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Abstract: Irregular brain activity is of interest to researchers and scientists who are trying to under-
stand, model, compare, and provide novel solutions to existing and challenging issues. Neurological
disorders such as epilepsy, Alzheimer’s disease, Parkinson’s disease, and schizophrenia have been
extensively studied. Among those diseases, epileptic seizures are the most commonly occurring ones.
In this work, as a simplification of the complete biological operations of the brain, it was viewed as a
system that consists of coupled oscillators. This allowed us to examine epilepsy as a pathological
manifestation of the system. Emerging behaviors that arise from the spatiotemporal interactions of
simple oscillators, namely, Chua’s Circuit, allowed us to observe how irregularities and changes to
the coupling parameters of a neuromorphic network affect their synchronization and result in the
emergence of epileptic activity. To achieve this, the characteristics of novel nanoelectronic devices,
namely, memristors, have been exploited through their integration into two-dimensional crossbar
arrays that offer the advantages of reprogrammability, low area, and low power consumption.

Keywords: Chua’s circuit; epilepsy; epileptic seizure; synchronization; coupling; memristive devices

1. Introduction

Chua’s Circuit (CC) is among the most widely used electrical circuits for performing
chaotic dynamics with a nonlinear element, and despite its simplicity, the associated
system of nonlinear differential equations is particularly rich in dynamical states; it is
able to perform a wide range of intriguing transitions from regular to chaotic dynamics.
Chua’s Circuit is the simplest electronic circuit that meets the criteria to be defined as an
autonomous circuit that displays chaotic behavior. The combination of its easy experimental
implementation and the ease and accuracy of its theoretical modeling have resulted in
its extensive use in chaos theory applications in the literature. In the chaotic domain, the
attractor’s trajectory oscillates around two distinct points, and the transitions between
them are highly sensitive to the initial conditions of the system, resulting in the well-known
double-scroll chaotic attractors in the phase plane. Networks of coupled CCs have been
extensively studied to achieve either full chaotic synchronization [1,2] or the formation of
richer synchronization regimes, such as chimera states [3,4]. Brain-mapping projects are
gaining popularity around the world, including the Brain Research through Advancing
Innovative Neurotechnologies (BRAIN) initiative in the United States [5], the Human Brain
Project (HBP) in Europe [6], and the Brain Mapping by Integrated Neurotechnologies
for Disease Studies (Brain/MINDS) project in Japan [7]. These projects aim to model the
structure and function of neural circuits in order to better comprehend the human brain’s
massive complexity. This is a clear demonstration of the research community’s growing
interest in understanding the brain’s functionality.

The presence of chaotic dynamics in neural networks and brain-inspired phenom-
ena has received a lot of attention recently [8,9], and this has advanced insights into the
relationship between single-neuron dynamics and recurrent connectivities, which is a
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major step towards the description of more bio-plausible neuromorphic networks [10]. In
particular, various neuroscience-based studies have observed that a variety of dynamical
phenomena are directly associated with brain functionality during simple tasks and in
many neurological disorders, including epileptic seizures, Parkinson’s disease, Alzheimer’s
disease, and schizophrenia [11–13]. Therefore, incorporating more complex dynamics in
brain-inspired networks paves the way for a more robust and bio-plausible approach for
emulation of epileptic seizures. Chaotic behavior is ubiquitous in real-world nonlinear
dynamical systems and the hallmark of the collective brain activity. Researchers have
proposed a neuron model with chaotic dynamics in [14] that is capable of qualitatively re-
producing the experimentally observed alternating periodic–chaotic sequences of neuronal
responses. Bifurcation phenomena and chaos are present in various biological systems,
such as neural networks, cells, and membranes [15]; and these are also considered for the
equations that describe neurons, such as the FitzHugh–Nagumo equations [16] and the
Hindmarsh–Rose equations [17]. Keeping in mind that chaos and stochasticity are two
different phenomena, we take advantage of the unpredictability of these phenomena and
utilize the intrinsic chaotic properties of chaotic oscillators to model the collective chaotic
phenomena that emerge through the spatial and temporal interaction of neuronal cells in
the brain. Even though we consider that a single neuronal cell’s behavior is not intrinsi-
cally chaotic, considering coupled chaotic oscillators as a means to mimic the interactions
among neurons has been extensively studied for modeling and emulating efforts in the
literature [18,19].

Recently, epileptic mechanisms have been uncovered and have been related to several
neurotransmitters, such as astrocytes, which possess a variety of complex dynamical modes,
including chaos and multistability, and can further provide different modulations of neuron
models and circuits. The brain’s oscillatory functionality, as described in [20,21], is charac-
terized by chaotic behavior during the normal state, whereas its behavior is synchronized
during abnormal epileptic behavior. Further studies have demonstrated the emergence
of complicated oscillations of calcium concentration, enabling the simulation of neuron–
astrocytic networks [22]. As a result, the motivation behind the use of chaotic circuits as
neurons lies in the fact that they are capable of exhibiting irregular chaotic synchroniza-
tion, depending on the initial conditions, and imposing unpredictability over time, which
can be considered for modeling epileptic seizures. This approximation is experimentally
acceptable, and it can also reproduce excitatory and inhibitory spiking activity, as in the
Fitzhugh–Nagumo neuron model. Ring-based networks of CCs coupled on memristor
crossbar arrays have already been employed in synchronization-based studies, revealing
a variety of complex spatiotemporal patterns, including chaotic synchronization and the
emergence of chimera states [23]. In this work, we explore the synchronization phenomena
that emerge due to the presence of an abnormality in the connectivity of the oscillators. A
network of simple, coupled oscillatory units was exploited, and the simulation results are
presented in order to compare the behavior of a healthy (no unwanted connections) and an
epileptic network—random, long-range connections determine its chaotic behavior.

