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Abstract: The aim of this paper is to investigate the solution of the following difference equation
zn+1 = (pn)−1, n ∈ N0,N0=N ∪ {0} where pn = a + bzn + czn−1zn with the parameters a, b, c
and the initial values z−1, z0 are nonzero quaternions such that their solutions are associated with
generalized Fibonacci-type numbers. Furthermore, we deal with the solutions to the following
symmetric system of difference equations given by zn+1 = (qn)−1, wn+1 = (rn)−1, n ∈ N0 where
qn = a + bwn + czn−1wn and rn = a + bzn + cwn−1zn. We provide the solution to the third-order
quaternion linear difference equation in terms of the zeros of the characteristic polynomial associated
with the linear difference equation.
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1. Introduction

Difference equations and systems of difference equations have been presented in the
mathematical modeling of mathematics, as well as in the fields of science and engineer-
ing (see [1,2]). The theory of differential and difference equations was comprehensively
studied in [3–5]. In recent years, as seen in [6,7], a wide body of literature on the study of
solving difference equations has developed. Moreover, the systems of difference equations,
especially those that are symmetric and close to symmetric, have been studied by several
authors; see, for example, [8–10]. There are several methods for finding general solutions
to difference equations or some systems of difference equations in the literature. Many
authors have recently dealt with finding closed-form solutions for difference equations and
systems of difference equations (see, e.g., [7,11]). Some of the solutions of these equations
are representable in terms of well-known integer sequences such as Fibonacci numbers,
Lucas numbers, Padovan numbers and Tribonacci numbers (see, e.g., [12–17]).

In [15], Tollu et al. examined the dynamics of the solutions of the two different cases
of Riccati difference equations, finding that their solutions are associated with Fibonacci
numbers

xn+1 =
1

1 + xn
, yn+1 =

1
−1 + yn

, n ∈ N0

where N0 = N∪ {0} and the initial conditions x0 and y0 are nonzero real numbers. Stevic,
in [14], gave an extension of formulas in [15] for the solutions of difference equations

zn+1 =
αzn + β

γzn + δ
, n ∈ N0

where their solutions were associated with the generalized Fibonacci numbers. The for-
mulas were explained in [15] using some mathematical techniques. Moreover, the authors
obtained results for a two-dimensional system of bilinear difference equations. In many
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papers on difference equations in the literature, such as [13,14,16,18], some nonlinear differ-
ence equations and the systems of difference equations have been solved by transforming
them using some suitable changes of variables to linear difference equations with constant
coefficients.

For example, in [18], the authors presented a representation of the solutions for the
following nonlinear second-order difference equation

xn+1 = a +
b

xn
+

c
xnxn−1

, n ∈ N0

where parameters a, b, and c and the initial values x−1 and x0 are complex numbers such
that c 6= 0. The difference equation was solved by the change in variables

xn =
yn+1

yn
,

and the third-order linear difference equation was obtained with constant coefficients

yn+1 = ayn + byn−1 + cyn−2,

for n ∈ N0. Furthermore, a special solution was given for the third-order homogeneous lin-
ear difference equation by the characteristic polynomial associated with the linear difference
equation, and then the solutions to the nonlinear difference equation were examined.

In this study, motivated by the above mentioned papers, we investigate the solutions
of the following difference equation

zn+1 = (pn)
−1, n ∈ N0,N0=N∪ {0} (1)

where pn = a + bzn + czn−1zn and the initial values z−1, z0 are nonzero quaternions such
that their solutions are associated with generalized Fibonacci-type numbers. We also
examine the solution form of the following symmetric system of difference equations

zn+1 = (qn)
−1, wn+1 = (rn)

−1, n ∈ N0 (2)

for qn = a + bwn + czn−1wn and rn = a + bzn + cwn−1zn. Furthermore, we present the
solution to the third-order quaternion linear difference equation in terms of the zeros of the
characteristic polynomial associated with the linear difference equation.

