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Abstract: In this paper, we make use of the Riemann-Liouville fractional g-integral operator to
discuss the class S} ;(«) of univalent functions for § > 0,a € C — {0}, and 0 < [q| < 1. Then, we
develop convolution results for the given class of univalent functions by utilizing a concept of the
fractional g-difference operator. Moreover, we derive the normalized classes 73;:" q (B,7) and Ps 4(B)
0<|gq <1,6 >0,0<p <1, > 0) of analytic functions on a unit disc and provide conditions
for the parameters g, 4, {, B, and v so that qu(ﬁ, ) C S;‘/é(a) and P;4(B) C S;/J(a) fora € C— {0}.
Finally, we also propose an application to symmetric g-analogues and Ruscheweh’s duality theory.

Keywords: Riemann-Liouville; g-analogue; difference operator; g-starlike functions; duality principle;
dual set; g-hypergeometric function
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1. Introduction

In recent decades, the theory of g-calculus has been applied to various areas of science
and computational mathematics. The concept of g-calculus was used in quantum groups,
g-deformed super algebras, g-transform analysis, g-integral calculus, optimal control, and
many other fields, to mention but a few [1-4]. Soon after the concept of g-calculus was
furnished, many basic g-hypergeometric functions, g-hypergeometric symmetric func-
tions, and g-hypergeometric and hypergeometric symmetric function polynomials were
discussed in geometric function theory [5]. Jackson [6] was the first to introduce and
analyze the g-derivative and the g-integral operator. Later, various researchers applied
the concept of the g-derivative to various sub-collections of univalent functions. Srivas-
tava [7] used the g-derivative operator to describe some properties of a subclass of univalent
functions. Agrawal et al. [8] extended a class of g-starlike functions to certain subclasses
of g-starlike functions. Kanas et al. [9] used convolutions to define a g-analogue of the
Ruscheweyh operator and studied some useful applications of their operator. Srivastava
et al. [10] defined the g-Noor integral operator by following the concept of convolution.
Purohit [11] introduced a subclass of univalent functions by using a certain operator of a
fractional g-derivative. Aouf et al. [12] employed subordination results to discuss analytic
functions associated with a new fractional g-analogue of certain operators. However, many
extensions of different operators can be found in [13-29] and the references cited therein.
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Here, we will make use of definitions and notations used in the literature [30,31]. For
a,q € C, the g-analogue of the Pochhammer symbol is defined by

n;;ga —agl), ifk >0,
(@mgk=19 1, ifk =0,
[120(1 —agl), ifk— oo,

%, (k € NU {o0}). The extension of
the Pochhammer symbol to a real number J is given as

and, hence, it is very natural to write (a;9);, =

I 7)1
(a;9)s = s (6 € R).

Therefore, for any real number 6 > 0, the g-analogue of the gamma function is
defined by

ry(w) = (0= 1)1

The g-analogue of the natural number n and the multiple g-shifted factorial for complex
numbers ay, - - - , ay are, respectively, defined by

=~

17 n
g == 0<lal <1 and - Lagg)e = [T
=1

Let aq, ..., ar, by, ...bs be complex numbers; then, the g-hypergeometric series ,¢s is
denoted as

a, ey N oy (@ anq)n ey nerl
RS B o) o S A

It is clear that the series representation of the function ,¢s converges absolutely for
all z € Cif r < s and converges only for |z| < 1if r = s + 1. Now, let A be the collection

of all analytic functions in the open unit disc Y = {z € C; |z| < 1} expressed in the
normalized form

flz)=z+ i anz", )
n=2

and let A be a collection comprising all functions g such that zg € Aand g(0) =1,z € C.
Then, the sub-collection of A of functions that are univalent in I/ is denoted by S. However,
in geometric function theory, a variety of sub-collections of univalent functions have been
discussed. See the monographs published by [32,33] for details.