Initially, in Section 2, the basic concepts and simulation efforts concerning epileptic
phenomena are discussed. Section 3 describes a novel nanoelectronic circuit element—the
memristor, whose characteristics are utilized to serve as the coupling medium between
the oscillators in a crossbar array configuration. The proposed Chua’s Circuit network
configuration is described in Section 4. Section 5 presents the resolution of the proposed
coupled oscillators system. Lastly, the results are discussed in Section 6, and Section 7
concludes the paper.

2. Epilepsy

Epilepsy is the most common and one of the oldest known chronic, neurological
disorders occurring in humankind, and it is estimated that approximately 50 million people
worldwide are affected [24]. Traditionally, epilepsy has been characterized as a disorder
rather than a disease, in an effort to emphasize the various diseases and conditions that
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epilepsy involves. As reported in the 2005 Report on the Conceptual Definition of Seizure
and Epilepsy [25], it is a brain disorder characterized by the occurrence of epileptic seizures
and the neuronal, biological, cognitive, psychological, and social consequences that it
causes for the patients. Diagnosing epilepsy in a patient requires the occurrence of at
least one epileptic seizure in his lifetime. An epileptic seizure is defined as the transient
occurrence of signs and/or symptoms caused by abnormally excessive or synchronous
neuronal brain activity. Compared to healthy individuals, it has been demonstrated that the
brains of epilepsy patients have a pathological tendency for seizures, described as a lower
seizure threshold. It has to be noted that to diagnose a patient with epilepsy, the seizure
must have been unprovoked, meaning that the seizure was not caused by an external,
temporary, or reversible factor that affected the person at that point. Therefore, seizures
resulting from incidents such as a concussions, fever, or alcohol-withdrawal effects can
not be categorized by default as epileptic seizures without further, more in-depth research.
These seizures are the results of malfunctions in the electrophysiological system of the
brain, causing excessive electrical discharges by the affected brain cells (neurons).

Epilepsy is a chronic neurological disorder that is also characterized by recurring
irregular seizures of varying complexity and chaos [20,21]. There are several compelling
arguments concerning the occurrence of chaotic behavior in many biological systems,
including the human brain [26–29]. The human brain, as a chaotic system, does not
establish equilibrium after a transient time, but rather alternates between different states in
which neural activity can shift from chaos to synchronization. A bifurcation occurs when
the brain operates in a normal state (chaotic state) and suddenly experiences a seizure
(synchronized state) [30,31]. A control parameter adjustment of a chaotic dynamical system
may lead it to bifurcate to a synchronized state, and a further adjustment can restore the
system back to chaos. Likewise, the healthy brain has chaotic activity, but epileptic seizures
caused by excessive harmonic synchronization of vast neural populations can cause a
hyper-synchronous state, leading the brain to bifurcate and switch from a chaotic (normal)
to a synchronized (abnormal) state.

2.1. Previous Scientific Efforts

Researchers have long focused their interests on several aspects of epilepsy, starting
with medical experts who work on recognizing its symptoms and diagnosing it [32,33] in
order to understand its characteristics and help provide possible solutions and treatments.
Accounting for epilepsy’s neurological nature, research around it has attracted the interest
of non-medical scientists and experts as well. Their work focuses on developing novel
techniques and technologies for clearer understanding, diagnosis, and treatment of epileptic
seizures. One widely used test for the detection and analysis of epileptic seizures is the
electroencephalogram (EEG). It is used for the measurement and recording of the brain’s
electrical activity and helps determine the seizure type and epilepsy syndrome of patients,
which, in turn, defines the appropriate course of treatment [34]. Efforts have been presented
in the literature, such as the one in [35], for the improvement of EEG results and automation
of the diagnosis and classification processes. Among the widely used techniques that
have been explored and deliver promising results is the use of artificial neural networks to
model epileptic behavior [21] and perform epilepsy detection [36]. The authors of [37] have
also exploited memristors to propose a convolutional neural network capable of seizure
detection and prediction. Classification of patients depending on their symptoms into one
of the several forms of epilepsy to help choose the appropriate treatment using ANNs is
described in [38], and it was implemented by using FPGA boards. Changes in bifurcation
parameters are also detected in EEGs [39], and when abnormality or disease (e.g., epilepsy)
is induced, chaotic features are retrieved [40]. Recently, epileptic mechanisms have been
discovered and linked to many neurotransmitters, such as astrocytes, which have a range
of complicated dynamical modes, including chaos and multistability, and can further
modulate neuron models and circuits [22].
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Other efforts include the utilization of nonlinear systems’ networks for the extraction
of EEG features and their further analysis. The architecture of cellular automata was con-
sidered as a promising candidate for the simulation of epileptic brain activity in [41], which
inspired the authors of [42] to later propose a circuit implementation of this system using
memristive devices. Furthermore, cellular nonlinear networks, originally proposed by
Chua in [43], are networks of locally coupled systems that interact and have been proven to
be capable of universal and high-speed computing. They exhibit several nonlinear phenom-
ena, such as wave propagation, oscillating or chaotic behavior, and partially differential
equation solutions. The CNN’s promising characteristics have resulted in a plethora of
publications in the literature that exploit this architecture for several aspects of research
around epilepsy, such as the detection of patterns in long EEG recordings to enable the
recognition of early signs of an epileptic seizure [44], improved analysis of EEG signals
for feature extraction [45], and reproducibility of synchronization phenomena that charac-
terize epileptic seizures [46]. Hardware implementations have also been proposed, such
as the ones presented in [47], where FPGA boards were used for EEG signal processing
using CNN.

