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Abstract: In this paper, we make use of the Riemann–Liouville fractional q-integral operator to
discuss the class S∗q,δ(α) of univalent functions for δ > 0, α ∈ C− {0}, and 0 < |q| < 1. Then, we
develop convolution results for the given class of univalent functions by utilizing a concept of the
fractional q-difference operator. Moreover, we derive the normalized classes P ζ

δ,q(β, γ) and Pδ,q(β)

(0 < |q| < 1, δ ≥ 0, 0 ≤ β ≤ 1, ζ > 0) of analytic functions on a unit disc and provide conditions
for the parameters q, δ, ζ, β, and γ so that P ζ

δ,q(β, γ) ⊂ S∗q,δ(α) and Pδ,q(β) ⊂ S∗q,δ(α) for α ∈ C− {0}.
Finally, we also propose an application to symmetric q-analogues and Ruscheweh’s duality theory.

Keywords: Riemann–Liouville; q-analogue; difference operator; q-starlike functions; duality principle;
dual set; q-hypergeometric function
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1. Introduction

In recent decades, the theory of q-calculus has been applied to various areas of science
and computational mathematics. The concept of q-calculus was used in quantum groups,
q-deformed super algebras, q-transform analysis, q-integral calculus, optimal control, and
many other fields, to mention but a few [1–4]. Soon after the concept of q-calculus was
furnished, many basic q-hypergeometric functions, q-hypergeometric symmetric func-
tions, and q-hypergeometric and hypergeometric symmetric function polynomials were
discussed in geometric function theory [5]. Jackson [6] was the first to introduce and
analyze the q-derivative and the q-integral operator. Later, various researchers applied
the concept of the q-derivative to various sub-collections of univalent functions. Srivas-
tava [7] used the q-derivative operator to describe some properties of a subclass of univalent
functions. Agrawal et al. [8] extended a class of q-starlike functions to certain subclasses
of q-starlike functions. Kanas et al. [9] used convolutions to define a q-analogue of the
Ruscheweyh operator and studied some useful applications of their operator. Srivastava
et al. [10] defined the q-Noor integral operator by following the concept of convolution.
Purohit [11] introduced a subclass of univalent functions by using a certain operator of a
fractional q-derivative. Aouf et al. [12] employed subordination results to discuss analytic
functions associated with a new fractional q-analogue of certain operators. However, many
extensions of different operators can be found in [13–29] and the references cited therein.
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Here, we will make use of definitions and notations used in the literature [30,31]. For
a, q ∈ C, the q-analogue of the Pochhammer symbol is defined by

(a; q)k =


∏k−1

j=0 (1− aqj), if k > 0,
1, if k = 0,
∏∞

j=0(1− aqj), if k→ ∞,

and, hence, it is very natural to write (a; q)k = (a;q)∞
(aqk ,q)∞

, (k ∈ N ∪ {∞}). The extension of
the Pochhammer symbol to a real number δ is given as

(a; q)δ =
(a; q)∞

(aqδ; q)∞
, (δ ∈ R).

Therefore, for any real number δ > 0, the q-analogue of the gamma function is
defined by

Γq(α) =
(q; q)∞

(qδ; q)∞
(1− q)1−δ.

The q-analogue of the natural number n and the multiple q-shifted factorial for complex
numbers a1, · · · , ak are, respectively, defined by

[n]q =
1− qn

1− q
, 0 < |q| < 1, and (a1, · · · , ak; q)n =

k

∏
j=1

(aj; q)n.

Let a1, ..., ar, b1, ...bs be complex numbers; then, the q-hypergeometric series rφs is
denoted as

rφs

(
a1, · · · , ar
b1, · · · , bs

; q, z
)
=

∞

∑
n=0

(a1, · · · , ar; q)n
(b1, · · · , bs; q)n

zn
(
−q

n−1
2

)n(s−r+1)
. (1)

It is clear that the series representation of the function rφs converges absolutely for
all z ∈ C if r ≤ s and converges only for |z| < 1 if r = s + 1. Now, let A be the collection
of all analytic functions in the open unit disc U = {z ∈ C; |z| < 1} expressed in the
normalized form

f (z) = z +
∞

∑
n=2

anzn, (2)

and let A0 be a collection comprising all functions g such that zg ∈ A and g(0) = 1, z ∈ C.
Then, the sub-collection of A of functions that are univalent in U is denoted by S. However,
in geometric function theory, a variety of sub-collections of univalent functions have been
discussed. See the monographs published by [32,33] for details.