Quaternions bear many applications in several areas of science [19–22]. In [21], quater-
nions were investigated by Hamilton as an extension to the complex numbers. Since quater-
nions and their particular structure are a form of noncommutative algebra, the quaternion
difference equations are quite different from that presented by the classical theory of differ-
ence equations. Recently, quaternion differential and difference equations have been used to
cover a wide area of interest in modern mathematics and have become a important research
topic owing to their comprehensive applications for natural phenomena, for example,
see [23,24]. In [25,26], Wang et al. dealt with the general solutions for a class of quaternion
matrix equations. In [27], the authors investigated the general solutions of the higher-order
linear quaternion difference equations with both variable and constant coefficients. Several
methods for finding the general solutions for the higher-order linear quaternion difference
equations were given and some examples were presented to illustrate the feasibility of
the obtained results. Moreover, by using the quaternion characteristic polynomial, they
examined the particular solutions of given quaternion difference equations. The quaternion
difference equations have been used for describing discrete dynamic behavior in quaternion
space. For more information, see, for example, [28–30]. It is known that there exist many
inconsistencies between the elements in the quaternion space and in the real space such
as the non-commutativity of the quaternion multiplication. The algebraic structure of the
quaternion space brings many difficulties to the study of quaternion difference equations.
However, they play an important role in analysing the discrete quaternion dynamical
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behaviour in quantum mechanics, fluid mechanics, geometry and kinematic modelling,
(see [31–33]).

2. Preliminaries

Quaternions form a four-dimensional non-commutative associative algebra. A quater-
nion is defined by

q = q0 + q1i + q2 j + q3k

where q0, q1, q2, and q3 are real numbers and i, j, and k are quaternionic units which satisfy
the following rules:

i2 = j2 = k2 = ijk = −1 and ij = k = −ji, jk=i = −kj, ki=j=−ik.

Furthermore, the quaternion q can be written as follows:

q = q0 + u = q0 + q1i + q2 j + q3k

where u = q1i + q2 j + q3k. q0 denotes the scalar part of the quaternion q and u represent
the vector part of the quaternion q. The conjugate of the quaternion q is denoted by q and
q = q0 − u. For the quaternions q, p ∈ H, from [22], the following properties hold:

q + p = q + p, qp = pq.

The norm of the quaternion q is defined by

|q| =
√

qq =
√

q2
0 + q2

1 + q2
2 + q2

3.

For the quaternions q, p ∈ H, we can write

|pq| = |p||q|.

From [22], if two quaternions q, q′ ∈ H are congruent, then for some quaternion w 6= 0,
we have q′ = wqw−1, written q′ ∼ q. For q ∈ H, denote the set [q] = {q′ ∈ H : q′ ∼ q}. The
product of two quaternions q, p is given by the product rules of the quaternionic units and
the distributive law as follows:

qp = q0 p0 − q1 p1 − q2 p2 − q3 p3 + (q0 p1 + q1 p0 + q2 p3 − q3 p2)i

+(q0 p2 + q2 p0 + q3 p1 − q1 p3)j + (q0 p3 + q3 p0 + q1 p2 − q2 p1)k.

The multiplicative inverse of q is given by

q−1 =
q

|q|2
.

The inverse operation satisfies the properties qq−1 = q−1q = 1, (q−1)−1 = q and (pq)−1 =
q−1 p−1.

The quaternions q and p can be divided into two different cases (when p is nonzero).
The quotient q

p of these quaternions can be either p−1q or qp−1. For more details on
quaternions, we refer the reader to [21].

By H[r], we denote the polynomial ring with respect to H, i.e., the set of all polynomials

P(r) = amrm + am−1rm−1 + · · ·+ a1r + a0, am 6= 0, m ≥ 0,

where al ∈ H, l = 1, 2, . . . , m. Then, the quaternion conjugate of P(r) is denoted by

P(r) = amrm + am−1rm−1 + · · ·+ a1r + a0, am 6= 0, m ≥ 0,
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where al ∈ H, l = 1, 2, . . . , m.

Lemma 1 ([34]). Consider the quaternion polynomial P(r) =
m
∑

u=0
auru and its conjugate P(r) =

m
∑

l=0
alrl . Define

F(r) = P(r)P(r) =
2m

∑
w=0

∑
u+l=w

aualrw.

Then, F(r) has real coefficients and the coefficient of rw satisfies

∑
u+l=w

aual = ∑
u+l=w

alau = ∑
u+l=w

aual .

Let v ∈ C be a root of F(r). Then, P(r) has a root in [v]. Furthermore, if q ∈ H is a root of
P(r), then there exists a complex number v ∈ [q], which is a root of F(r). In particular, we have the
following cases:

(i) Suppose v ∈ C is a root of F(r). If v is not a root of P(r), then P(v)vP(v)−1 is a root of
P(r).
(ii) Suppose v ∈ C is a root of F(r). If v is a root of P(r) and v is not a root of P(r), then
P(v)vP(v)−1 is a root of P(r).
(iii) Suppose v ∈ C is a root of F(r). If v and v are roots of P(r), then v and v are also roots of P(r).
In particular, if v ∈ R, then P(v) = 0.

