under which Gc = (m0, u) can reach m f in the presence of ∆(m).

Definition 10. [Robustness with respect to uncertainties]: A CPPS is robust with respect to ∆(m)
if there exists a control policy u under which Gc = (m0, u) can reachm f by the deadline Φ in the
presence of ∆(m).

The resilience problem and robustness problem in CPPS stated above are analyzed in
the next section.

4. Robustness Analysis Method for a Class of CPPS

In this section, the analysis of the resilience and robustness problems in CPPS was
completed. We first presented the loss of capacity due to ∆(m) and then formulated a
problem to find the solution to accommodate the changes in resource capacity due to ∆(m).

The occurrence of ∆(m) = (m, δ,ω) changed the capacity of resources in CPPS. We
represented the capacity of resources under ∆(m) as follows:

Definition 11. [Capacity of a resource under ∆(m)]: Given a marking m of the model G of CPPS, the
capacity of type- r resources in period τ under perturbation ∆(m) = (m,δ,ω) is represented by C∆(m)

rτ .

As the capacity of resources was changed due to the failures of resources under
∆(m) = (m,δ,ω), the problem of determining the existence of a control policy to maintain
the liveness of Gc should take into account the changes in resource capacity due to ∆(m).

To compute the change of capacity under ∆(m), we needed the following definitions.

Definition 12. [Relation between a place and different types of resources]: The relation between a

place p ∈ P and the different types of resources is represented by Γpr =

{
1 i f p ∈ P ∩ (Pr\{r})
0 otherwise

.

Definition 13 [Influence of failure at a place on capacity of resources in a period]: We used Ωplτ to
denote whether the l−th failure at place p influenced the capacity of the corresponding resources in

period τ, where Ωplτ =

{
1 i f τ ∈

[
αpl βpl

]
0 otherwise

.

Lemma 1. Given a marking m of the model G of CPPS and uncertainties model ∆(m) = (m,δ,ω),

the reduction of type-r resource capacity in period τ due to ∆(m) is ∑
p∈P

Γpr(
δp

∑
l=1

Ωplτ).

Proof. A failure at place p may influence the type-r resources only if. The l-th failure at
place p may influence the capacity of some types of resources in period τ only if Ωplτ = 1.
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Therefore, the l-th failure at place p may reduce the capacity of type-r resources in period τ
by one only if ΓprΩplτ = 1.

Therefore, the reduction of the number of type-r resources in period τ due to all

failures at place p under ∆(m) is Γpr(
δp

∑
l=1

Ωplτ).

By taking into account the failures at all places, the reduction of the number of type-r

resources in period τ due to all failures at place p under ∆(m) is ∑
p∈P

Γpr(
δp

∑
l=1

Ωplτ).

This completes the proof. �

Let C∆(m)
rτ denote the capacity of type-r resources in period τ due to all failures ∆(m).

As Lemma 1 holds for each type of resources, C∆(m)
rτ = Crτ − ∑

p∈P
Γpr(

δp

∑
l=1

Ωplτ)∀r ∈ R. The

residual capacity under ∆(m) is C̃rt = C∆(m)
rτ − ∑

j∈J
∑

a=(v,w)∈Ajrt

fu(v, w), which is equal to

Expression (7):

C̃rt = Crτ − ∑
p∈P

Γpr(
δp

∑
l=1

Ωplτ)−∑
j∈J

∑
a=(v,w)∈Ajrt

fu(v, w) r ∈ R ∀t ∈ {1, 2, . . . , Π} (7)

Definition 14. [Residual Capacity]: The residual capacity under ∆(m) is

C̃rt = Crτ − ∑
p∈P

Γpr(
δp

∑
l=1

Ωplτ)− ∑
j∈J

∑
a=(v,w)∈Ajrt

fu(v, w) r ∈ R ∀t ∈ {1, 2, . . . , Π}.

In this study, a new method was developed to analyze the resilience and robustness
properties of CPPS. We formulated an alternative solution optimization problem (ASOP)
to find an alternative solution based on the nominal solution and tested the resilience and
robustness properties of the perturbed system. Let f denote the nominal solution of NOP.
A nominal solution f can be divided into two or more components called sub-solutions in
this study. We divided the nominal solution f into the sub-solution fu not influenced by
∆(m) and the sub-solution f∆ influenced by ∆(m) with f = fu + f∆.

The flow f∆ influenced by the resource failures associated with perturbation
∆(m) = (m,δ,ω) can be divided into two parts. That is, the flow ∼ f ∆ at upstream of
the failed places (including the places in which the failures occurred) and the flow f∼∆ at
downstream of the failed places. For the flow of ∼ f ∆, all the relevant operations have been
executed. All the used capacities of resources involved with ∼ f ∆ cannot be changed. For
the flow at the downstream of the failed place, f∼∆ , capacity of the resources not failed
can still be used for performing operations. Based on the discussion above, we can cal-
culate the residual capacity for JSTN(V, A) by applying Procedure 2 from Table A3 of
Appendix B, where we also calculated the quantity ∆Dj of type-j products influenced by
∆(m) for each j ∈ J. For a given nominal solution f , we calculate the residual capacity C̃rt
of type-r resources for each period t by deducting the capacity used by fu and ∼ f ∆ and
the capacity loss in the failed places due to perturbation ∆(m). In finding an alternative
solution for the influenced flows, an objective function should be defined, and three types
of constraints must be satisfied: (a) capacity constraints, (b) flow balance constraints and
(c) flow constraints due to influenced flow ∼ f ∆. The objective function defined in Ex-
pression (8) was used to minimize the overdue penalty. The capacity constraints are
described by Expression (9) enforce that allocated operations must be no greater than
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the residual capacity C̃rt = Crτ − ∑
p∈P

Γpr(
δp

∑
l=1

Ωplτ)− ∑
j∈J

∑
a=(v,w)∈Ajrt

fu(v, w) for r ∈ R and

t ∈ {1, 2, . . . , Π} under ∆(m).
The flow balance constraints for the influenced flow are described in Expressions

(10)–(12). The flow constraints due to influenced flow ∼ f ∆ are described in Expression
(13), which indicated that the flow value of each arc in the path of ∼ f ∆ in the alternative
solution must be the same as the flow value in the corresponding arc of ∼ f ∆. The constraint
in Expression (14) states that the decision variables must be nonnegative integers.

We formulated an alternative solution optimization problem (ASOP) to find an alter-
native solution to accommodate the changes in resource capacity due to ∆(m).

Alternative solution optimization problem (ASOP)

min
f

∑
a(v,w)∈A

λ(a(v, w)) f (a(v, w)) (8)

∑
j∈J

∑
a(v,w)∈Ajrτ

f (a(v, w)) ≤ C̃rt∀r ∈ R ∀τ ∈ ∏ = {1, 2, . . . , Π} (9)

∑
w∈V(v)

f (v, w) = 0 ∀v ∈ V\{s}\{ej∀j ∈ J} (10)

∑
w∈Vj(s)

f (s, w) = ∆Dj ∀j ∈ J (11)

∑
w∈Vj(ej)

f (w, ej) = ∆Dj ∀j ∈ J (12)

∼ f ∆(v, w)( f (v, w)− ∼ f ∆(v, w)) = 0∀(v, w) ∈ A (13)

f (a(v, w)) ∈ Z ∀a(v, w) ∈ A, where Z isthesetofnonnegativeintegers. (14)

Assumption 1: In this study, we assumed that the function g(τ) used by Function 1 in Appendix B
satisfied g(τ) = 0 for τ ≤ Φ. Under this setting, there was no penalty if the requested tasks were
completed by the deadline Φ. We also assumed that the function h(τ) used by Function 1 in
Appendix B satisfied h(τ) > 0 for τ > Φ. Under this setting, there was penalty if the requested
tasks were completed by the deadline Φ.