2.2. Epilepsy Modeling with Coupled Oscillators

Taking into consideration all the above, it is clear that research around epilepsy is a
continuously growing field that scientists from various fields choose to examine. Among the
various paths presented, a network of oscillators whose spatial and temporal interactions
result in the manifestation of epileptic seizures will be examined here. Oscillations are
considered to be the hallmark of brain activity where, as described in [48], the brain regions
are not considered to be isolated from each other. The interactions generate complex
behaviors, and external stimuli can lead the system into oscillatory regimes, increasing
its frequency compared to its quiescent state. Further studies presented in [49] have also
concluded that the coordination of neuronal spiking relies heavily on brain oscillations
for the functionalities of human cognition. To achieve this, the authors analyzed the
temporal relationship between neuronal activity and brain oscillations to observe that
specific phases of brain oscillations lead to increased neuronal activity. As stated by the
authors of [50], advances in computation methods have facilitated the study of oscillatory
behaviors and advances in EEG that have enabled recording signals from small brain
regions that demonstrate oscillations, thereby spurring the interest of researchers toward
human brain rhythms. The extensive research and the promising results that have been
observed have therefore led to extended use of oscillatory networks as the means of
mimicking, emulating, and evaluating several brain conditions.

This approach was presented in [51], where the authors described a review of the
findings in computer modeling of epilepsy, which is considered as a pathological mani-
festation of a multistate network consisting of coupled oscillatory units. Although this
is a simplification of the biological functionality of the brain, it helps to pave the way
towards exploring and understanding the emergent phenomena that arise from the inter-
action of the coupled oscillators. A similar approach was also presented in [52], where a
coupled oscillator model for epilepsy prediction simulated EEG-like signals to measure
synchrony. A heterogeneously coupled oscillator model was also proposed in [53] as
a means to reproduce the dynamic mechanisms of state transitions during an epileptic
seizure. Two-dimensional equations capable of reproducing the transition between low and
high amplitude oscillations were appropriately selected, so they provided evidence that
epileptic dynamics are caused by the coupling of heterogeneous systems that can exhibit
chaotic behavior.

3. Memristive Devices
3.1. Memristor Characteristics

The memristive device is a novel, two-terminal nanoelectronic device. Although it
was theoretically postulated 50 years ago by circuit theorist L. Chua [54], advances in
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technology and materials that allowed the miniaturization of circuits and enabled the
development of elements in nanoscale dimensions paved the way towards its practical
realization. Its attractive characteristic is its ability to adjust its internal resistance state
(called memristance) according to an external stimulus applied at its terminals and maintain
this state when this stimulus is removed. The applied stimuli can be either voltage (voltage-
controlled devices) or current (current-controlled devices). This stimulation is applied
across the device’s terminals, usually referred to as the TOP terminal and the BOTTOM
terminal. Depending on the device’s internal structure, its resistance state changes. In the
most common case, when two distinct resistive states are possible, there is a high resistive
state (HRS) and a low resistive state (LRS). The transition from HRS to LRS is called the
SET process, and the contrary is called the RESET process. Devices are also being developed
that are capable of storing more than two states, to enable multi-state storage, such as the
ones presented in [55,56].

3.2. Memristive Devices: Fabrication and Modeling

A variety of devices have been fabricated and presented in the literature, initially
from various research groups, and lately, memristive devices have also been industrially
fabricated and sold by companies. Several different fabrication methods and switching
mechanisms have been developed, resulting in memristive devices with varying character-
istics and behaviors. Metal–insulator–metal (MIM) device structures have been widely de-
veloped. They use a large variety of materials to achieve the resistive switching mechanism.
The insulator is usually an appropriately selected metal oxide that exhibits semiconductor
properties. Commonly, MIM devices’ behavior is considered to consist of the formation and
rupturing of conductive paths (called filaments) that connect the TOP and the BOTTOM
terminals. When an appropriate stimulus is applied, the filament is constructed, thereby
lowering its memristance and current flows across the device. When this stimulus is re-
moved or its polarity changes, depending on the specific device’s functionality, the filament
ruptures and the device’s memristance resets. The prevalent resistive switching mecha-
nisms that govern the filament’s formation are the valence change memory (VCM) and the
electrochemical metallization memory (ECM). The former depends on the induced anion
migration inside the insulator layer, and the latter relies on the oxidation of an active metal
electrode that produces cation migration within the insulator [57]. As described earlier,
the SET and RESET processes can be induced in different ways, depending on the device’s
physics. More specifically, in the case of voltage-controlled devices, in bipolar memristive
devices, usually a positive applied voltage causes the SET process and a negative voltage
resets the device’s memristance. This is not the case for unipolar memristive devices, where
both the SET and RESET voltages have different absolute values but same polarities.