Let us consider the Riemann–Liouville fractional q-integral operator of a non-integer
of order δ defined by [34]

Iδ
q f (z) =

1
Γq(δ)

∫ z

0
(x− [qt])δ−1 f (t)dqt. (3)

Then, Iδ
q f −→ Iq when δ −→ 1, where Iq f is the q-Jackson integral defined by [6]

Iq f (z) =
∫ z

0
f (t)dq(t) z ∈ U , z 6= 0, |q| < 1.

With the concept of the Riemann–Liouville fractional q-integral of the non-integer
order δ, we recall some rules associated with Iδ

q by (3):

(i) Iδ
q (c f ) = cIδ

q f , c ∈ C− {0}, f ∈ A,
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(ii) Iδ
q ( f + g) = Iδ

q f + Iδ
q g, f , g ∈ A,

(iii) Iδ
q | f | ≤ |Iδ

q f |.
Agarwal [34] defined the q-analogue difference operator of a non-integer order δ

as follows:

Dδ
q f (z) =

1
(1− q)δzδ

∞

∑
n=0

(q−δ; q)n

(q; q)n
qn f (qnz). (4)

Note that Dδ
q f −→ Dq f when δ −→ 1. Dq f is the q-derivative of the function f

introduced in [6] in the subsequent form:

Dq f (z) =
f (z)− f (qz)

z(1− q)
, z ∈ U , z 6= 0, |q| < 1. (5)

Thus, for n ∈ N, through simple computations, we obtain

Dδ
qzn =

zn−δ

(1− q)δ

(q1+n−δ; q)∞

(q1+n; q)∞
and Iδ

q zn =
(qn+1+δ; q)∞

(qn+1; q)∞
zn+δ.

Let 0 < |q| < 1, δ ≥ 0 ζ > 0, 0 ≤ β ≤ 1, and 0 < γ ≤ 1. By the definition of the
q-analogue difference operator with the non-integer order δ, the following rules of Dδ

q hold:

(i) Dδ
q(c f ) = cDδ

q f , c ∈ C− {0}, f ∈ A,
(ii) Dδ

q( f + g) = Dδ
q f + Dδ

q g, f , g ∈ A.

We define P ζ
δ,q(β, γ) as the class of all functions f ∈ A satisfying the following

condition:

Re

 (1− q)δ
(

Dδ+1
q Iδ

q f (z) + 1−γ
ζγ zDδ+2

q Iδ
q f (z)

)
− β

1− β

 > 0, |z| < 1.

For 0 < |q| < 1, δ ≥ 0, and 0 ≤ β ≤ 1, the class Pδ,q(β) consists of functions satisfying
the following condition:

Re

 (1− q)δ
(

Dδ+1
q Iδ

q f (z) + qzDδ+2
q Iδ

q f (z)
)
− β

1− β

 > 0, |z| < 1.

Now, for two functions

f (z) =
∞

∑
n=0

anzn and g(z) =
∞

∑
n=0

bnzn,

we recall the convolution (or the Hadamard product) of f and g, denoted by f ∗ g, which is
given by (

f ∗ g
)
(z) =

∞

∑
n=0

anbnzn, z ∈ U .

For a set V ⊆ A0, the dual set V∗ is defined by

V∗ = {g ∈ A0 :
(

f ∗ g
)
(z) 6= 0, ∀ f ∈ V , z ∈ U}.

However, the second dual of V is defined as V∗∗ = (V∗)∗. However, V ⊆ V∗∗.
For basic reference to this theory, we may refer to the book by Ruscheweyh [35] (see
also [36–38]).
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In this paper, we define the class S∗q,δ for δ > 0, 0 < |q| < 1, and establish the
convolution condition of this class. Furthermore, we find conditions for q, δ, ζ, β, and γ so
that P ζ

δ,q(β, γ) ⊂ S∗q,δ(α) and Pδ,q(β) ⊂ S∗q,δ(α).

2. Preliminary Lemmas

The following lemmas are very useful in our investigation.

Lemma 1 (Duality principle; see [35]). Let V ⊆ A0 be compact; it has the following property:

f ∈ V =⇒ ∀|x| ≤ 1 : fx ∈ V , (6)

where fx(z) = f (xz). Then,
ϕ(V) = ϕ(V∗∗),

for all continuous linear functionals ϕ on A, and

c̄o(V) ⊆ c̄o(V∗∗),

where c̄o stands for the closed convex hull of a set.