Under the setting of Assumption 1, Theorem 2 provides the conditions to check the
resilience and robustness properties of CPPS.

Theorem 2. Suppose Assumption 1 holds. Let f denote the nominal solution of NOP and f is
divided into the sub-solution fu not influenced by ∆(m) and the sub-solution f∆ influenced by ∆(m)
with f = fu + f∆. If there exists a solution f ′∆ for the ASOP, there exists a control policy u under
which Gc(m0, u) can reach m f in the presence of ∆(m). In this case, Gc(m0, u) is resilient with
respect to ∆(m). If the objective function value of the solution f is zero and the objective function
value of the solution f ′∆ for the ASOP is zero, there exists a control policy u under which Gc(m0, u)
can reach m f by the deadline Φ in the presence of ∆(m). In this case, Gc(m0, u) is robust with
respect to ∆(m).

Proof. Please refer to Appendix A. �

Note that the constraints in Expressions (9)–(12) and (14) of the ASOP resembled the
constraints in Expressions (2)–(6) in NOP. Constraints in Expressions (10)–(12) of the ASOP
could be represented by the joint spatial-temporal network JSTN(V, A) of Gc. Therefore,
a solution for the ASOP could be represented by the flows in the joint spatial-temporal
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network JSTN(V, A), and the flows must satisfy the capacity constraint in Expression (9)
and flow constraint in Expression (13). Figure 5 is an example of joint spatial-temporal
network. Due to the network structure of constraints in Expressions (10)–(12), the ASOP is
a class of linear network flow problem with additional constraints in Expressions (9) and
(13). So ASOP is a minimal cost flow problem with additional constraints. Therefore, we
developed a solution algorithm for handling uncertainty due to ∆(m) by constructing a
joint spatial-temporal network JSTN(V, A) of Gc, calculating residual capacity C̃rt∀r ∈ R,
t ∈ {1, 2, . . . , Π}, fu, f∆ and ∆Dj j ∈ J and finding the solution f ′∆ for the ASOP defined by
JSTN(V, A) with residual capacity C̃rt and ∆Dj j ∈ J.
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Based on the above discussion and Theorem 2, we proposed Algorithm 1 to facilitate
assessment of the impacts of resource failures by checking the resilience and robustness
properties of CPPS.
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Algorithm 1: Construction of an Alternative Solution for ∆(m)

Input: The nominal solution f ,θ,δ,∆(m) = (m,δ,ω)
Output: Resilience_Indicator, Robust_Indicator, f ′, f ′∆
Step 0: Set Resilience_Indicator = false

Set Robust_Indicator = false
Step 1: Construct JSTN(V, A) by applying Procedure 1.
Step 2: Apply Procedure 2 to calculate residual capacity C̃rt∀r ∈ R,t ∈ {1, 2, . . . , Π}, fu, f∆ and
∆Dj∀j ∈ J, where fu denotes the flows not influenced by ∆(m) whereas f∆ denotes the flows
influenced by ∆(m), ∆Dj and j ∈ J are the quantities of different types of products influenced by
∆(m).
Step 3: Set the capacity constraints of the ASOP defined by JSTN(V, A)

according to the residual capacity C̃rt
Find the solution f ′∆ for the ASOP as defined by JSTN(V, A) with residual
capacity constraint C̃rt and ∆Dj j ∈ J
If there exists a solution f ′∆ for the ASOP

Update f ′ = fu + f ′∆
Update residual capacity C̃rt by deducting the capacity assigned to f ′

from C̃rt: C̃rt ← C̃rt − ∑
(v,w)∈Ajrt

f ′∆(v, w)

Set Resilience_Indicator = true
If the objective function value of the solution f ′∆ of the ASOP is zero,

Set Robust_Indicator = true
Else

Set Robust_Indicator = false
End If

End If

The steps of Algorithm 1 are briefly described as follows. Step 1 of Algorithm 1
constructs the joint spatial-temporal network JSTN(V, A) of Gc. The algorithm to construct
the joint spatial-temporal network JSTN(V, A) of Gc is shown in Function 1 and Procedure
1 in Tables A1 and A2 of Appendix B, respectively. Function 1 is iteratively invoked by
Procedure 1 to construct a spatial-temporal network STNj(Vj, Aj, capj) for a type-j task
subnet for each j ∈ J. To construct JSTN(V, A) of Gc, Procedure 1 first adds all the nodes
in Vj to V and adds all the arcs in Aj to A for each j ∈ J. It then merges all start nodes sj
and j ∈ J into one start node s. The joint spatial-temporal network JSTN(V, A) constructed
is used to deal with resource failures due to uncertainty due to ∆(m).

In Step 2 of Algorithm 1, we applied Procedure 2 from Appendix B to calculate the
residual capacity C̃rt∀r ∈ R, t ∈ {1, 2, . . . , Π}, fu, f∆ and ∆Dj∀j ∈ J, where fu denotes
the flows not influenced by ∆(m) whereas f∆ denotes the flows influenced by ∆(m) and
∆Dj j ∈ J, is the quantity of different types of products influenced by ∆(m).

In Step 3 of Algorithm 1, we set the capacity constraints of the ASOP defined by
JSTN(V, A) according to the residual capacity C̃rt to find the solution f ′∆ for the ASOP as
defined by JSTN(V, A) with residual capacity constraint C̃rt and ∆Dj∀j ∈ J.

We analyzed a lower bound on the complexity of Algorithm 1 in Property 1 as follows.

Property 1. A lower bound on the complexity of Algorithm 1 is O(∆D(NΠ + J)2), where
∆D = ∑

j∈J
Dj and N = ∑

j∈J
Nj.

Proof. We analyzed the complexity of Algorithm 1 as follows. The complexity of Step 1 to
construct JSTN(V, A) is O(NΠ) where N = ∑

j∈J
Nj.

We analyzed the complexity of Step 2 in Algorithm 1 as follows. We first replicated
the JSTN(V, A) and set the capacity of each arc. Let JSTN(V′, A′) denote the replicated
JSTN. We also duplicated f and denoted the duplicated solution on JSTN(V′, A′) as f̃ . We
set δ̃ as δ. It was straightforward to find the flow f∆ influenced by the resource failures



Symmetry 2022, 14, 2327 18 of 37

by searching along the upstream and downstream of the arcs directly associated with the
resource failures by finding an influenced path γ. Let ep(v, w) be an arc influenced by the
resource failures at place p with δ̃p > 0 where ep(v, w) ∈ A′. We first searched along the
upstream arcs associated with the failures at ep(v, w) ∈ A′ to find a path γ1. We search the
incoming arcs connected to v for an incoming arc e1(v1, w1) ∈ A′ with nonzero flow at the
upstream of v and included e1(v1, w1) in the path γ1. We then searched the incoming arcs
connected to v1 for an incoming arc e2(v2, w2) ∈ A′ with a nonzero flow upstream of v1
and included e2(v2, w2) in the path γ1. We repeated the above processes until it reached
the source node s.