(iv) Suppose q = q0 + q1i + q2 j + q3k ∈ H is a root of P(r). Then, v = q0 + i
√

q2
0 + q2

1 + q2
2 + q2

3
is a root of F(r).

Consider m-order quaternion linear difference equations, given as follows:

x(n + m) + am−1x(n + m− 1) + ··· + a1x(n + 1) + a0x(n) = f (n), n ∈ Z, m ∈ N, (3)

where am−1, . . . , a1, a0 ∈ H, f : Z→ H is a quaternion-valued function. If f (n) = 0 for all
n ∈ Z, the m-order quaternion homogeneous linear difference equation is

x(n + m) + am−1x(n + m− 1) + ··· + a1x(n + 1) + a0x(n) = 0, n ∈ Z, m ∈ N. (4)

The form of the general solution of (4) is presented by the following definition and the-
orem.

Theorem 1 (Superposition principle [27]). Let x1(n), x2(n), . . . , xm(n) be right linearly inde-
pendent solutions of (4), then for any c̃1,c̃2, . . . , c̃m ∈ H,

x(n) = x1(n)c̃1 + x2(n)c̃2 + · · ·+ xm(n)c̃m

is also the solution of (4).

Definition 1 ([27]). Let{x1(n), x2(n), . . . , xm(n)} be a fundamental set of solutions of (4). Then,

xt(n) =
m
∑

i=1
xi(n)c̃i is called the general solution of (4), where c̃i ∈ H for l = 1, 2, . . . , m.

In [27], the method was established to solve the higher-order quaternion linear differ-
ence equations with both constant and variable coefficients through adopting the quaternion
characteristic polynomial. For this method, the results of [34] were employed.

Lemma 2 ([19]). Let P(r) = amrm + am−1rm−1+···+a1r + a0 be a quaternion polynomial of
degree k, where the coefficients am, am−1, . . . , a0 ∈ H. Then, there exist integers K ≥ 0 and L ≥ 0,
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λ1, λ2, . . . , λK ∈ H, λl 6= λu, l 6= u, and l, u = 1, 2, . . . , K, non-negative integers m1, m2, . . . , mK.
τ1, τ2, . . . , τL ∈ H, τl 6= τu, l 6= u and l, u = 1, 2, . . . , L, and non-negative integers l1, l2, . . . , lL,
and there exists a quaternion polynomial P0(r) of degree n0 such that

P(r) = amrm + am−1rm−1 + . . . + a1r + a0

= P0(r)(r− λ1)
m1 . . . (r− λK)

mK (r− τ1)
l1(r−τ1)

l1 . . . (r− τL)
lL(r−τL)

lL . (5)

This indicates that the λK, τL, and τL are the distinct roots of (5), in which case P0(r) has no
root in common with P(r). For l = 1, 2, . . . , K, u = 1, 2, . . . , L, the integers ml and 2lu are called
the multiplicities of the zeroes. We have

n0 +
K

∑
l=1

ml + 2
L

∑
u=1

lu = m.

By the following theorem, it is seen that the solutions of m-order quaternion linear
homogeneous difference equations can be obtained by the roots of its corresponding
quaternion characteristic polynomials.

Theorem 2 ([27]). Let P(r) = rm + am−1rm−1 + · · ·+ a1r + a0. Then, the solutions of (4) can
be given by x(n) = rn, where r ∈ H is the root of P(r).

For more detailed information on the solutions of the quaternion difference equations,
see [27].

3. Main Results

In this section, we introduce a new type of sequences, called the generalized Fibonacci-
type numbers and present some results.

Definition 2. The generalized Fibonacci-type numbers Tn are defined by the recurrent relation,
for n ≥ −1,

Tn+3 = aTn+2 + bTn+1 + cTn (6)

where a, b, and c are nonzero quaternions with initial conditions

T−1 = c−1, T0 = 0, T1 = 0.

It can be clearly obtained that the characteristic equation of (6) has the form

r3 − ar2 − br− c = 0.

Now we derive the solution of the difference equation in (1) through an analytical
approach. Inspired by the above mentioned papers, we give the following theorem which
investigates the solution of (1) by transforming the difference equation to linear quaternion
difference equations by employing some suitable changes of variables.