Lemma 2 ([35]). Let 0 ≤ γ < 1 and β ∈ R, β 6= 1. If

Vβ,γ =
{

γ(1− β)
1 + xz
1− xz

+ (1− γ)(1− β)
1 + yz
1− yz

+ β, |x| = |y| = 1, z ∈ U
}

, (7)

then

V∗β,γ =

{
f ∈ A0 : ∃ζ ∈ R, Re

{
g(z)− 1− 2β

2(1− β)

}
> 0, g(z) = fx(z), |x| ≤ 1

}
,

and

V∗∗β,γ =

{
f ∈ A0; Re

{ g(z)− β

1− β

}
> 0, g(z) = fx(z), |x| ≤ 1

}
.

We see that the set Vβ,γ in (7) does not satisfy the property (6), i.e., if f ∈ Vβ,γ, then
f (xz) ∈ Vβ,γ for all |x| ≤ 1, as is required in the Duality Principle. However, the Duality
Principle can be stated with a slightly weaker but more complicated condition that Vβ,γ can
be seen to satisfy (see [35] for more details).

3. Main Results

Definition 1. Let f ∈ A, δ > 0, and α ∈ C− {0}. Then, a function f is said to be in the class
S∗q,δ(α) if it satisfies the following inequality:

Re

{
1 +

1
α

(
zDδ+1

q Iδ
q f (z)

f (z)
− 1

(1− q)δ

)}
> 0,

where the operators Dδ
q and Iδ

q are given by (4) and (3), respectively.

Putting δ = 0 into Definition 1 leads to the following definition.

Definition 2. The function f ∈ A is said to be in the class of q-starlike functions of order α, S∗q (α),
if it satisfies the following inequality:

Re
{

1 +
1
α

(
zDq f (z)

f (z)
− 1
)}

> 0, α ∈ C− {0},
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where Dq f (z) is given by (5).

Theorem 1. Let f ∈ A, δ > 0, α ∈ C− {0}, and |z| < R < 1. Then, f ∈ S∗q,δ(α) if and only if

f (z)
z
∗

1 + qz
(

x+1
2α(1−q)δ − 1

)
(1− z)(1− qz)

6= 0,

where |x| = 1 and x 6= −1.

Proof. Since
zDδ+1

q Iδ
q f (z)

f (z) − 1
(1−q)δ = 0 at z = 0, we have

1 +
1
α

(
zDδ+1

q Iδ
q f (z)

f (z)
− 1

(1− q)δ

)
6= x− 1

x + 1
, |x| = 1, x 6= −1.

By following simple computations, we can rewrite this as

(x + 1)(1− q)δzDδ+1
q Iδ

q f (z)−
(

2α(1− q)δ − x− 1
)

f (z) 6= 0. (8)

Since the function f satisfies (2), we obtain

zDδ+1
q Iδ

q f (z) =
1

(1− q)δ

(
z +

∞

∑
n=2

[n]qanzn

)
=

1
(1− q)δ

(
f (z) ∗ z

(1− z)(1− qz)

)
.

Now, as Equation (8) is equivalent to(
f (z) ∗ (x + 1)z

(1− z)(1− qz)

)
+

(
f (z) ∗ z(2α(1− q)δ − x− 1)

1− z

)
6= 0,

it simplifies to

f (z) ∗ (x + 1)z + z(1− qz)(2α(1− q)δ − x− 1)
(1− z)(1− qz)

6= 0.

Hence, the required result has been proven.

Putting δ = 0 into Theorem 1, we get the following corollary.

Corollary 1. Let α ∈ C− {0}, |x| = 1, and x 6= −1. Then, the function f is a q-starlike function
of order α if and only if

f (z)
z
∗

1 + qz
(

x+1
2α − 1

)
(1− z)(1− qz)

6= 0, |z| < R ≤ 1. (9)

Theorem 2. Let δ > 0, 0 < q < 1, α ∈ C− {0}, ζ > 0, 0 ≤ β < 1, 0 < γ < 1, and |x| = 1
with x 6= −1. Then, P ζ

q,δ(β, γ) ⊆ S∗q,δ(α) if and only if

Re
{

F(x, z)
}
> − (1− q)δ

ζγ(1− β)
, (10)

where

F(x, z) =
1
α

∞

∑
n=1

(x + 1)[n + 1]q + 2α(1− q)δ − (x + 1)
[n + 1]q(ζγ + (1− γ)[n]q)

zn, |z| < R ≤ 1, |z| < R ≤ 1. (11)
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Proof. Let the function f be in the class P ζ
q,δ(β, γ), |z| < R ≤ 1. If we denote

g(z) = (1− q)δ

(
Dδ+1

q Iδ
q f (z) +

1− γ

ζγ
zDδ+2

q Iδ
q f (z)