Let us consider the Riemann-Liouville fractional g-integral operator of a non-integer
of order ¢ defined by [34]

1 'z
s . _ 6-1
qu(Z) Fq((S) /O (x [qt]) f(t)dqt' (3)
Then, I f — I; when 6 — 1, where I, f is the g-Jackson integral defined by [6]

L) = [ FOdy() zetz 0, lg] <1.

With the concept of the Riemann-Liouville fractional g-integral of the non-integer
order §, we recall some rules associated with If; by (3):

(i) I3(cf)=clif, ceC—{0},f€A
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(i) I(f+g)=1If+1Lg, f,g €A,
@) Ilfl < I5fl

Agarwal [34] defined the g-analogue difference operator of a non-integer order &
as follows:

Dif(z) = 5252 "“"f 2). @

Note that Dg f — Dyf when 6 — 1. D;f is the g-derivative of the function f
introduced in [6] in the subsequent form:

qu(z)_f(izl_—fc(];m' zeU,z#0, |q| <1 (5)

Thus, for n € N, through simple computations, we obtain

n—o 1+n—6 n+1+4.

pogn — 20 @ e o — (0T )00 s
7 (1=9)? (4" )e i (@ 7)o

Let0 < |q/ <1,6>07>0,0<p<1and 0 < v < 1. By the definition of the
g-analogue difference operator with the non-integer order é, the following rules of Df; hold:

(i) Di(cf) =cDif, ceC—{0},f€A,
(i) D)(f+g)=Dif +Dig, fg €A

We define Pg 4(B,7) as the class of all functions f € A satisfying the following

condition:

Re{(l—q)‘s([’gﬂlgﬂz) D) - ﬁ}>0, 2] < 1.

1-B

For0 < |gq| <1,5 >0,and 0 < B < 1, the class ’P§,q(ﬁ) consists of functions satisfying
the following condition:

. { (1 - 9)° (DI () + 92D 21 (2)) —ﬁ} o i

-5

Now, for two functions

z) =Y a,z" and  g(z) =) bu",
n=0 n=0
we recall the convolution (or the Hadamard product) of f and g, denoted by f * g, which is
given by
=Y aubuz", zeU.

For aset V C Ay, the dual set V* is defined by

Vi={geAy: (f+g)(z) #0, Vf eV, zelU}.

However, the second dual of V is defined as V** = (V*)*. However, V C V**.
For basic reference to this theory, we may refer to the book by Ruscheweyh [35] (see
also [36-38]).
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In this paper, we define the class S* for 6 > 0, 0 < |g] < 1, and establish the
convolution condition of this class. Furthermore we find conditions for g, 4, {, B, and y so
that P§, (B,7) C S;5() and Pyg(B) C S ().

2. Preliminary Lemmas

The following lemmas are very useful in our investigation.

Lemma 1 (Duality principle; see [35]). Let V C Ag be compact; it has the following property:
fevV=Vx <1l:freV, (6)

where fy(z) = f(xz). Then,
e(V) = o(V™),

for all continuous linear functionals ¢ on A, and
co(V) C co(V*),
where co stands for the closed convex hull of a set.

Lemma 2 ([35]). Let0 <y <land Be R, p#1LIf

1+xz 1+yz

Vo = {10 =B + (=N = B + B, x| =lyl =1, z€U}, @)

then

Vﬁv {fEAo ¢ € R, Re{g( ) — ;;fg)} >0, g(z) = fx(z), |x] < 1},

and

Vin = {7 e a0 Re(ERZLY > 0 56 = ), v <1},

We see that the set Vj , in (7) does not satisfy the property (6), i.e., if f € Vp ,, then
f(xz) € Vg, forall |x| <1, as is required in the Duality Principle. However, the Duality
Principle can be stated with a slightly weaker but more complicated condition that Vj , can
be seen to satisfy (see [35] for more details).

3. Main Results

Definition 1. Let f € A, 6 > 0, and « € C — {0}. Then, a function f is said to be in the class
Sg.o(®) if it satisfies the following inequality:

ZD(S—HI(SJC() 1
Re{*a< 7z) <1—q>5>}>0’

where the operators Dg and Ig are given by (4) and (3), respectively.