Next, we searched along the downstream arcs associated with the failures at ep(v, w) ∈
A′ to find a path γ2. We searched the outgoing arcs originating from w for an outgoing arc
e′1(v

′
1, w′1) ∈ A′ with nonzero flow downstream of w and includee e′1(v

′
1, w′1) in the path γ2.

We then searched the outgoing arcs originating from w′1 for an outgoing arc e′2(v
′
2, w′2) ∈ A′

with a nonzero flow downstream of w′1 and included e′2(v
′
2, w′2) in the path γ2. We repeated

the above processes until it reaches some end node ej.
The influenced path γ was constructed by including all the arc in γ1; the arc ep(v, w)

and all the arcs in γ2 were a path influenced by the resource failures at place p with δp > 0.
We set f∆(e)← f∆(e) + 1 ∀e ∈ γ . The flow in each arc of f̃ decreased by one, and the value
δ̃p was also decreased by one. That is, f̃ (e)← f̃ (e)− 1 ∀e ∈ γ and δ̃p ← δ̃p − 1 .

If δ̃p > 0, the above processes were repeated to update f∆.
The above processes were repeatedly applied for each place p with δ̃p > 0 to find f∆.
Note that there are at most two arcs at the upstream of each node in JSTN(V, A). As

the influenced path could be no longer than the number of all arcs in the above processes,
the complexity of searching for an influenced path was O(NΠ). The number of influenced
paths to be searched was bounded by ∑

p∈P
δp, which was equal to ∆D = ∑

j∈J
Dj. Therefore,

the complexity of Step 2 was O(∆DNΠ).
We analyzed Step 3 of Algorithm 1. The complexity of Step 3 was to solve the ASOP.

Note that the ASOP was defined based on the JSTN(V, A) with residual capacity, flow
balance and additional flow constraints. The flow balance constraints and the objective
function in the ASOP are the same as the classical minimum cost flow problem. The
differences between the ASOP and the classical minimum cost flow problem was due to
the residual capacity and additional flow constraints. For this reason, we used the classical
minimum cost flow problem as a reference to provide a lower bound of the complexity
to solve the ASOP. As the number of nodes in the JSTN(V, A) was N(Π + 1) + J + 1,
the complexity to construct JSTN(V, A) was O(NΠ + J). The complexity to solve the
classical minimum cost flow problem was O(∆D(NΠ + J)2). Therefore, a lower bound of
the complexity to solve the ASOP in Step 3 of Algorithm 2 was O(∆D(NΠ + J)2).

Based on the discussion above, the overall complexity was O(∆D(NΠ + J)2). �

The above analysis indicated that the lower bound of the complexity of Algorithm 1
was polynomial with respect to the problem size parameters. In the results presented in the
next section, we showed that the computation time of our algorithm grew polynomially
with the problem size parameters. This was consistent with the polynomial lower bound in
Property 1.

5. Results

The theory and method proposed in the previous sections was verified to demonstrate
the capability to deal with failures of resources in cyber-physical systems. The purpose
of this section is twofold: (1) verification of the proposed method and (2) study of com-
putational feasibility of the proposed method with respect to problem size. The former is
illustrated by a small example in Section 5.1. For the latter, we first show that the existing
reachability and coverability graph approach suffered from the state explosion problem
even for a small example in Section 5.2. Then we present the results obtained by conducting
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a series of experiments to study the computational efficiency of the proposed method in
Section 5.3. The series of experiments were classified into six categories by changing the
problem size parameters and the number of resource failures.

5.1. An Example

In this subsection, we used a small example to illustrate the proposed method. To
make it clear for readers to understand the difference between the issue addressed in this
study and that of the previous work [19], we used the same small example in this section.
We first summarized the example and the results obtained in [19] for a nominal situation.
We then presented the results obtained by applying the method proposed in this study to
handle resource failures for the same example.

Example 1: Suppose two types of products are to be produced in a CPPS to meet
the order requirements of three type-1 and one type-2 product. The deadline of the order
is Φ = 8. For this example, J = 2, J = {1,2}, D1 = 3 and D2 = 1. Each type of product is
processed through a process with several operations. Each process is modeled by a task
subnet. As there are two processes, there are two task subnets in the CPPS. Figure 1a,b
show the two task subnets, GJ1 and GJ2, in CPPS. The operations in each process are
performed by some types of resources. There are two different types of resources in the
CPPS to perform the operations. Each type of resources is modeled by a resource subnet.
Figure 1c,d show the two resource subnets, GR1 and GR2, in CPPS. For this example,
R = 2 and R = {1,2}. Table 2 shows the transition firing time. Suppose the time horizon is
divided into Π = 9 periods. There are two type-1 and two type-2 resources. Therefore,
Crτ = 2∀r ∈ R∀τ ∈ {1, 2, . . . , Π} = {1, 2, . . . , 9}. The initial marking of the CPPS model is
shown in Figure 2.

Table 2. Transition firing time.

Task Type Transitions Firing Time

1 t1,t2,t3,t4 µ(t1) = 1, µ(t2) = 2, µ(t3) = 1, µ(t4) = 0
2 t5,t6,t7,t8 µ(t5) = 2, µ(t6) = 2, µ(t7) = 2, µ(t8) = 0

For this example, Ajrτ is listed in Table 3.

Table 3. The set Ajrt for each j, r, t.

Set Elements in the Set Set Elements in the Set

A111 {(1,12),(21,32)} A211 {(41,53),(61,73)}
A112 {(2,13),(22,33)} A212 {(41,53),(61,73),(42,54),(62,74)}
A113 {(3,14),(23,34)} A213 {(42,54),(62,74),(43,55),(63,75) }
A114 {(4,15),(24,35)} A214 {(43,55),(63,75),(44,56),(64,76)}
A115 {(5,16),(25,36)} A215 {(44,56),(64,76),(45,57),(65,77)}
A116 {(6,17),(26,37)} A216 {(45,57),(65,77),(46,58),(66,78)}
A117 {(7,18),(27,38)} A217 {(46,58),(66,78),(47,59),(67,79)}
A118 {(8,19)(28,39)} A218 {(47,59),(67,79),(48,60),(68,80)}
A119 {(9,20),(29,40)} A221 {(51,63)}
A121 {(11,23)} A222 {(51,63), (52,64)}
A122 {(11,23),(12,24)} A223 {(52,64),(53,65)}
A123 {(12,24),(13,25)} A224 {(53,65),(54,66)}
A124 {(13,25),(14,26)} A225 {(54,66),(55,67)}
A125 {(14,26),(15,27)} A226 {(55,67),(56,68)}
A126 {(15,27),(16,28)} A227 {(56,68),(57,69))}
A127 {(16,28),(17,29)} A228 {(57,69), (58,70)}
A128 {(17,29)}

The coefficients λ(a(v, w))∀a(v, w) in the objective function (1) are set as follows:
As Φ = 8, g(τ) = 0 ∀τ ≤ 8. Therefore, g(τ) = 0 ∀τ ∈ {1, 2, . . . , Φ} = {1, 2, . . . , 8} = 0.
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Therefore, λ(a(n, e1)) = 0 for n ∈ {31, 32, 33, . . . , 38, 39}.
Therefore, λ(a(n, e2)) = 0 for n ∈ {71, 72, 73, . . . , 78, 79}.
As Φ = 8,h(τ) = τ −Φ ∀τ > 8.