Therefore, it is evident that it is not easy to apply the same methods to simulate the
behavior of all the available memristive devices. This explains the presence of various
memristor models that have been developed in an effort to provide researchers with the
appropriate tools to be able to use memristors when simulating circuits. These models are
divided into two broad subcategories. The first type is the behavioral memristor models.
As indicated by their name, these models simulate the behavior of a memristive device
depending on the expected outcomes utilizing equations inspired by nature and natural
processes, or the ideally expected outcomes. On the contrary, physics-based models are
developed so as to accurately simulate memristive devices, according to corresponding
physical phenomena that have been fabricated. These models are developed by analyz-
ing the (electro)chemical properties of the selected materials and the resistive switching
mechanism that governs their behavior. The model parameters and equations are properly
adjusted to fit real data acquired by measurements from the fabricated devices.

3.3. Applications

In this work, memristors were selected to act as switching elements. We exploited
one of the most promising memory architectures that is currently available, the crossbar
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architecture. Crossbars are arrays consisting of horizontal and vertical perpendicular metal
wires that include a memristor at each intersection. This architecture offers a plethora of
advantages and promising applications. Large arrays of 3D stacking techniques enable
high-density storage and great parallelism, and could potentially eliminate the need for
analog-to-digital or digital-to-analog (ADC/DAC) conversions during analog computing.
Applying appropriate voltage pulses to a selected horizontal and vertical wire allows the
programming of the device at their intersection, serving as a storage element. The informa-
tion is stored in the form of a conductance value and can later be used to perform operations
such as vector-matrix multiplication (VMM), a demanding but important computing task
for traditional computing systems. This task takes advantage of Kirchhoff’s current law,
computing the current at each column of the crossbar as the sum of the input voltage
multiplied by the memristor’s conductance value [58]. Among the various applications
where memristor crossbar arrays have been successfully utilized, artificial neural networks
have proven to attract a lot of interest, such as deep neural networks in [59] and convolution
neural networks in [60,61], just to name a few. Other applications that have benefited from
the use of a memristive crossbar include, but are not limited to, the implementations of
quantum algorithms in [62], image processing [63], and data storage [64].

3.4. VTEAM Memristor Model

There is a wide variety of memristor models available in the literature, and circuit
designers and theorists have to take their characteristics into consideration before choosing
the optimal model for their application. The oscillators are coupled by connecting their
X1 and X2 variables, which represent the voltages across the CC’s capacitors C1 and C2,
as shown in Figure 1, which correspond to the voltages at nodes V1 and V2, respectively.
Therefore, a voltage-controlled memristive device was selected for this application to enable
the connectivity among the oscillators and to allow further research and extension of the
currently proposed network in the direction of studying the network’s behavior when the
connectivity among the CCs can be altered during the simulation or it can be affected by
the CCs. A crossbar configuration was selected to act as the coupling medium among the
CCs. The read and write processes were performed by applying appropriate voltage pulses
across the desired memristor devices. Utilizing memristive devices with a threshold voltage
resulted in a fixed voltage being applied across the device, and the RESET process was not
affected by variations in the resistance, thereby avoiding performance and reliability issues.

L1 C2 C1

V2 V1

Figure 1. Circuit design of a Chua’s Circuit oscillator unit highlighting the V1 and V2 nodes.

Among them, a commonly used memristor model owing to its attractive characteristics
of being a general, simple, and sufficiently accurate model, is the Voltage Threshold Adaptive
Memristor Model (VTEAM Model) presented in [65]. This model has been developed based
on the Threshold Adaptive Memristor Model (TEAM Model), as described in detail in [66],
which has become quite popular due to the same characteristics. The difference between
these two models lies in the switching behavior of the devices they describe. The TEAM
model describes current-controlled memristors, and VTEAM describes the behavior of
voltage-controlled devices. The VTEAM’s behavior is dependent on an expression of the
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internal state’s variable derivative, and its characteristic current–voltage relationship can be
freely chosen to adapt to any current–voltage characteristics. This means that VTEAM is a
general model whose inherent generality and robustness allow it to be properly adapted to
numerous experimental data and model different fabricated devices. Due to the differences
between the VTEAM and TEAM models, the VTEAM was selected to act as the coupling
memristive device, as it fits the requirements more appropriately.

In this work, we explored the VTEAM’s ability to exhibit the necessary voltage thresh-
old values and an appropriate Ron/Ro f f ratio so that it can be used to construct the memris-
tor crossbar array that was to serve as the coupling among the CCs. Figure 2a demonstrates
the model’s I-V characteristic curve that corresponds to the selected parameters, whereas
Figure 2b depicts the memristance changes of the device (bottom plot), in response to the
voltage applied at its terminals (top plot).

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-5

-5

0

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time[sec] 10
-5

0

0.2

0.4

0.6

0.8

1
X/D as func of time

(b)

Figure 2. VTEAM (a) I-V characteristics showing the circuit schematic of a memristor device in the
gray doted box. (b) Memristance update (bottom) in response to applied voltage (top).