Theorem 3. Let {zn}∞
n=−1 be a solution of the Equation (1). Then, we have

zn = Qn(Qn+1)
−1 (7)

where the initial conditions z−1, z0 ∈ H− F, with F are the forbidden set of the Equation (1), given
by

F =
∞
∪{(z−1, z0) : Qn+1 = Tn+2 + (Tn+3 − Tn+2a)z0 + (Tn+1c)z−1z0 = 0}

and Qn = Tn+1 + (Tn+2 − Tn+1a)z0 + (Tnc)z−1z0 such that Tn is the nth generalized Fibonacci-
type number.
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Proof. First, we derive the solution form of the Equation (1) by the change in variables

zn =
yn−1

yn
. (8)

Suppose that this quotient is yn−1y−1
n . This means that this quotient is taken as

yn−1y−1
n by the change in variables in (8) and throughout this study. Then, Equation (1) is

reduced to a linear third-order difference equation

yn+1 = ayn + byn−1 + cyn−2. (9)

By the iterative method in [18], we define the initial values of three sequences, which
will be recursively defined and used in the rest of the proof. Let

a1 := a, b1 := b, c1 := c.

We use a recurrent (iterative) method such that 2 ≤ m ≤ n− 1, am := am−1a + bm−1,
bm := am−1b + cm−1, cm := am−1c. Thus, we obtain

yn = a1yn−1 + b1yn−2 + c1yn−3

= a1(ayn−2 + byn−3 + cyn−4) + b1yn−2 + c1yn−3

= (a1a + b1)yn−2 + (a1b + c1)yn−3 + a1cyn−4

= a2yn−2 + b2yn−3 + c2yn−4 (10)

where
a2 := a1a + b1, b2 := a1b + c1, c2 := a1c. (11)

By continuing the iteration, it follows that

yn = a2(ayn−3 + byn−4 + cyn−5) + b2yn−3 + c2yn−4

= (a2a + b2)yn−3 + (a2b + c2)yn−4 + a2cyn−5

= a3yn−3 + b3yn−4 + c3yn−5 (12)

where
a3 := a2a + b2, b3 := a2b + c2, c3 := a2c. (13)

Based on the relations (10) and (12) for m ∈ N such that 2 ≤ m ≤ n− 1, we have

yn = amyn−m + bmyn−m−1 + cmyn−m−2 (14)

and
am := am−1a + bm−1, bm := am−1b + cm−1, cm := am−1c. (15)

By continuing the iteration, it follows that

yn = am(ayn−m−1 + byn−m−2 + cyn−m−3) + bmyn−m−1 + cmyn−m−2

= (ama + bm)yn−m−1 + (amb + cm)yn−m−2 + amcyn−m−3

= am+1yn−m−1 + bm+1yn−m−2 + cm+1yn−m−3

where
am+1 := ama + bm, bm+1 := amb + cm, cm+1 := amc.

Consider the sequences ak, bk and ck for some nonpositive values of k. The recurrent
relations in (15) can be used for computing the values of sequences ak, bk and ck for all
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k ≤ 0. Using the recurrent relations with the indices k = 1, k = 0 and k = −1, respectively,
we obtain the following values of these sequences:

a0 = c1c−1 = 1, a−1 = c0c−1 = 0, a−2 = c−1c−1 = 0,
b0 = a1 − a0a = 0, b−1 = a0 − a−1a = 1, b−2 = a−1 − a−2a = 0,
c0 = b1 − a0b = 0, c−1 = b0 − a−1b = 0, c−2 = b−1 − a−2b = 1.

(16)

From (15), for n ∈ N,
an = an−1a + an−2b + an−3c, (17)

bn = an−1b + an−2c = an+1 − ana (18)

cn = an−1c. (19)

When we take as m = n in (14), for n > 0, we have

yn = any0 + bny−1 + cny−2. (20)

From (17)–(19), we can write

yn = any0 + (an+1 − ana)y−1 + (an−1c)y−2. (21)

By using (21) in (8), we obtain

zn = (an−1y0 + (an − an−1a)y−1 + (an−2c)y−2)(any0 + (an+1 − ana)y−1 + (an−1c)y−2)
−1

= (an−1y0y−1
0 + (an − an−1a)y−1y−1

0 + (an−2c)y−2y−1
0 )(any0y−1

0 +

(an+1 − ana)y−1y−1
0 + (an−1c)y−2y−1

0 )−1

= (an−1 + (an − an−1a)z0 + (an−2c)z−1z0)(an + (an+1 − ana)z0 + (an−1c)z−1z0)
−1.