)
,

then we have g ∈ V∗∗β,γ. If f satisfies (2), then we obtain

g(z) = 1 +
∞

∑
n=2

[n]qanzn−1 +
∞

∑
n=2

1− γ

ζγ
[n]q[n− 1]qanzn−1

= 1 +
∞

∑
n=2

[n]qan

(
1 +

1− γ

ζγ
[n− 1]q

)
zn−1

= 1 +
∞

∑
n=2

[n]qan

(
ζγ + (1− γ)[n− 1]q

ζγ

)
zn−1.

Therefore,

f (z)
z

= 1 +
∞

∑
n=2

anzn−1 = g(z) ∗
(

1 +
∞

∑
n=2

ζγ

[n]q(ζγ + (1− γ)[n− 1]q)
zn−1

)
.

We now obtain a one-to-one correspondence between P ζ
q,δ(β, γ) and V∗∗β,γ. Thus, by

Theorem 1, P ζ
q,δ(β, γ) ⊆ S∗q,δ(α) if and only if

g(z) ∗
(

1 +
∞

∑
n=2

ζγ

[n]q(ζγ + (1− γ)[n− 1]q)
zn−1

)
∗

1 + qz
(

x+1
2α(1−q)δ − 1

)
(1− z)(1− qz)

6= 0. (12)

For z ∈ U , consider the continuous linear functional λz : A0 −→ C such that

λz(h) = h(z) ∗
(

1 +
∞

∑
n=2

ζγ

[n]q(ζγ + (1− γ)[n− 1]q)
zn−1

)
∗

1 + qz
(

x+1
2α(1−q)δ − 1

)
(1− z)(1− qz)

6= 0.

By the Duality Principle, we have λz(V) = λz(V∗∗β,γ). Therefore, (12) holds if and
only if

(
1 + 2(1− β)

∞

∑
k=1

zk
)
∗
(

1 +
∞

∑
n=1

ζγ

[n + 1]q(ζγ + (1− γ)[n]q)
zn

)

∗
(

1 +
∞

∑
n=1

(
[n + 1]q +

(
(x + 1)q

2α(1− q)δ
− q
)
[n]q

)
zn

)
6= 0.

Using the properties of convolution, we obtain

1 +
2(1− β)ζγ

2α(1− q)δ

∞

∑
n=1

2α(1− q)δ[n + 1]q +
(
q(x + 1)− 2αq(1− q)δ

)
[n]q

[n + 1]q(ζγ + (1− γ)[n]q)
zn 6= 0.

Since [n + 1]q = 1 + q[n]q, we get

1 +
2(1− β)ζγ

2α(1− q)δ

∞

∑
n=1

(x + 1)[n + 1]q + 2α(1− q)δ − (x + 1)
[n + 1]q(ζγ + (1− γ)[n]q)

zn 6= 0.

Hence, we have

1
α

∞

∑
n=1

(x + 1)[n + 1]q + 2α(1− q)δ − (x + 1)
[n + 1]q(ζγ + (1− γ)[n]q)

zn 6= − (1− q)δ

ζγ(1− β)
, (13)
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where z ∈ U , |x| = 1. The equality on the right side of Equation (13) takes its value on the

line Rew 6= − (1−q)δ

ζγ(1−β)
, and so (13) is equivalent to (10).

Remark 1. Under the hypothesis of Theorem 2, the inequality (10) can be written in the form

(1− q)δ

ζγ(1− β)
+ Re

{
1
α

∞

∑
n=1

zn

ζγ + (1− γ)[n]q

}

+(1− q)δRe

{
∞

∑
n=1

zn

[n + 1]q(ζγ + (1− γ)[n]q)

}
− Re

{
1
α

∞

∑
n=1

zn

[n + 1]q(ζγ + (1− γ)[n]q)

}

≥ Re

{
x
α

(
∞

∑
n=1

zn

ζγ + (1− γ)[n]q
−

∞

∑
n=1

zn

[n + 1]q(ζγ + (1− γ)[n]q)

)}
.