4. Proposed Coupled Chua’s Circuit Configuration

A ring-oriented network of N nonlinear chaotic oscillators with nonlocal topology, as
shown in Figure 3b, was utilized as the proposed coupled Chua’s Circuit (CC) configuration.
Each node of the proposed network was regarded as a CC chaotic oscillator connected to
its R = ρN nearest nodes from the left and right sides, where N is the number of CCs and
ρ the percentage of the grid that forms the radius of the neighborhood, and its dynamics
are given by the following dimensionless equations:

ẋ1 = αc(x2 − x1 − f (x1))

ẋ2 = (x1 − x2 + x3) + Ic

ẋ3 = −βcx2

f (x) = Bx +
1
2
(A− B)(|x + E| − |x− E|)

Ic = k ∑
j∈C

(x1 − x1,j)

(1)

where x1 = V1/E, x2 = V2/E, x3 = iL/(RchuaE) are the normalized state variables [23], E
is a threshold voltage of Chua’s Diode that functions as a positive or negative resistance, Ic
is the coupling current on X2 state variable, and k = σ/2R = 2Rchua/Ron is the coupling
coefficient that is adjusted by the CC’s resistance Rchua and the low resistance state of the
memristor Ron. The parameters provided below are appropriate for setting the behavior
of the attractor in the double-scroll chaotic domain: αc = 9.4, βc = 14.28 A = − 1.143,
B = − 0.714, and E = 0.2V .



Symmetry 2022, 14, 2325 8 of 19

(a) (b)

Figure 3. (a) The 10× 10 memristive crossbar array structure used for the coupling of 10 Chua’s
Circuits (CCs) (b) the non-local coupling scheme used for the ring-based network of CC, where N is
the network size and R equals the number of adjacent nodes from each side.

A crossbar architecture was realized as a coupling medium between CC oscillators
by using two perpendicular groups of parallel nanowires, denoted as columns and rows,
that coupled CC oscillators through crosspoints located symmetrically with respect to
the diagonal of the crossbar array, under which memristor devices were placed, and
column/row nanowires correspond accordingly to top/bottom electrodes. Figure 3a shows
a basic illustration of the connectivity between 10 CC oscillators using the memristor
crossbar. The memristor devices placed in the diagonal of the crossbar array (purple
memristors) were considered as short circuits because both their top and bottom electrodes
were connected to the same state variable, whereas the other memristor devices could be
programmed to describe the network topology shown in Figure 3b. Anti-parallel coupling
between pairs of CC oscillators can be represented by pairs of operational memristors
symmetrically placed on the diagonal.

The network’s synchronization was measured by using the time-dependent Kuramoto
order parameter Rsyn introduced in [67], which is computed by the following equation:

Rsyn =
1
N

∣∣∣∣∣ N

∑
j=1

ei2πΦj(t)

∣∣∣∣∣ (2)

where N is the total number of CC oscillators. R(t) is bounded in the range of [0, 1]
and obtained by computing the phases of oscillators Φj(t) considering the positive zero-
crossings of X2 state variable as the CCs period of oscillation.

5. Resolution of the Coupled Oscillators Model

Two distinct configurations were examined in order to evaluate the behavior of the
coupled oscillators model and observed the formation of phase synchronization phenom-
ena. N total CCs were simulated using the normalized equations provided in Section 4,
and their coupling was realized by employing the elements of a connectivity matrix, which
correspond to the memristive crossbar configuration. Simulating the state variables’ evolu-
tion of CCs’ requires the modeling of all the conceivable connections between them. The
available connections in the case of N ∈ N CCs are N × N; therefore, the size of the con-
nectivity matrix is N × N. Furthermore, the coupling strength of the connections must be
considered in order to investigate its significance in the emergence of the synchronization
phenomena. A 1D ring network of N coupled CCs using a memristive crossbar emulates
epileptic brain activity. More specifically, two cases will be considered, the healthy state
and the epileptic state.
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Each CC in the healthy state is connected with neighboring CCs in a radius of R ∈ N
around it. These connections are regular, and there are no unwanted longer-range con-
nections in the network. As a result, the connectivity matrix Ah used in the simulations
is a diagonal matrix with non-zero elements in a R radius around the central diagonal,
indicating the presence of a connection among the CCs; otherwise, no connection exists
and the element’s value is zero. For the ring-based topology of the coupled oscillators’
network, the periodic boundary conditions were set to mimic a large (infinite) system. This
design enabled us to observe that synchronization of oscillators demands a larger radius
of coupled CCs or increased coupling strength between them. Lower values of these two
parameters sustain the oscillators’ chaotic behavior.

The network of N CCs was also simulated, considering irregularities in its spatial
connections, with the same coupling strength among the CCs and given the same initial
conditions. More specifically, emulating the epileptic brain activity entailed introducing
anomalies in CCs connectivity, such as long-range connections between CCs that are not
coupled during the healthy state. Connections between neurons can be lost or generated as a
result of malfunctions and unknown environmental or biological factors. Here, we examine
the case where, due to some irregularities, certain neurons (here represented as CCs) are no
longer connected only with their neighbors in radius R, but also with random connections
with more distant CCs. To achieve this, we introduced an updated connectivity matrix Ae,
which includes the elements of Ah and elements indicating the presence of the irregular
connections under the same conditions and using the same representation (1 for coupled
CCs and 0 for uncoupled). The goal was to determine how the coupling irregularities affect
the chaotic synchronization of the oscillators. Under the same conditions, the onset of
epileptic activity, consisting of CCs chaotic synchronization, is evident from the healthy
and epileptic grids.

6. Results and Discussion
6.1. 10 Chua’s Circuits Network Example

To exemplify our approach, the behavior of a small network comprised of 10 CCs is
initially presented by utilizing a 10× 10 crossbar array as the connectivity between the CCs.
More specifically, Figure 4a presents the connectivity matrix Ah for the simulation of the
healthy state, whereas Figure 4b shows the matrix Ae, which represents the presence of
irregularities in the CCs’ connectivity.