Hence h(τ) = τ −Φ ∀τ ∈ {Φ + 1,Φ + 2, . . . , Π} = {9}
∼

Crt ∀r ∈ Rt ∈ {1, 2, . . . , Π}
Therefore, λ(a(40, e1)) = h(9) = 1 and λ(a(80, e2)) = h(9) = 1.
λ(a(v, w)) = 0 for all the other arc a(v, w) ∈ A− {a(40, e1), a(80, e2)}.
Based on the above data, the NOP for this small example is formulated.
By solving the NOP using the CPLEX problem solver [47], the solution in Table 4 can

be found. Figure 6 represents the solution in the joint spatial temporal network. The value
of the objective function of this solution is 0. As the value of objective function is 0, the
deadline can be met. Table 5 shows the sequence of control actions corresponding to the
solution in Figure 6. Note that transition t1 is fired three times as the demand for the type-1
product is D1 = 3. Similarly, t2 and t3 are also fired three times as the demand for the type-1
product is D1 = 3. As the demand for the type-2 product is D2 = 1, transitions t5, t6 and t7
are fired one time. The results are consistent with our expectations.

Table 4. The solution obtained by solving NOP.

Decision Variable Value Decision Variable Value

f (s, 1) 3 f (24, 35) 1
f (1, 2) 2 f (28, 39) 2
f (2, 3) 2 f (35, e1) 1
f (3, 4) 2 f (39, e1) 2
f (4, 5) 1 f (41, 53) 1
f (1, 12) 1 f (53, 65) 1
f (4, 15) 1 f (65, 66) 1
f (5, 16) 1 f (66, 78) 1

f (12, 24) 1 f (78, e2) 1
f (16, 28) 2
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Table 5. The sequence of control actions.

τ Control Action cτ Transitions to Be Fired

1 1 0 0 1 0 0 t1,t5
2 0 1 0 0 0 0 t2
3 0 0 0 0 1 0 t6
4 1 0 1 0 0 0 t1,t3
5 1 0 0 0 0 0 t1
6 0 2 0 0 0 1 t2,t2,t7
7 0 0 0 0 0 0
8 0 0 2 0 0 0 t3,t3
9 0 0 0 0 0 0

Suppose a type-1 resource failure takes place at place p2 in the first period and is
expected to be recovered at the end of the second period. The type-1 resource failure
taking place at place p2 can be represented by the perturbation vector δ = [δr1 ,δr2 ,δp1 ,δp2 ,
. . . , δp10] = [0 1 0 0 0 0 0 0 0 0 0 0] with δp2 = 1. The discrete time failure interval for the
above-mentioned failure is ωp21 = [αp21 βp21] = [1 2] as the failure is expected to last for
two periods. The above type-1 resource failure reduces the capacity of type-1 resources. To
compute C∆(m)

rτ , we need the data of Γpr in Table 6.

Table 6. Data of Γpr.

Place (p) Resource Type (r) Γpr

p1 1 0
p2 1 1
p3 1 0
p4 1 1
p5 1 0
p6 1 0
p7 1 1
p8 1 0
p9 1 1
p10 1 0
r1 1 1
r2 1 0
p1 2 0
p2 2 0
p3 2 1
p4 2 0
p5 2 0
p6 2 0
p7 2 0
p8 2 1
p9 2 0
p10 2 0
r1 2 0
r2 2 1

As the resource failure takes place at place p2 and δp2 = 1,
Ωp21τ = 1 ∀τ ∈ [αp21 βp21] = [1 2] and Ωp1τ = 0 for p 6= p2. That is, Ωp211 = Ωp212 = 1

and Ωp1τ = 0 for p 6= p2. Based on the values of Γpr in Table 6 and the values of Ω, (7) is

applied to compute C∆(m)
rτ .

Table 7 shows the capacity of each type of resources in each period after type-1
resource failure. Note that C∆(m)

rτ is reduced by one for type-1 resources in the first and
second periods.
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Table 7. The capacity of each type of resources in each period after type-1 resource failure.

Resource Type (r) Period (t) C∆(m)
rτ

1 1 0
1 2 0
1 3 2
1 4 1
1 5 1
1 6 1
1 7 1
1 8 0
1 9 2
2 1 2
2 2 2
2 3 1
2 4 1
2 5 2
2 6 0
2 7 0
2 8 2
2 9 2

Before solving the ASOP, Algorithm 1 first constructs JSTN(V, A) by applying Pro-
cedure 1 in Step1. Next, to deal with ∆(m) = (m,δ,ω), Algorithm 1 divides f into fu
and f∆ with f = fu + f∆ in Step 2 where fu denotes the flows not influenced by ∆(m)
where as f∆ denotes the flows influenced by ∆(m). Instead of listing fu and f∆ in ta-
bles, to make it clear to illustrate fu and f∆, we show fu and f∆ in Figures 7 and 8, re-
spectively. Algorithm 1 then applies Procedure 2 to calculate residual capacity C̃rt for
r ∈ R ∀t ∈ {1, 2, . . . , Π} = {1, 2, . . . , 9} and calculate the quantity of different types of
products influenced by ∆(m). The capacity constraints of the ASOP are defined according
to the residual capacity C̃rt. In Step 3, Algorithm 1 attempts to find the solution f ′∆ for the
ASOP defined by JSTN(V, A) with residual capacity constraint C̃rt. Figure 9 shows the f ′∆
found by solving ASOP. Figure 10 shows the alternative solution f ′ = fu + f ′∆ found by
Algorithm 1. Note that the alternative solution f ′ = fu + f ′∆ can still meet the deadline as
the objective function value of the solution f ′∆ of ASOP is zero.
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Tables 8 and 9 show the solution found and the sequence of control actions. As there
exists a solution to ASOP, Gc = (m0, u) is resilient with respect to ∆(m). As The objective
function value is 0, Gc = (m0, u) is robust with respect to ∆(m). That is, the deadline can
still be met due to the resource failure.

Table 8. The solution obtained by solving ASOP.

Decision Variable Value

f (s, 1) 3
f (1, 2) 2
f (2, 3) 1
f (3, 4) 1

f (1, 12) 1
f (2, 13) 1
f (4, 15) 1
f (5, 16) 1

f (12, 24) 1
f (16, 28) 2
f (24, 35) 1
f (28, 39) 2
f (35, e1) 1
f (39, e2) 2
f (41, 53) 1
f (53, 65) 1
f (65, 66) 1
f (66, 78) 1
f (78, e2) 1
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Table 9. The sequence of control actions.