Putting 6 = 0 into Definition 1 leads to the following definition.

Definition 2. The function f € A'is said to be in the class of q-starlike functions of order a, S; (a),
if it satisfies the following inequality:

R{1+ (Ziq(];;) 1>}>0, weC—{0},
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where Dy f (z) is given by (5).

Theorem 1. Let f € A, 6> 0,0 € C— {0}, and |z| <R < 1. Then, f € S} ;(«) if and only if

fo) ety - 1)
2 (1-2(0-q)

# 0,
where |x| = 1and x # —1.

Proof. Since 2Dy f(2)
f(z)

- 1[7)‘, =0atz =0, we have

Do+18
1+i(z qf(zq)f(z)_(llq)5> #Ji—i-l x| =1, x £ —1.

By following simple computations, we can rewrite this as

(x+1)(1 - 9)°zDI £ () — (20(1 = q)° = x = 1) f(2) #0. ®)

Since the function f satisfies (2), we obtain

1 ad 1 z
D5+115f( ) = (1_ ( Z qanz ) = (1—q)"<f(z)*(1—z)(1—qz)>

Now, as Equation (8) is equivalent to

(0 5 1 )

1—z

it simplifies to

(x+1)z+2z(1—gz)(2a(1 —g)° —x—1)
(1-2)(1—-q2)

Hence, the required result has been proven. [

f(z) * £0.
Putting 0 = 0 into Theorem 1, we get the following corollary.

Corollary 1. Let w € C — {0}, |x| = 1, and x # —1. Then, the function f is a g-starlike function
of order « if and only if

*

z  (1-2)(1-¢z)

Theorem 2. Letd >0,0<g<1,aeC—-{0},>00<pB<1,0<y<1land|x|=1
with x # —1. Then, 77515(,[3, v) € S, 5(a) if and only if

f(2) 1+qz<2i 1)750,|z|<R§1. ©)

e
Re{F(x,z)} > _§S(1 j)ﬁ)' (10)

where

*li x+1 n+1] +2a(1—g)° — (x+1)
&= + 14y + (1 —)[nly)

2"zl <R<1z] <R<1. (11)
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Proof. Let the function f be in the class 735, s(B,7), z] <R < 1. If we denote

g(2) = (1—g)° (D3+11§f<z> 4 ?zD;S”I?f(Z)),

then we have g € Vg’; If f satisfies (2), then we obtain

sz) = 1+ i g™ + iz L o Ty
= 1 Bl (14 T - 1y )2
_ il a gy + (1 —7)[n—1l4 -1
- +n§2[ h ( oy ) '
Therefore,
f(Z) _ - n—-1 __ - g’)’ n—1
7_1_‘_11;2””2 = < ; €7+(1_7>[n_1]q>2 )

We now obtain a one-to-one correspondence between P{i 5(B, ) and ng‘y Thus, by
Theorem 1, 735,5(,3, 7) € S; 5(w) if and only if

&y A S it

For z € U, consider the continuous linear functional A, : Ay — C such that

&y 1), o h qz<2vcgc1th)" _ 1)
Aelh) = (”Z a1, ) A—ai-g) 7"
By the Duality Principle, we have A,(V) = AZ(VE »). Therefore, (12) holds if and
only if
o ~ k ~ g')’ n

(1r20-p27) - (”,E 10y @r + A=) )

3 (x+1)g n

* <1+n¥1<[n+1]q+ (204(1 — ) q) [nh)z ) #0.

Using the properties of convolution, we obtain

14 20=B)y i 20(1—q)°[n+ 1]+ (q(x +1) —2aq(1 — q)°) [1]; ,,

10y @ + (1 - ly) =70
Since [n + 1]; = 1+ q[n],, we get

+1)[n+1], +21x(1—q)‘5—(x+1)zn

C“r (x
L P L a1, A=)y #0.