From initial values (16) and the definitions of sequences an and Tn, for n ≥ −2, we have

an = Tn+2.

Hence, we obtain

zn = (Tn+1 +(Tn+2−Tn+1a)z0 +(Tnc)z−1z0)(Tn+2 +(Tn+3−Tn+2a)z0 +(Tn+1c)z−1z0)
−1.

It is seen that
zn = Qn(Qn+1)

−1.

Thus, the proof is completed.

Now, we will analyze a special case of the above theorem for a = k, b = j, c = i. In this
case, the (an) sequence has the following recurrence relation

an = an−1k + an−2 j + an−3i (22)

such that a few terms of this sequence are

a−3 = −i, a−2 = 0, a−1 = 0, a0 = 1, a1 = k, a2 = j− 1, a3 = −k + i. (23)

It is seen that
an = Tn+2.

Then, we have

zn = (Tn+1 +(Tn+2− Tn+1k)z0 +(Tni)z−1z0)(Tn+2 +(Tn+3− Tn+2k)z0 +(Tn+1i)z−1z0)
−1.
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Now, we investigate the solution form of the system in (2). The following theorem
introduces the general solution in explicit form of system (2).

Theorem 4. Let {zn, wn}∞
n=−1 be a solution of (2). Then, for n = 1, 2, . . . , we have

z2n+1 = An(Bn)−1,
z2n = Cn(Dn)−1 (24)

and
w2n+1 = A∗n(B∗n)−1,

w2n = C∗n(D∗n)−1 (25)

where the initial conditions are z−1, z0, w−1, w0 /∈ H \ (F1 ∪ F2) with F1 and F2 are the for-

bidden sets of system (2) given by F1 =
∞
∪

n=−1
{(z−1, z0, w−1, w0) : Bn = 0, Dn = 0} and F2 =

∞
∪

n=−1
{(z−1, z0, w−1, w0) : B∗n = 0, D∗n = 0}

where
An = T2n+2 + (T2n+3 − T2n+2a)w0 + (T2n+1c)z−1w0, A∗n = T2n+2 + (T2n+3 − T2n+2a)z0 + (T2n+1c)w−1z0,
Bn = T2n+3 + (T2n+4 − T2n+3a)w0 + (T2n+2c)z−1w0, B∗n = T2n+3 + (T2n+4 − T2n+3a)z0 + (T2n+2c)w−1z0,

Cn = T2n+1 + (T2n+2 − T2n+1a)z0 + (T2nc)w−1z0, C∗n = T2n+1 + (T2n+2 − T2n+1a)w0 + (T2nc)z−1w0,
Dn = T2n+2 + (T2n+3 − T2n+2a)z0 + (T2n+1c)w−1z0, D∗n = T2n+2 + (T2n+3 − T2n+2a)w0 + (T2n+1c)z−1w0.

Proof. The closed-form solution of (2) can be given similarly to the approach used in the
proof of Theorem 1. Both for convenience and to use a different method from the iterative
approach, we prove the theorem by the principle of mathematical induction on n. For n = 0,
it is clear that the result is true since we have

z1 = (a + bw0 + cz−1w0)
−1 and w1 = (a + bz0 + cw−1z0)

−1.

Now, we assume that n > 0 and that the Equations (24) and (25) are true for n− 1.
That is,

z2n−2 = (T2n−1 + (T2n − T2n−1a)z0 + (T2n−2c)w−1z0)(T2n + (T2n+1 − T2na)z0 + (T2n−1c)w−1z0)
−1,

z2n−1 = (T2n + (T2n+1 − T2na)w0 + (T2n−1c)z−1w0)(T2n+1 + (T2n+2 − T2n+1a)w0 + (T2nc)z−1w0)
−1,

w2n−2 = (T2n−1 + (T2n − T2n−1a)w0 + (T2n−2c)z−1w0)(T2n + (T2n+1 − T2na)w0 + (T2n−1c)z−1w0)
−1,

w2n−1 = (T2n + (T2n+1 − T2na)z0 + (T2n−1c)w−1z0)(T2n+1 + (T2n+2 − T2n+1a)z0 + (T2nc)w−1z0)
−1.