Period (τ) Control Action cτ Transitions to Be Fired

1 1 0 0 0 0 0 t5
2 1 1 0 0 0 0
3 0 1 0 0 0 0 t1,t6
4 1 0 0 1 0 0 t1,t2
5 0 1 0 0 0 0 t1
6 0 0 2 0 1 0 t2,t2,t3,t7
7 0 0 1 0 0 0
8 0 0 0 0 0 1 t3,t3
9 0 0 0 0 0 0

The sequence of control actions constructed based on the solution in Figure 10 is listed
in Table 9.

5.2. Computational Efficiency

To illustrate computational feasibility of the method proposed in this study, we first
compared the computation time of our proposed approach with that obtained by applying
the existing reachability/coverability graph approach for small examples by changing
the number of tokens in some places in Figure 2. We showed that the existing reacha-
bility/coverability graph approach suffers from state explosion problem even for small
examples. In the next section, we showed that our proposed approach could be applied to
large problems.

For the example of Figure 2, we increase the number of tokens in place p1 and the
number of tokens in place p6 under the initial marking m0 from one to ten, respectively.
The numbers of tokens in other places under the initial marking m0 are the same as Figure 2
with the exception of places p1 and p6. The growth of the number of vertices and edges
in the coverability graphs is shown in Figure 11. It is clear that the number of vertices
and the number of edges in the coverability graphs exponentially grow in Figure 11.
The phenomena of state explosion problems can be observed in Figure 11. The state
explosion problems mentioned above lead to the exponential growth of computation time
for constructing coverability graphs.
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The computation time for constructing coverability graphs and that of the proposed
approach is shown in Figure 12. The computation time for constructing coverability graphs
is typically over several hundred seconds for most cases, as shown in Figure 12. It takes
less than one second for our proposed approach to produce solutions. It is clear that the
computation time for constructing coverability graphs exponentially grew in Figure 12
whereas the computation time for the proposed approach did not significantly grow.
Obviously, the existing coverability based approach can only be applied to small nets with
small numbers of tokens.
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The above results indicated that the existing methods based on the construction of
coverability graphs were computationally infeasible even for small nets. The above results
also showed that our approach was computationally feasible for the small examples above.
We illustrate the computational feasibility of the proposed approach in the next section.

5.3. Computationally Feasibility Study

In this section, we present the results of several series of experiments to assess com-
putational feasibility of the proposed method. The experiments were divided into six
categories by considering single failure and multiple failures and three problem size param-
eters. For each category, we generated test cases by increasing the value of one parameter
while all the other parameters were fixed. There were three parameters, including the
number of operations in a process, time horizon and the number of task types. In addition,
the number of failures occurring in cyber-physical production systems was also a parameter
for assessment of the computational feasibility of our approach. We classify the experiments
into six categories.

The test case data can be downloaded from the following link: https://drive.google.
com/drive/folders/1T8LNzxx4BdFalVLA5ZVuvliu6A4Gfp71?usp=sharing (accessed on
1 October 2021).

https://drive.google.com/drive/folders/1T8LNzxx4BdFalVLA5ZVuvliu6A4Gfp71?usp=sharing
https://drive.google.com/drive/folders/1T8LNzxx4BdFalVLA5ZVuvliu6A4Gfp71?usp=sharing
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The first category of experiments was to study the computational time for the single
failure situation, n f = 1, where n f denotes the number of failures, by increasing the
parameter K = max

j∈J

∣∣Tj
∣∣. In this category of experiments, it was assumed that a single

failure took place at a single place p′, with δp′ = 1 and δp = 0 ∀p ∈ P\{p′}. The discrete
time failure interval for the above-mentioned failure was ωp′1 = [αp′1 βp′1]. We conducted
a series of experiments by increasing the parameter K = max

j∈J

∣∣Tj
∣∣ from 10 to 50 with the

other parameters remaining unchanged (J = 4 and Π = 300). In this series of experiments,
we set K to be 10, 20, 30, 40 and 50. The results are shown in Figure 11. The results indicated
that the CPU time polynomially grew with K for the single failure situation. The results
were consistent with the polynomial lower bound O(∆D(NΠ + J)2) on the complexity to
solve the ASOP.

The second category of experiments was to study the computational time for the mul-
tiple failures situation, n f = 4, where n f denotes the number of failures, by increasing the
parameter K = max

j∈J

∣∣Tj
∣∣. In this category of experiments, it was assumed that four failures

took place at four different places: p′1,p′2,p′3 and p′4, with δ′p = 1 ∀p′ ∈ {p′1, p′2, p′3, p′4} and
δ′p = 0∀p′ ∈ P\{p′1, p′2, p′3, p′4}. The discrete time failure interval for the above-mentioned
failures was ωp′1 = [αp′1 βp′1]∀p′ ∈ {p′1, p′2, p′3, p′4}. We conducted a series of experiments
by increasing the parameter K = max

j∈J

∣∣Tj
∣∣ from 10 to 50 with other parameters remaining

unchanged (J = 4 and Π = 300). In this series of experiments, we set to be 10, 20, 30, 40 and
50. The results are shown in Figure 13. The results were consistent with the polynomial
lower bound O(∆D(NΠ + J)2) on the complexity to solve the ASOP.
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The third category of experiments was to study the computational time for the single
failure situation, n f = 1, where n f denotes the number of failures, by increasing the
parameter Π. In this category of experiments, it was assumed that a single failure took
place at a single place p′, with δp′ = 1 and δp = 0 ∀p ∈ P\{p′}. The discrete time failure
interval for the above-mentioned failure was ωp′1 = [αp′1 βp′1]. We conducted a series of
experiments by changing the parameter Π from 100 to 500 with other parameters remaining
unchanged (J = 4 and Π = 20). In this series of experiments, we set Π to be 100, 200, 300,
400 and 500. The results are shown in Figure 14. The results indicated that the CPU time
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polynomially grew with Π. The results were consistent with the polynomial lower bound
O(∆D(NΠ + J)2) on the complexity to solve ASOP.
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The fourth category of experiments was to study the computational time for the
multiple failures situation, n f = 4, where n f denotes the number of failures, by increasing
the parameter Π. In this category of experiments, it was assumed that four failures took
place at four different places p′1, p′2, p′3 and p′4, with δp′ = 1 ∀p′ ∈ {p′1, p′2, p′3, p′4} and
δp′ = 0∀p′ ∈ P\{p′1, p′2, p′3, p′4}. The discrete time failure interval for the above-mentioned
failures was ωp′1 = [αp′1 βp′1]∀p′ ∈ {p′1, p′2, p′3, p′4}. We conducted a series of experiments
by changing the parameter Π from 100 to 500 with other parameters remaining unchanged
(J = 4 and K = 20). In this series of experiments, we set Π to be 100, 200, 300, 400 and 500. The
results are shown in Figure 12. The results indicated that the CPU time polynomially grew
with Π. The results were consistent with the polynomial lower bound O(∆D(NΠ + J)2)
on the complexity to solve the ASOP.