Hence, we have

li (x+1)[n+1]g+2a(1—q)° — (x+1)
& [n+1]4(Gy + (1 =) [nly)

n=1

n _ (1_’7)5
S LA py (1)
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wherez € U, |x| = 1. The equality on the right side of Equation (13) takes its value on the

line Rew # — Cv a )ﬁ)’ and so (13) is equivalent to (10). O

Remark 1. Under the hypothesis of Theorem 2, the inequality (10) can be written in the form
(1-9)° = z"
T LRS-y —
o) e B ar -,
& z" 1 & z"
+ — —
{nz n 1@+ -1 m} {Zl T 10,y + (- 1)l m}

X[ & z" . 2"
- Re{a(nzl y+ (1 —7)[nl, 7n;1 [”+1lq(§7+(17)[”}q)>}.

Therefore, for more clarification, we can see that this satisfies the inequality when

(1-9° o111+ z"
57(1—1%)“2{anzlmu—v)[n]q}

z" 1 & z"
* {Z LG+ v)[nm}’“{anzl [n+11q<§v+<1—v>[n]q>}
1 z" > z"
- oc(nzléw(l ; n+1g(Cy+ 1 —7)n ]q)>' (9
Assume that the function ¢ is given by
1& z"
)= B @ )
Then, inequality (14) can be written in the form
_4)¢
L+ Re{Dyzp(2) + (201~ ) = ()} = D) + 9. (1)

Gr(1—p)
Hence, ¥(z) € Sg.0(@) if and only if (15) is satisfied.

Putting 6 = 0 into Theorem 2 leads to the following corollary.

Corollary 2. Let 0 < g <1, a € C—{0},{>0,0<B<1,0< v <1, and |x| =1 with
x # —1. Then, 7330(/3, v) € S5 (w) if and only if

1

Re{Fl(x,z)} > =B

where

> Dn+1]+2 1
12 x+1)[n+1];+2a — (x + )Z”,|Z\ cR<1.
= 1@y + (1 =7)[n]g)

Similarly, from Theorem 2, we get the following theorem.
Theorem 3. Let 6 >0,0<g<1,a€C—-{0},0< B <1, and |x| =1 withx # —1. Then,
Pys(B) C % 5(w) ifand only if

Re{l—"l(x,z)} > —((11_(2;, (16)
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where

® (x+1)[n+1];+2x(1—q)° — (x +1
(x,2) 12 i + s+ (2 9) — (x+ )z”,|z|<R§1. (17)
a = [n—l—l]q

Putting § = 0 into Theorem 3 leads to the following corollary.

Corollary 3. Let 0 < g < 1,a € C—{0},0 < B < 1, and |x| = 1 with x # —1. Then,
Pyo(B,) C Si(w) if and only if

1
Red F -
e{ z(x,z)} > 1=p)
where - N . ) .
1 (x )[n o — (x
,2 + + ]‘7+2 ( + )Zn,|Z‘<R§1.
= 12

Remark 2. The function Fy(x,z) can be represented in terms of a q-hypergeometric function

as follows:
1 q q > 20(1—¢)° = (x+1) < q 9 q )
;0,2 | + ;0,2 ).
24’1( 7 q o 201 2 q

Proof. From the definition of F;(x,z) introduced in (11), we infer that

Fi(x,z) =

x+1 & 2 20(1—g)° — (x+1) & 2"
Fi(x,z) =
1(%2) x g[n+1]q+ x n;[nu]g
r+1 & 2" 20(1—¢q)° — (x+1) & 2"
= —2(1—g). (18
o Za[n+1]q+ o ngb[n—i-l]% (1—g). (18)
Since [n+ 1], = ((q;, ;q))n”,we have
AL E (G)n g, 20(1=9)° = (x+1) & (@GPn(@GDn _n
F(x,z) = z" + z"'—=2(1—gq).
(%) « = (@D fx L g 270

Hence, by using the definition of ;¢ from (1), the proof of the corollary is complete. [

Putting 6 = 0 into Remark 2 leads to the following corollary.

Corollary 4. The function F,(x,z) can be expressed in terms of the q-hypergeometric function

as follows:
1 q q ) 20— (x+1) < q q 9 >
;49,2 | + ;0,2 |.
24’1( . q a 201 P P q

We now consider the Riemann-Liouville fractional g-integral and obtain the following
corollary.