Since the following equations exist

An−1 = T2n + (T2n+1 − T2na)w0 + (T2n−1c)z−1w0,

Bn−1 = T2n+1 + (T2n+2 − T2n+1a)w0 + (T2nc)z−1w0,

Cn−1 = T2n−1 + (T2n − T2n−1a)z0 + (T2n−2c)w−1z0,

Dn−1 = T2n + (T2n+1 − T2na)z0 + (T2n−1c)w−1z0,

A∗n−1 = T2n + (T2n+1 − T2na)z0 + (T2n−1c)w−1z0,

B∗n−1 = T2n+1 + (T2n+2 − T2n+1a)z0 + (T2nc)w−1z0,

C∗n−1 = T2n−1 + (T2n − T2n−1a)w0 + (T2n−2c)z−1w0,

D∗n−1 = T2n + (T2n+1 − T2na)w0 + (T2n−1c)z−1w0,

we can write the following equations:

z2n−2 = Cn−1D−1
n−1,

z2n−1 = An−1B−1
n−1,

w2n−2 = C∗n−1(D∗n−1)
−1,

w2n−1 = A∗n−1(B∗n−1)
−1.
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It is clearly seen that
An−1 = D∗n−1, A∗n−1 = Dn−1,
Bn−1 = C∗n−1, B∗n−1 = Cn−1.

From system (2), by some mathematical computations, it is seen that

z2n = (a + bw2n−1 + cz2n−2w2n−1)
−1

= (a + bA∗n−1(B∗n−1)
−1 + cCn−1D−1

n−1 A∗n−1(B∗n−1)
−1)−1

= B∗n−1(aB∗n−1 + bA∗n−1(B∗n−1)
−1B∗n−1 + cCn−1D−1

n−1 A∗n−1(B∗n−1)
−1B∗n−1)

−1

= B∗n−1(aB∗n−1 + bA∗n−1 + cCn−1)
−1

Thus, we have

z2n = (T2n+1 + (T2n+2 − T2n+1a)z0 + T2ncw−1z0)(T2n+2 + (T2n+3 − T2n+2a)z0 + T2n+1cw−1z0)
−1.

It implies that
z2n = Cn(Dn)

−1

where Cn = T2n+1 + (T2n+2 − T2n+1a)z0 + (T2nc)w−1z0 and
Dn = T2n+2 + (T2n+3 − T2n+2a)z0 + (T2n+1c)w−1z0. Furthermore, it follows from (2) that

w2n = (a + bz2n−1 + cw2n−2z2n−1)
−1

= (a + bAn−1B−1
n−1 + cC∗n−1(D∗n−1)

−1 An−1B−1
n−1)

= Bn−1(aBn−1 + bAn−1 + cC∗n−1)
−1.

So, we get

w2n = (T2n+1 + (T2n+2 − T2n+1a)w0 + T2ncz−1w0)(a(T2n+1 + (T2n+2 − T2n+1a)w0 + T2ncz−1w0)

+b(T2n + (T2n+1 − T2na)w0 + T2n−1cz−1w0) + c(T2n−1 + (T2n − T2n−1a)w0 + T2n−2cz−1w0))
−1

= (T2n+1 + (T2n+2 − T2n+1a)w0 + T2ncz−1w0)(T2n+2 + (T2n+3 − T2n+2a)w0 + T2n+1cz−1w0)
−1.

It is seen that
w2n = C∗n(D∗n)

−1

where C∗n = T2n+1 + (T2n+2 − T2n+1a)w0 + (T2nc)z−1w0 and D∗n = T2n+2 + (T2n+3 −
T2n+2a)w0 + (T2n+1c)z−1w0. Using the above arguments, we similarly obtain the following
equations:

z2n+1 = (a + bw2n + cz2n−1w2n)
−1

= (a + bC∗n(D∗n)
−1 + cAn−1B−1

n−1C∗n(D∗n)
−1)−1

= D∗n(aD∗n + bC∗n + cAn−1)
−1.

Hence, we obtain

z2n+1 = (T2n+2 + (T2n+3 − T2n+2a)w0 + T2n+1cz−1w0)(a(T2n+2 + (T2n+3 − T2n+2a)w0 + T2n+1cz−1w0)

+b(T2n+1 + (T2n+2 − T2n+1a)w0 + T2ncz−1w0) + c(T2n + (T2n+1 − T2na)w0 + T2n−1cz−1w0))
−1

= (T2n+2 + (T2n+3 − T2n+2a)w0 + (T2n+1c)z−1w0)(T2n+3 + (T2n+4 − T2n+3a)w0 + (T2n+2c)z−1w0)
−1.