In the case presented here, the coupling radius was set to r = 0.2, which means that
each CC was coupled with 2 neighboring CCs on its left and 2 on its right side; the
coupling strength was set to cs = 1.68 in both cases. The yellow elements of both matrices
correspond to coupled CCs, whereas the blue elements represent uncoupled CCs. Both
matrices are symmetric, which means that the connections among the CCs are anti-parallel
and bidirectional, indicating that the coupling between the ith CC and jth CC, where
1 ≤ i, j ≤ 10, allows them to affect each other’s behavior. The main diagonal elements
were considered as short-circuits and were adjusted to blue in all cases, indicating the
non-existence of self-feedback on each CC. Furthermore, as mentioned in Section 5, the CC
network topology was a ring, as shown by matrices Ah and Ae. In the case of the epileptic
network, the connections remained the same, as illustrated in Figure 4b, since the same
coupling radius was used. The difference was that this network also included unwanted
connections among the CCs in order to study the network’s phase synchronization. In the
example provided here, elements (4, 1) & (1, 4), (5, 1) & (1, 5), (6, 1) & (1, 6), (5, 2) & (2, 5),
(6, 2) & (2, 6) and (6, 3) & (3, 6) are highlighted in yellow, indicating that the 4th CC was
also connected to the 1st CC; the 5th CC was also connected to the 1st and 2nd CCs; and
the 6th CC was also connected to the 1st, 2nd, and 3rd CCs, which were not included in
their r = 2 radius.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Simulation results for a network of 10 CCs with r = 0.2 and coupling strength cs = 1.68.
(a,b) are the connectivity matrices for the healthy and the epileptic grids, respectively. (c,d) present
the time evolution of the voltage at nodes X1 (top plot) and X2 (bottom plot) for the healthy and the
epileptic grids, respectively. Finally, (e,f) demonstrate the time evolution of the phases of all the CCs
(top plot), the time evolution of the Rsyn metric (middle plot) for the healthy and the epileptic grids
and snapshots of the voltage at node X1 for 25 different times (bottom plot).

The results obtained for the simulation of both grids are presented in Figure 4c through
Figure 4f. Figure 4c,d show the time evolution of the voltage at nodes X1 (top plot) and
X2 (bottom plot) over the entire simulation duration, respectively. Darker shades (blue)
correspond to lower negative X1 and X2 voltage levels, and lighter shades (yellow) to
higher positive voltages. When Figure 4c,d are compared, it is evident that chaotic phase
synchronization develops in the case of an epileptic network. This indicates the network’s
vulnerability to epileptic seizures due to increased coupling among the CCs, since in the
healthy network, the CCs’ time evolution remained unsynced, but in the epileptic network,
the oscillators were abruptly synchronized. This synchronization is visible in both plots
for X1 and X2 state variables, for which it is necessary to compare the respective values of
X1 and X2 by taking horizontal frames of these two plots: observe that the color shades
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remain the same in the epileptic network (indicating synchronization), but this is not the
case in the healthy network.

Lastly, Figure 4e,f demonstrate three different plots that provide evidence of the onset
of epileptic events in the case of abnormalities. The top sub-figures of Figure 4e,f present
the time evolution of each CC’s phase in the network. The X2 state variable’s positive
crossings are regarded as the oscillation periods of all CCs; hence, this is how each CC’s
phase variables were derived. This variable determines whether or not all of the oscillators
evolve in-sync. As is obvious, the emergence of the epileptic phenomena in the Ae network
is depicted in a comparable manner as the top plot of Figure 4c,d, where synchronization
appears as identical colors of the variable in distinct horizontal frames of the plot. The
Rsyn index for each grid is an indicator metric of the degree of system synchrony and
is shown at the center plot of Figure 4e,f. When the value of Rsyn is computed to be
maximal, and hence equal to 1, the system is under full chaotic synchronization, whereas
the oscillators remained unsynced in all other cases (Rsyn < 1). As seen in Figure 4e,f, the
healthy network’s index varied during the simulation period and did not settle on 1, but
in the case of the epileptic behavior, the Rsyn was permanently equal to 1. The bottom
sub-figure shows 25 snapshots of voltage values at node X1 at specific times for all CCs.
This behavior is shown as a flat line, indicating that all of the oscillators’ X1 voltage values
were equal at that specific period. In the case of the healthy network, however, these
snapshots clearly demonstrate that the X1 variable had a different value for each CC at the
same time, indicating that no chaotic synchronization was formed.