F(x,z) =

Remark 3. The function Fy(x,z) can be expressed in terms of the Riemann—Liouville fractional
g-integral as follows:

Cx4+1 11 20(1—¢q)° —(x+1) /1 /1 1
F(x,z) = . /ol—tqut+ o /0./0 l_vtquvdqt—Z(l—q)
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Proof. Since Equation (18) is satisfied, we have

© 1 s o 01 1
Fi(x,z) = x+1 E thdgtz" + (1 -q)° = (x+1) E vdgo | t'diz"
& =70 a n=0"0 0
1/ o s 1 41/ o
S A PR Ul )l Gt Y 02" | dyodyt.
I 0 =0 14 0 JO n=0

This completes the proof of the corollary. [

Putting § = 0 into Remark 3 leads to the following corollary.

Corollary 5. The function F(x,z) can be expressed in terms of the Riemann—Liouville fractional
g-integral in the following form:

Cx+1 1 20— (x+1) 111

Theorem 4. Let0< |q] < 1,6 >0,0< B <1,and f € Pq,(s(ﬁ). We define

U dgt
1= | T (19)
If
gs 122
= 2(1-K,)

then f € Pq,(s(O), and, hence, it is univalent.

Proof. Let { > 0 and 7y > 0; we define

Pg(z) =1+ i [n+1],2",

n=1

and

00 1 00 1
(z) = 1+) ——=2"=1+ / t'd,tz"
4"7 n;l [n 4 1]q n;l 0 q

1 o) 1 1
14 Y g1gn dt:/ 4t
[ Ereae= [ pa

In view of these representations, we can write

DyHURf(z) +aDg 21 f(z) = DF I (2) * 94 (2)
and
(DI (2) +qDE 21 f(2)) #9q(z) = DI F (2).

Let f € P, 5(B). Then, by using Lemma 2, we may restrict our attention to the function
f € P;(B, ) for which

1+yz
1—-yz

(1 - )° (D5 13 (2) + DS IEf(2)) = 1(1— )1 e + (1= B)(1— )

+B.



Symmetry 2022, 14, 2076

10 of 12

Thus, we obtain

1+ xz

(- Dy () = (v(1- p); L

T TRy ) s () (0)

Hence, Equation (20) is equivalent to

5 1+ xz
_ \dpd+lpe _
- Di i) = (1 -

= (EEra-n e ) ([ (a-pity +6)a)

_ 14 xz oy 14yz
- (1 ra-ntE) G, 1)
where
G ' L d
i@ = [ (@t 8 )y
Therefore,

Rel(Gy(2)) = [ (4= B)ry +8)dat = (1= Bk + 6,

where K; is defined by (19). Note that if 8 > (1 —2K;)/2(1 — K;), then ReG(z) > 1/2.
Functions with real parts greater than 1/2 are known to preserve the closed convex hull
under convolution [10], p. 23. Therefore, from (21), we have

(1-q’Dy' 5 f(z) = 7( 2 —1>*Gq(z)—l-(l—’y)(lzyz—l)*Gq(z)

1—xz
= 29Gg(xz) =7 +2(1—7)Gq(yz) — (1 —17)
= 29Gy(x2) +2(1 - 7)Gy(yz) — 1.

In addition, since Re{DgHIf; f(z)} >0, wehave f € P, 5(0). This completes the proof
of the theorem. 0O

4. Conclusions

In this article, a new class of univalent functions was introduced by using Riemann-—
Liouville fractional g-integrals and g-difference operators of non-integer orders. Then, some
convolution results for such a class of univalent functions were obtained. In addition, two
classes of normalized analytic functions in the unit disc were derived, and some conditions
on q,94,(, B, and y were given so that the new classes satisfied Pg o(B7) C 57 5(a) and
Pag(B) C S 5(0).

The result obtained during this research can be further used for writing fractional
differential and integral operators in order to extend the results of analytic functions.
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