The fifth category of experiments was to study the computational time for the single
failure situation, n f = 1, where n f denotes the number of failures, by increasing the
parameter J. In this category of experiments, it was assumed that a single failure took
place at a single place p′, with δp′ = 1 and δp = 0 ∀p ∈ P\{p′}. The discrete time failure
interval for the above-mentioned failure was ωp′1 = [αp′1 βp′1]. We conducted a series of
experiments by changing the parameter (J from 4 to 20 while keeping other parameters
unchanged (Π = 100 and K = 20). In this series of experiments, we set to be 4, 8, 12, 16 and
20. The results are shown in Figure 15. The results showed that the CPU time polynomially
grew with J. This was consistent with the polynomial lower bound O(∆D(NΠ + J)2) on
the complexity to solve the ASOP.

The sixth category of experiments was to study the computational time for the multiple
failures situation, n f = 4, where n f denotes the number of failures, by increasing the
parameter J. In this category of experiments, it was assumed that four failures took
place at four different places p′1, p′2, p′3 and p′4, with δp′ = 1∀p′ ∈ P\{p′1, p′2, p′3, p′4} and
δp′ = 0∀p′ ∈ P\{p′1, p′2, p′3, p′4}. The discrete time failure interval for the above-mentioned
failures was ωp′1 = [αp′1 βp′1]∀p′ ∈ {p′1, p′2, p′3, p′4}. We conducted a series of experiments
by changing the parameter J from 4 to 20 while keeping other parameters unchanged (Π =
100 and K = 20). In this series of experiments, we set J to be 4, 8, 12, 16 and 20. The results
are shown in Figure 15. The results showed that the CPU time polynomially grew with J.



Symmetry 2022, 14, 2327 29 of 37

This was consistent with the polynomial lower bound O(∆D(NΠ + J)2) on the complexity
to solve the ASOP.
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6. Discussion

In this study, we unveiled the development of a theory to assess the robustness
and resilience properties of cyber-physical production systems in terms of the ability to
meet order demand and timeliness to meet an order due date in the presence of failures
of resources. A method was proposed to deal with failures of a class of cyber-physical
production systems described by cyber-world models with discrete timed Petri nets. The
proposed method was based on transforming discrete timed Petri nets into a joint spatial-
temporal network (JSTN) and defining an alternative solution optimization problem (ASOP)
based on the joint spatial-temporal network to attempt to search for an alternative solution.
In Section 5.1, we illustrated the proposed approach by a small example with a single
resource failure in the system to describe the key steps of the proposed solution algorithm.
The results of the small example showed the proposed solution algorithm could find an
alternative solution to meet product demand of the order. That is, the CPPS was resilient
with respect to the single resource failure for the small example. As the due date of the
order could be met in the presence of the single resource failure, the CPPS was robust with
respect to the resource failure.

In addition to illustration of the proposed approach by a small example, it was im-
portant to study whether the approach was scalable with respect to the size of problems
with different failures patterns. Scalability aimed to verify whether the proposed approach
can efficiently solve a problem in terms of computation time. Existing approaches based
on different variants of timed Petri nets can only be applied to small problems and are
not scalable as the problem size grew. The results presented in Section 5.2 indicated that
the number of vertices and edges of the coverability graphs used in existing approach
exponentially grew, which led to the state explosion problem and exponential growth of
computation time. The computation time for constructing coverability graphs was typi-
cally over several hundred seconds for most cases in Section 5.2 whereas it took less than
one second for our proposed approach to produce solutions. The computation time for
constructing coverability graphs exponentially grew whereas the computation time for our
proposed approach did not significantly grow. The existing coverability based approach
could only be applied to small nets with small numbers of tokens.
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The proposed approach was different from the existing ones as it did not rely on the
variants of approaches based on the concept of state classes as seen in the literature. To
study the scalability of the proposed approach, we performed experiments to assess the
computational efficiency of the proposed algorithms by applying the proposed algorithm.
We considered two types of failure modes, single and multiple failures, in our experiments.
As there were three problem size parameters, we considered three types of test cases for
each failure mode. For each type of failure mode, we created test cases by increasing the
value of one parameter while all the other parameters were fixed. As a result, the overall
experiments were divided into six (=2× 3) categories. The results for all these six categories
were presented in Section 5.3. For all test cases, the solutions could be efficiently obtained
in less than 30 s by using a laptop. This indicated that the method proposed in this study
was computationally feasible for solving real problems.

The way to construct a Petri net model for a real system depends on the level of details
to be modelled. A transition in a Petri net model is used to model an event that might take
place in a real system. For example, in scheduling problems, one primarily cares about the
assignment of resources to tasks to perform operations. In this case, the transitions in the
Petri net model correspond to allocation and de-allocation events. If more details about the
events between an allocation and a de-allocation event are needed, one may insert one or
more transitions between the allocation event and the de-allocation event to obtain a Petri
net model with more details. As the structure of the resulting detailed Petri net is still a
sequential structure, our method can still be applied to the detailed Petri net.

7. Conclusions

Resilience is the capability to recover quickly from difficulties or changes to meet the
goals as much as possible through the implementation of effective schemes or strategies
and successfully adapt to challenging situations. It is an important property for enterprises
to survive in a dynamically changing business environment. Robustness refers to the ability
to tolerate perturbations. It is an important property for enterprises to achieve their original
goals in the presence of uncertainties such as resource failures. Resilience and robustness
are two important properties to determine whether cyber-physical production systems
are able to meet order demand, order due date and find an alternative solution in case
resource failures occur. In our previous work, the resilience and robustness properties
of cyber-physical production systems were not explored. In this study, we studied the
resilience and robustness properties of cyber-physical production systems.

In this study, we developed a method to evaluate the influence of resource failures
on cyber-physical production systems based on the concept of robustness and resilience.
We used a class of discrete timed Petri nets as the cyber-world models of cyber-physical
production systems. We introduced an uncertainty model to capture resource failures
in cyber-physical production systems described by discrete timed Petri nets. CPPS was
resilient with respect to resource failures if there exists a control policy under which the
discrete timed Petri net models of CPPS can reach the goal state after the deadline in the
presence of resource failures. A CPPS is robust with respect to resource failures if there exists
a control policy under which the discrete timed Petri net models of CPPS can reach the goal
state by the deadline in the presence of resource failures. We characterized the robustness
and resilience properties of cyber-physical production systems with respect to the failures
of resources by analyzing the properties of the proposed models. The discrete timed Petri
nets were transformed into a joint spatial-temporal network to formulate an alternative
solution optimization problem (ASOP) to facilitate the determination of the validity of the
robustness and resilience properties of cyber-physical production systems with respect
to the failures of resources. We analyzed the complexity of the proposed method and
conducted experiments to illustrate the computational feasibility of the proposed method.

The proposed approach is different from the existing ones as it does not rely on the
variants of approaches based on the concept of state classes as seen in the literature. We
illustrated the proposed method by a small example. To assess the computational feasibility
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of the proposed method, six categories of experiments were performed. For all test cases,
the solutions could be efficiently obtained in less than 30 s by using a laptop. This confirmed
the computational feasibility of the proposed approach. The results of the experiments
showed that the JSTN model created by the fusion of asymmetrically decomposed STN
models of tasks significantly improved the efficiency of the solution algorithm. In this
study, we considered a subclass of discrete timed Petri nets to develop a theory and an
algorithm to verify the resilience and robustness properties of cyber-physical production
systems by exploiting the net structure. An interesting future research direction is to study
the resilience and robustness properties of a more general class of discrete timed Petri
nets for cyber-physical production systems. According to Wikipedia and the literature,
“robustness” refers to the ability to tolerate perturbations that might affect the system’s
functional body. The robustness property studied in this study is similar to the one stated
on Wikipedia and in the literature. In this study, we only analyzed the robustness and
resilience properties of CPPS with respect to the failures of resources. Studies of other
robustness and resilience properties of CPPS with respect to other types of uncertainties
unexplored in this study are interesting future research directions.
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Appendix A

Proof of Theorem 2. We proved fu + f ′∆ satisfies all the constraints and is a solution to
ASOP for ∆(m).