Then we have
z2n+1 = An(Bn)

−1

where An = T2n+2 + (T2n+3 − T2n+2a)w0 + (T2n+1c)z−1w0 and Bn = T2n+3 + (T2n+4 −
T2n+3a)w0 + (T2n+2c)z−1w0. Similarly, we obtain

w2n+1 = A∗n(B∗n)
−1.

This completes the proof of the theorem.
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It is known that the difference Equation (1) is solved by the change of variables (8)
which transforms it to the following third-order linear quaternion difference equation with
quaternion coefficients (9)

yn+1 = ayn + byn−1 + cyn−2.

Its characteristic polynomial is

p(r) = r3 − ar2 − br− c,

and its conjugate is
p(r) = r3 + ar2 + br + c.

In [27], it is seen that
F(r) = p(r)p(r).

The roots of p(r) are obtained by using Lemma 1, Lemma 2 and Theorem 2 and then the
solution of (9) is found by these roots.

Consider the following third-order quaternion linear difference equation in the case
a = k, b = j, c = i of Equation (9)

yn+1 = kyn + jyn−1 + iyn−2 (26)

and its characteristic polynomial is

p(r) = r3 − kr2 − jr− i = (r− k)(r− 1√
2
(1 + j))(r +

1√
2
(1 + j)). (27)

Its conjugate is given by

p(r) = r3 + kr2 + jr + i = (r− k)(r− 1√
2
(1 + j))(r +

1√
2
(1 + j)). (28)

Then, we have

F(r) = p(r)p(r)

= (r− k)(r− k)(r− 1√
2
(1 + j))(r− 1√

2
(1 + j))(r +

1√
2
(1 + j))(r +

1√
2
(1 + j))

=
(

r2 + 1
)
(r2 −

√
2r + 1)(r2 +

√
2r + 1). (29)

Thus, the roots of (29) are

i,−i, j,−j, k,−k,
1√
2
(−1− i),

1√
2
(−1 + i),

1√
2
(−1− j),

1√
2
(−1 + j),

1√
2
(−1− k),

1√
2
(−1 + k),

1√
2
(1 + i),

1√
2
(1− i),

1√
2
(1 + j),

1√
2
(1− j),

1√
2
(1 + k),

1√
2
(1− k).
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Then, we obtain

p(i) = i3 + ki2 + ji + i = 0, p(−i) = −i3 + ki2 − ji + i = 2i,
p(j) = j3 + kj2 + j2 + i = −j− k + i− 1, p(−j) = −j3 + kj2 − jj + i = j− k + i + 1
p(k) = k3 + k3 + jk + i = −2k + 2i, p(−k) = −k3 + k3 − jk + i = 0,

p( 1√
2
(1 + i)) = (

√
2+1)√

2
(i + j)− 1√

2
(k + 1), p( 1√

2
(−1− i)) = 1√

2
((
√

2− 1)(i + j) + k + 1),

p( 1√
2
(1 + j)) = 1√

2
(2j− 2), p( 1√

2
(−1− j)) = 1√

2
(2− 2j),

p( 1√
2
(1 + k)) = (

√
2+1)√

2
(i− 1) + 1√

2
(k + j), p( 1√

2
(−1− k)) = 1√

2
((
√

2− 1)(1 + i)− (k + j)),

p( 1√
2
(1− i)) = (

√
2−1)√

2
(i− j) + 1√

2
(k− 1), p( 1√

2
(−1 + i)) = (

√
2+1)√

2
(i− j) + 1√

2
(−k + 1),

p( 1√
2
(1− j)) = 2i, p( 1√

2
(−1 + j)) = 2i,

p( 1√
2
(1− k)) = (

√
2−1)√

2
(1 + i) + 1√

2
(j− k), p( 1√

2
(−1 + k)) = (

√
2+1)√

2
(1 + i) + 1√

2
(k− j).