6.2. 300-Chua-Circuit Network Example

The results of the simulation of 300 CC grids are presented and discussed in this
subsection. More specifically, two different cases are presented, in which the formation of
epileptic states is evident as a result of the increased coupling among CCs in comparison
to the healthy state. These two cases were created by varying the coupling radius and the
coupling strength parameters; thus, the incidence of epileptic coupling differed in each case.
In both cases, the synchronization of the oscillatory units was evident after the initiation
phase in the case of the epileptic coupling, but the healthy grid remained chaotic, and no
epileptic states arose. Following the 10-CCs example, Figures 5 and 6 show the findings
for two alternative cases of a 300-CC network. In both cases, Figures 5a and 6a present the
connectivity matrix Ah for the healthy network structure, and Figures 5b and 6b present the
epileptic connectivity matrix Ae, which includes the random, long-range connections that
cause epileptic phenomena to emerge. For the case presented in Figure 5, the connectivity
radius was set to r = 0.25, which means that each CC was connected to R = 0.25× 300 = 75
adjacent CCs on each side, with the coupling strength of cs = 1.72. Additionally, the random
connections in the epileptic connectivity matrix Ae were constrained to a region around
the central CC (150th) that spanned from the 105th CC (35% of the entire grid) to the
195th CC (65% of the entire grid). The results presented in Figure 6 examine the case of
radius r = 0.3, which corresponds to R = 0.3× 300 = 90 coupled CCs on each side and
coupling strength cs = 1.25. The epileptic network’s random connections were constrained
in this case to a region around the central CC (150th) that spanned from the 105th CC
(35% of the entire grid) to the 195th CC (65% of the entire grid). Following the detailed
example discussed in Section 6.1, the respective results for these two cases are presented
in Figures 5 and 6, showing that the epileptic network is driven to synchronization due
to the configuration of the unwanted connections. It is evident in both examples that the
emergence of synchronization phenomena can be observed through the comparison of the
respective Figures, following the example of Figure 4. In the cases of an epileptic network,
X1, X2, and the phases of all the CCs appear synchronized after a certain time, whereas in
the healthy network, no synchronization occurs. This can also be verified by observing the
time evolution of the Rsyn metric and the snapshots of the X1 variable.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Simulation results for a network of 300 CCs with r = 0.25 and coupling strength cs = 1.72.
(a,b) are the connectivity matrices for the healthy and the epileptic grids, respectively. (c,d) present
the time evolution of the voltage at nodes X1 (top plot) and X2 (bottom plot) for the healthy and the
epileptic grids, respectively. Finally, (e,f) demonstrate the time evolution of the phases of all the CCs
(top plot), the time evolution of the Rsyn metric (middle plot) for the healthy and the epileptic grids,
and snapshots of the voltage at node X1 for 25 different times (bottom plot).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Simulation results for a network of 300 CCs with r = 0.3 and coupling strengthcs = 1.25.
(a,b) are the connectivity matrices for the healthy and the epileptic grids, respectively. (c,d) present
the time evolution of the voltage at nodes X1 (top plot) and X2 (bottom plot) for the healthy and the
epileptic grids, respectively. Finally, (e,f) demonstrate the time evolution of the phases of all the CCs
(top plot), the time evolution of the Rsyn metric (middle plot) for the healthy and the epileptic grids,
and snapshots of the voltage at node X1 for 25 different times (bottom plot).

6.3. Comparison Results

In this subsection, we present a comparison between two epileptic scenarios using
both the number of irregularities and their ranges adjusted by the memristor crossbar
as bifurcation parameters of the CC network. More specifically, Figure 7a,b present the
time evolution of the Rsyn metric to demonstrate the synchronization of various epileptic
networks. The number of oscillators was stable and equal to 300 for all four cases considered
in Figures, and the coupling radius was fixed to r = 0.3 for both scenarios. In the case of
the epileptic networks, as seen in the preceding examples, a region of the oscillatory units
network was selected as being prone to irregularities. These irregularities were interpreted
by the presence of long-range connections of the cells in the affected region.
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(a) (b)

Figure 7. Two cases of the Rsyn metric time evolution within the same CC network for a varying
threshold that determines the existence of irregularities, through its comparison with a randomly
generated number (0.2 in red line, 0.4 in green, 0.6 in blue, and 0.8 in magenta) (a) cs = 1.1 (b) cs = 1.4.

In the first scenario, as shown in Figure 7a,b, we had constant coupling parameters,
r = 0.3 and cs = {1.1, 1.4}; and a variable number of irregularities in a constant range of
the CC network. In particular, the corresponding number of affected connections was
randomly generated by using a corresponding function as a fixed threshold variable that
determined if the connections would be active or not. Four cases are presented for different
values of this threshold variable that directly affected the number of irregularities in the
specific affected range. According to Figure 7, for a fixed network, lower threshold values
are more prone to cause chaotic synchronization, whereas higher threshold values have a
less significant impact.

Figure 8 demonstrates the second scenario in which the time evolution of the Rsyn
metric of three different cases by varying the range of the irregularity area is presented.
More specifically, the synchronization phenomena are more likely to occur as the range
of the irregularity area increases. This is shown by the Rsyn metric reaching the value of
1, indicating the emergence of synchronization. Three irregularity ranges are considered:
35–65%, 30–70%, and 25–75%. This translates to the available area surrounding the center
CC (150th in this case), where long-range connections can appear. For these cases, the
coupling strength was fixed to cs = 1.8, and the threshold, which was selected as a variable
in the first epileptic scenario, was equal to 0.5.