Note that as fu is a sub-solution of NOP, fu satisfies the expression in (3).
That is, ∑

w∈V(v)
fu(a(v, w)) = 0 v ∈ V\{s}\{ej, ∀j ∈ J}.

Note that as f ′∆ is a solution of ASOP, f ′∆ satisfies the expression in (10).
That is, ∑

w∈V(v)
f ′(a(v, w)) = 0 v ∈ V\{s}\{ej, ∀j ∈ J}.

By summing up the terms on the left and right sides of Expressions (3) and (10),
respectively, fu + f ′∆ satisfies the expression in (A1):

∑
w∈V(v)

fu(a(v, w) + f ′(a(v, w)) = 0 v ∈ V\{s}\{ej, ∀j ∈ J} (A1)

For fu, the flow on the outgoing arcs of s in the type-j task subnet, j ∈ J, not influenced
by ∆(m), is ∑

w∈Vj(s)
fu(a(s, w)).

For f ′∆, the flow on the outgoing arcs of s in the type-j task subnet, j ∈ J, satisfies
Expression (11). That is, ∑

w∈Vj(s)
f ′∆(s, w) = ∆Dj ∀j ∈ J,

Note that ∆Dj is the number of tasks in the type-j task subnet influenced by ∆(m). It
must be equal to Dj − ∑

w∈Vj(s)
fu(a(s, w)) due to the conservation of tasks.

That is, ∆Dj = Dj − ∑
w∈Vj(s)

fu(a(s, w)).

Therefore, ∆Dj + ∑
w∈Vj(s)

fu(a(s, w)) = Dj.
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As ∑
w∈Vj(s)

f ′∆(s, w) = ∆Dj, according to the expression in (11), we have the expression

in (A2):
∑

w∈Vj(s)
f ′∆(s, w) + ∑

w∈Vj(s)
fu(a(s, w)) = Dj ∀j ∈ J (A2)

For fu, the flow on the incoming arcs of ej in the type-j task subnet, j ∈ J, not influenced
by ∆(m) is ∑

w∈Vj(ej)
f (w, ej).

For f ′∆, the flow on the incoming arcs of ej in the type-j task subnet, j ∈ J, satisfies the
expression in (12).

That is, ∑
w∈Vj(ej)

f ′∆(w, ej) = ∆Dj ∀j ∈ J .

Note that ∆Dj is the number of tasks in the type-j task subnet influenced by ∆(m). It
must be equal to Dj − ∑

w∈Vj(ej)
fu(w, ej) due to conservation of tasks.

That is, ∆Dj = Dj − ∑
w∈Vj(ej)

fu(w, ej).

Therefore, ∆Dj + ∑
w∈Vj(ej)

fu(w, ej) = Dj.

As ∑
w∈Vj(ej)

f ′∆(w, ej) = ∆Dj, according to the expression in (12), the expression in

(A3) holds:
∑

w∈Vj(ej)
f ′∆(w, ej) + ∑

w∈Vj(s)
fu(a(s, w)) = Dj ∀j ∈ J (A3)

As f ′∆ is a solution of ASOP, the expression in (9) must be satisfied.
That is, ∑

j∈J
∑

(v,w)∈Ajrτ

f (v, w) ≤ C̃rt∀r ∈ R ∀τ ∈ {1, 2, . . . , Π}.

As C̃rt = Crt − ∑
j∈J

∑
a=(v,w)∈Ajrt

fu(v, w)− Cδ
rt∀r ∈ R ∀t ∈ {1, 2, . . . , Π}, the expression

in (A4) holds:

∑
j∈J

∑
(v,w)∈Ajrτ

f ′∆(v, w) ≤ Crt − ∑
j∈J

∑
a=(v,w)∈Ajrt

fu(v, w)− Cδ
rt∀r ∈ R ∀τ ∈ {1, 2, . . . , Π} (A4)

Hence
As Expressions (A1)–(A4) hold, fu + f ′∆ is a solution to the NOP for ∆(m), as shown

in Expression (A5), there exists a control policy under which Gc = (m0, u) is live under
for ∆(m).

∑
j∈J

∑
(v,w)∈Ajrτ

f ′∆(v, w) + ∑
j∈J

∑
a=(v,w)∈Ajrt

fu(v, w) ≤ Crt − Cδ
rt∀r ∈ R ∀τ ∈ {1, 2, . . . , Π} (A5)

Therefore, if there exists a solution f ′∆ for the ASOP, f ′ = fu + f ′∆ is a solution to the
NOP with a reduced capacity due to ∆(m). It follows that there exists a control policyu
under which Gc = (m0, u) can reach m f in the presence of ∆(m). In this case, Gc = (m0, u)
is resilient with respect to ∆(m).

We next proved that if the objective function value of the solution f is zero and the
objective function value of the solution f ′∆ of ASOP is zero, Gc = (m0, u) is robust with
respect to ∆(m).

If the objective function value of the solution f = fu + f∆ of NOP is zero,
∑

a(v,w)∈A
λ(a(v, w))( fu(a(v, w))+ f∆(a(v, w)) must be 0. That is, the expression in (A6) holds:
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∑
a(v,w)∈A

λ(a(v, w))( fu(a(v, w)) + f∆(a(v, w)) = 0 (A6)

We defined the set of arcs in the type-j task subnet directly connecting to the end
nodeej as Ae = {a(vNjΠ+t, ej), t ∈ {1, 2, . . . , Π}, j ∈ J}.

Note that ∑
a(v,w)∈A

λ(a(v, w))( fu(a(v, w)) + f∆(a(v, w)) is equal to the expression in (A7).

∑
a(v,w)∈A\Ae

λ(a(v, w))( fu(a(v, w)) + f∆(a(v, w)) + ∑
a(v,w)∈Ae

λ(a(v, w))( fu(a(v, w)) + f∆(a(v, w)) (A7)

Therefore, the expression in (A8) holds.

∑
a(v,w)∈A\Ae

λ(a(v, w))( fu(a(v, w)) + f∆(a(v, w)) + ∑
a(v,w)∈Ae

λ(a(v, w))( fu(a(v, w)) + f∆(a(v, w)) = 0 (A8)

As λ(a(v, w)) = 0 for each λ(a(v, w)), the expression in (A8) is reduced to the expres-
sion in (A9).