It is clearly seen that −i, j, −j, and k are not the roots of p(r), and i,−k are the roots of p(r).
Using (i) of Lemma 1, we can obtain the roots of p(r) as follows:

p(−i)(−i)p(−i)−1 = −i

p(j)(j)p(j)−1 = −i

p(−j)(−j)p(−j)−1 = −i

p(k)(k)p(k)−1 = −i

−i is not the root of p(r), while i is the root of p(r). Thus, by using Lemma 1(ii), we can
write

p(i)(i)p(i)−1 = p(−i)(−i)p(−i)−1 = −i

where it is the root of p(r). Similarly, k is not the root of p(r) while −k is the root of p(r).
Thus, by using Lemma 1(ii), we can write

p(−k)(−k)p(−k)−1 = p(k)(k)p(k)−1 = −i

where it is the root of p(r). So, p(r) has r1 = −i as a root. Similarly, −1− i,−1 + i,−1−
j,−1 + j,−1− k,−1 + k, 1

2 (1 + i), 1
2 (1− i), 1

2 (1 + j), 1
2 (1− j), 1

2 (1 + k), and 1
2 (1− k) are not

the roots of p(r). Then, by similar computations, we can write the following equations:

p( 1√
2
(1 + i))( 1√

2
(1 + i))p( 1√

2
(1 + i))−1 = 1√

2
(1 + j),

p( 1√
2
(1 + j))( 1√

2
(1 + j))p( 1√

2
(1 + j))−1 = 1√

2
(1 + j),

p( 1√
2
(1 + k))( 1√

2
(1 + k))p( 1√

2
(1 + k))−1 = 1√

2
(1 + j),

p( 1√
2
(1− i))( 1√

2
(1− i))p( 1√

2
(1− i))−1 = 1√

2
(1 + j),

p( 1√
2
(1− j))( 1√

2
(1− j))p( 1√

2
(1− j))−1 = 1√

2
(1 + j),

p( 1√
2
(1− k))( 1√

2
(1− k))p( 1√

2
(1− k))−1 = 1√

2
(1 + j),

p( 1√
2
(−1− i))( 1√

2
(−1− i))p( 1√

2
(−1− i))−1 = − 1√

2
(1 + j),

p( 1√
2
(−1− j))( 1√

2
(−1− j))p( 1√

2
(−1− j))−1 = − 1√

2
(1 + j),

p( 1√
2
(−1− k))( 1√

2
(−1− k))p( 1√

2
(−1− k))−1 = − 1√

2
(1 + j),

p( 1√
2
(−1 + i))( 1√

2
(−1 + i))p( 1√

2
(−1 + i))−1 = − 1√

2
(1 + j),

p( 1√
2
(−1 + j))( 1√

2
(−1 + j))p( 1√

2
(−1 + j))−1 = − 1√

2
(1 + j),

p( 1√
2
(−1 + k))( 1√

2
(−1 + k))p( 1√

2
(−1 + k))−1 = − 1√

2
(1 + j).

Hence, the roots r1,r2,r3 of p(r) are r1 = −i, r2 = 1√
2
(1 + j), and r3 = − 1√

2
(1 + j). Then,

the solutions of (26) can be represented by

y1(n) = (−i)n, y2(n) = (
1√
2
(1 + j))n and y3(n) = (− 1√

2
(1 + j))n.
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Hence, from Theorem 1 and Definition 1, we obtain the general solution of (26) as follows:

y(n) = y1(n)c̃1 + y2(n)c̃2 + y3(n)c̃3

= (−i)n c̃1 + (
1√
2
(1 + j))n c̃2 + (− 1√

2
(1 + j))n c̃3

where c̃1, c̃2, c̃3 ∈ H.

4. Conclusions

In recent years, quaternion differential and difference equations have been used to
cover a wide area of interest in modern mathematics (see [27–30]). In [27], the authors
investigated the general solutions of the higher-order linear quaternion difference equations
with variable and constant coefficients. In this paper, we deal with the solutions of the
following difference equation

zn+1 = (pn)
−1, n ∈ N0,N0=N∪ {0}

where pn = a + bzn + czn−1zn and the parameters a, b, c and the initial values z−1, z0 are
nonzero quaternions such that their solutions are associated with generalized Fibonacci-
type numbers. Furthermore, we derive the solution form of the following symmetric system
of difference equations

zn+1 = (qn)
−1, wn+1 = (rn)

−1, n ∈ N0

where qn = a + bwn + czn−1wn and rn = a + bzn + cwn−1zn. By using the zeros of the
quaternion characteristic polynomial associated with the linear difference equation, we
also give the solution to the third-order linear quaternion difference equation, in which the
difference equation (1) is transformed by a change of variables.
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