Figure 8. Rsyn metric time evolution for varying area of irregularities within the same CC network,
corresponding to increasing radius around the center CC (150th) where irregularities can exist. The
threshold value was selected to be constant and equal to 0.5.
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Finally, Figure 9 presents the mean Rsyn ranges obtained for 10 different random
initial condition sets over a sufficient simulation period of 105 seconds. This comparison
was used to demonstrate that the proposed configuration is immune to the networks’
initial conditions and chaotic synchronization can emerge under various properly adjusted
memristor crossbar-diseased connectivities. A network of 300 CCs was deployed in both
scenarios. Figure 9a shows to the mean values of Rsyn for 11 cases of irregularity radius,
displayed in increasing order, beginning with the irregular range of 45–55% around the
center CC where irregularities can exist, with a step of 2% up to the range of 25–75%. The
threshold for determining an irregularity was set to 0.5, and the coupling strength was set
to cs = 1.75. Similarly to the results in Figure 8, the value of the Rsyn metric increases with
increasing radius, regardless of the initial conditions. For each individual irregular radius
value, the mean value of Rsyn of 10 simulations with varied initial conditions is provided in
this Figure, and the bars correspond to the minimum and maximum Rsyn values determined
in each case. The findings obtained in the scenario of a varying threshold, as described in
Figure 7, are shown in Figure 9b. The irregularity radius was set to 25–75% range and the
coupling strength is set at cs = 1.60. The threshold values started from 0.2 and increased
in 0.1 steps up to the value of 0.8. It is also evident that when the threshold is raised, the
mean Rsyn value decreases, as the network becomes less irregular.

(a) (b)

Figure 9. Mean value of the Rsyn metric and corresponding limits of the obtained minimum and
maximum values for 10 different cases of initial conditions, for (a) 11 cases of irregularity radius and
(b) 7 cases of thresholds. X-axis corresponds to the variable quantity and y-axis to the Rsyn value.

Our findings indicate that, while an increasing number of irregularities in the chaotic
network causes full chaotic synchronization, when we have a fixed number of irregularities
and a variable irregular range, the more we increase it, the more synchronization emerges,
implying that global irregularities drive the network to synchronization more easily than
local irregularities.

6.4. Comparison with Existing Works in the Literature

Several other efforts have been presented in the literature, aiming to exploit oscillatory
units for the research towards understanding, modeling, and analyzing epileptic phenom-
ena. Synchronization patterns that were generated in a network of coupled FitzHugh–
Nagumo oscillators were studied in [68]. Several network structures were examined to
compare the resulting oscillatory dynamics and conclude on which topology favors the
characteristics of seizure-like synchronization phenomena. A small-world network with
an intermediate rewiring probability that is balanced between randomness and regular-
ity features was observed to deliver the optimal results. This work offers an extensive
search of topologies that could be exploited in our research as well, in order to observe
the differences in the utilization of different oscillatory systems. Utilizing a more simple
oscillatory unit, such as Chua’s Circuit, would enable an easier circuit implementation of
the described network. Rössler-like oscillators were selected in [69], whose parameters
were appropriately selected to be in the chaotic regime. Diffusive coupling among the
oscillators was realized so as to observe the synchronization patterns that emerged. The
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inclusion of internal feedback in the proposed networks led to the conclusion that they
share many similarities with epileptic brain activity due to the network de-tuning caused
by a pathological or environmental factor. Lastly, the Morris–Lecar model, which is capable
of reproducing limit cycle oscillations for different parameter values, was explored in [70]
in order to model a specific region of the hippocampus where the epileptic focus is usually
located. The authors worked towards identifying a parameter whose abnormal alternation
within the healthy tissue allows the spread of the seizure from the affected area to the
whole brain. To make this observation, the aforementioned model was simulated using its
mathematical description to study the system’s response to varying speeds and the ease of
communication among neurons.

In comparison to previous works, our goal was to utilize the simplest known oscilla-
tory unit capable of reproducing chaotic dynamics while also being easily implemented
in hardware. Furthermore, our approach consisted of considering that networks of cou-
pled oscillators are capable of emergent epileptic activity, and we aimed to compare the
same network’s behavior during healthy and epileptic activities. Observing the degree of
influence that even small perturbations of the brain’s topology and coupling can have on
the emergence of synchronization phenomena was our main goal, rather than extensively
searching for topologies and appropriate couplings.

7. Conclusions and Future Work

The emulation and modeling of epileptic seizures in networks of coupled oscillators
considered as neurons, utilizing the promising capabilities of memristor crossbar arrays,
were presented in this work. The behavior of large oscillator networks and the difference
between healthy (symmetrical coupling) and epileptic (existence of random, long-range
coupling) networks are presented. Our findings suggest that epileptic states can emerge
by introducing long-range random connections in specific networks of CC oscillators
under the same coupling radius and coupling strength. A variety of oscillatory network
cases were simulated for different network sizes, coupling radii, and strengths, and it
has been observed that, while considering all the coupling parameters stable, abnormal
(epileptic) phenomena are more likely to emerge in an unhealthy network compared
to its equivalent symmetrically coupled one. This conclusion was further verified by
demonstrating different cases of parameter evolution analysis where the Rsyn metric’s
variations were monitored. While considering all the network’s characteristics to remain
stable, we varied the irregularity determination threshold (case 1) and the irregularity
existence area (case 2), and calculated the Rsyn metric’s mean value for different initial
conditions to further prove our initial hypothesis (case 3). From all the aforementioned
results, we concluded that increasing the determination threshold or the irregularity area
results in an increase in the synchronization of the oscillators, thereby making it more likely
to cause the emergence of epileptic phenomena. This behavior remains unaffected by the
initial conditions of the oscillatory units.

Exploring the network’s behavior for a wider variety of cases (e.g., loss of connections
or various abnormalities in the connectivity matrix) as part of our future work is a promising
direction. Furthermore, the proposed architecture’s circuit design could lead to the similar
hardware implementations of the proposed system [23] in order to confirm the emergent
epileptic states by taking the respective measurements. Lastly, more research should be
realized to explore the crossbar’s effect on the system and experiment with its characteristics
in order to enrich the proposed circuit’s capabilities.
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