∑
a(v,w)∈Ae

λ(a(v, w))( fu(a(v, w)) + f∆(a(v, w)) = 0 (A9)

As Ae = {a(vNjΠ+t, ej), t ∈ {1, 2, . . . , Π}, j ∈ J}, the expression in (A7) is equivalent to
the expression in (A10)

∑
j∈J

∑
t∈∏

λ(a(vNjΠ+t, ej))( fu(a(vNjΠ+t, ej)) + f∆(a(vNjΠ+t, ej)) = 0 (A10)

λ(a(vNjΠ+t, ej)) = 0 ∀t ∈ {1, 2, . . . , Φ},

Note that λ(a(vNjΠ+t, ej)) = 0∀t ∈ {1, 2, . . . , Φ},j ∈ J. Therefore, the expression in
(A10) is reduced to the expression in (A11)

∑
j∈J

∑
t∈{Φ+1,Φ+2,...,∏}

λ(a(vNjΠ+t, ej))( fu(a(vNjΠ+t, ej)) + f∆(a(vNjΠ+t, ej)) = 0 (A11)

As λ(a(vNjΠ+t, ej)) > 0∀t ∈ {Φ + 1, Φ + 2, . . . , ∏}, j ∈ J.

fu(a(vNjΠ+t, ej)) + f∆(a(vNjΠ+t, ej) = 0t ∈ {Φ + 1, Φ + 2, . . . , ∏} j ∈ J.

Therefore, fu(a(vNjΠ+t, ej)) must be zero ∀t ∈ {Φ + 1, Φ + 2, . . . , ∏} j ∈ J.
The sub-solution fu can meet the deadline Φ.
By a similar reasoning, if the objective function value of the solution f ′∆ of ASOP is

zero, f ′∆ can meet the deadline Φ. As both fu and + f ′∆ can meet the deadline Φ, the solution
f ′ = fu + f ′∆ is a solution that can meet the deadline Φ. There exists a control policy u
under which Gc = (m0, u) can reach m f by the deadline Φ in the presence of ∆(m). In this
case, Gc = (m0, u) is robust with respect to ∆(m). �
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Appendix B

Table A1. Function 1 to construct the spatial-temporal network (STN) for type-j task subnet.

Function 1: Construction of Type-j Spatial-Temporal Network
[Source: Algorithm 1 in [19]]

Input: GJj,Π,Φ,g(t),h(t),∆(m) = (m,δ,ω) and f
Output: STNj(Vj, Aj), where Vj is the set of nodes and Aj is the set of arcs.
Step 0: Create the start node sj

Create the end node ej
Vj ← {sj, ej}
If j is equal to 1
k← 0
Else

k←
j−1
∑

j′=1
(Nj′ + 1)(Π + 1)

End If
Step 1: For n = 1 to Nj + 1

For each τ = 1 to Π + 1
Create a node with number k + (n− 1)(Π + 1) + τ
Vj = Vj ∪ {k + (n− 1)(Π + 1) + τ}

End For
End For

Step 2: Create arc a(sj, k + (n− 1)(Π + 1) + τ)) from node sj to node k + (n− 1)(Π + 1) + τ

Aj ← Aj ∪ {a(sj, k + (n− 1)(Π + 1) + τ))}
Set arc cost λ(a(sj, k + (n− 1)(Π + 1) + τ)))← 0

Step 3: For n = 1 to Nj
For each τ = 1 to Π

Create an arc a(k + (n− 1)(Π + 1) + τ, k + (n− 1)(Π + 1) + τ + 1))
Aj ← Aj ∪ {a}
Set arc cost λ(a(k + (n− 1)(Π + 1) + τ, k + (n− 1)(Π + 1) + τ + 1)) to 0

End For
End For

Step 4: For n = 1 to Nj
For each τ = 1 to Π

If τ + µ(tn) ≤ Π + 1
Create arc
a(k + (n− 1)(Π + 1) + τ, k + n(Π + 1) + τ + µ(tn))

Aj ← Aj ∪ {a(k + (n− 1)(Π + 1) + τ, k + n(Π + 1) + τ + µ(tn))}
Set arc cost λ(a(k + (n− 1)(Π + 1) + τ, k + n(Π + 1) + τ + µ(tn)))← 0

If •tn = {r}
Ajrτ ← Ajrτ ∪ {a(k + (n− 1)(Π + 1) + τ, k + n(Π + 1) + τ + µ(tn))}

End If
End For

End For
Step 5: For each τ = 1 toΠ + 1

Create arc a(k + Nj(Π + 1) + τ, ej) from node k + Nj(Π + 1) + τ to node ej
Aj ← Aj ∪ {a(k + Nj(Π + 1) + τ, ej)}
Ifτ > Φ

Set arc cost λ(ak + Nj(Π + 1) + τ, ej))← h(τ)
Else

Set arc cost λ(a(k + Nj(Π + 1) + τ, ej))← g(τ)
End If

End For
Return STNj(Vj, Aj),
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Table A2. Procedure 1 to construct the joint spatial-temporal network (JSTN).

Procedure 1: Construction of Joint Spatial-Temporal Network
[Source: Algorithm 2 in [16]]

Input: Task subnets: GJj,j ∈ J,
Output: Joint Spatial-Temporal Network: JSTN(V, A), where V denotes the set of

Nodes and A denotes the set of arcs Construct JSTN(V, A)
Construct JSTN(V, A)
For each j ∈ J

Construct STNj(Vj, Aj) by applying Function 1, where Vj is the set of nodes, sj is
start node in Vj and Aj is the set of arcs.

Update JSTN(V, A) with
V ← V ∪Vj
A← A ∪ Aj

End For
Merge the set of all start nodes in {sj,j ∈ J} into one start node s.

Return JSTN(V, A)

Table A3. Procedure 2 to calculate residual capacity.

Procedure 2: Calculation of Residual Capacity C̃rt∀r ∈ R, t ∈ {1, 2, . . . , Π}, fu, f∆ and ∆Dj∀j ∈ J

Input: JSTN(V, A), f ,θ,δ,∆(m) = (m,δ,ω),Crt,∀r ∈ R,t ∈ {1, 2, . . . , Π}
Output: C̃rt∀r ∈ R,t ∈ {1, 2, . . . , Π}, fu, f∆ and ∆Dj j ∈ J
Step 1: Find the flows fu in the nominal solution f not influenced by resource failures

δ
Find the flows f∆, ∼ f ∆ and f∼∆ according to the nominal solution f
influenced by resource failures ∆(m)
Find ∆Dj, the quantity of type-j products in f∆ influenced by resource
failures ∆(m) for each j ∈ J:
For j ∈ J

If j is equal to 1
k← 0

Else

k←
j−1
∑

j=1
(Nj′ + 1)(Π + 1)

End If
∆Dj ← ∼ f ∆(sj, k + (n− 1)(Π + 1) + 1)

End For
Step 2: C̃rt ← Crt for each r ∈ R for each period t ∈ {1, 2, . . . , Π}

Update the residual resource capacity C̃rt for each r ∈ R for each periodt:
Removing the resource capacities originally allocated to fu from C̃rt for r ∈ R,
j ∈ J
Removing the resource capacities due to resource failures δ in ∆(m) from C̃rt:
C̃rt = Crt − ∑

j∈J
∑

a=(v,w)∈Ajrt

fu(v, w)− Cδ
rt∀r ∈ R ∀t ∈ {1, 2, . . . , Π}, where Cδ

rt is the

capacity loss due to type-r resource failures δ under ∆(m).
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