Therefore, for more clarification, we can see that this satisfies the inequality when

(1− q)δ

ζγ(1− β)
+ Re

{
1
α

∞

∑
n=1

zn

ζγ + (1− γ)[n]q

}

+(1− q)δRe

{
∞

∑
n=1

zn

[n + 1]q(ζγ + (1− γ)[n]q)

}
− Re

{
1
α

∞

∑
n=1

zn

[n + 1]q(ζγ + (1− γ)[n]q)

}

≥
∣∣∣∣∣ 1α
(

∞

∑
n=1

zn

ζγ + (1− γ)[n]q
−

∞

∑
n=1

zn

[n + 1]q(ζγ + (1− γ)[n]q)

)∣∣∣∣∣. (14)

Assume that the function ψ is given by

ψ(z) =
1
α

∞

∑
n=1

zn

[n + 1]q(ζγ + (1− γ)[n]q)
.

Then, inequality (14) can be written in the form

(1− q)δ

ζγ(1− β)
+ Re{Dqzψ(z) + (2α(1− q)δ − 1)ψ(z)} ≥ |Dqzψ(z) + ψ(z)|. (15)

Hence, ψ(z) ∈ S∗q,δ(α) if and only if (15) is satisfied.

Putting δ = 0 into Theorem 2 leads to the following corollary.

Corollary 2. Let 0 < q < 1, α ∈ C− {0}, ζ > 0, 0 ≤ β < 1, 0 < γ < 1, and |x| = 1 with
x 6= −1. Then, P ζ

q,0(β, γ) ⊆ S∗q (α) if and only if

Re
{

F1(x, z)
}
>

1
ζγ(1− β)

,

where

F1(x, z) =
1
α

∞

∑
n=1

(x + 1)[n + 1]q + 2α− (x + 1)
[n + 1]q(ζγ + (1− γ)[n]q)

zn, |z| < R ≤ 1.

Similarly, from Theorem 2, we get the following theorem.

Theorem 3. Let δ > 0, 0 < q < 1, α ∈ C− {0}, 0 ≤ β < 1, and |x| = 1 with x 6= −1. Then,
Pq,δ(β) ⊆ S∗q,δ(α) if and only if

Re
{

F1(x, z)
}
> − (1− q)δ

(1− β)
, (16)
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where

F1(x, z) =
1
α

∞

∑
n=1

(x + 1)[n + 1]q + 2α(1− q)δ − (x + 1)
[n + 1]2q

zn, |z| < R ≤ 1. (17)

Putting δ = 0 into Theorem 3 leads to the following corollary.

Corollary 3. Let 0 < q < 1, α ∈ C− {0}, 0 ≤ β < 1, and |x| = 1 with x 6= −1. Then,
Pq,0(β, ) ⊆ S∗q (α) if and only if

Re
{

F2(x, z)
}
> − 1

(1− β)
,

where

F2(x, z) =
1
α

∞

∑
n=1

(x + 1)[n + 1]q + 2α− (x + 1)
[n + 1]2q

zn, |z| < R ≤ 1.

Remark 2. The function F1(x, z) can be represented in terms of a q-hypergeometric function
as follows:

F1(x, z) =
x + 1

α
2φ1

(
q q
q2 ; q, z

)
+

2α(1− q)δ − (x + 1)
α

2φ1

(
q q q
q2 q2 ; q, z

)
.

Proof. From the definition of F1(x, z) introduced in (11), we infer that

F1(x, z) =
x + 1

α

∞

∑
n=1

zn

[n + 1]q
+

2α(1− q)δ − (x + 1)
α

∞

∑
n=1

zn

[n + 1]2q

=
x + 1

α

∞

∑
n=0

zn

[n + 1]q
+

2α(1− q)δ − (x + 1)
α

∞

∑
n=0

zn

[n + 1]2q
− 2(1− q). (18)

Since [n + 1]q = (q2;q)n
(q;q)n

, we have

F1(x, z) =
x + 1

α

∞

∑
n=0

(q; q)n

(q2; q)n
zn +

2α(1− q)δ − (x + 1)
α

∞

∑
n=0

(q; q)n(q; q)n

(q2; q)n(q2; q)n
zn − 2(1− q).

Hence, by using the definition of rφs from (1), the proof of the corollary is complete.

Putting δ = 0 into Remark 2 leads to the following corollary.

Corollary 4. The function F2(x, z) can be expressed in terms of the q-hypergeometric function
as follows:

F2(x, z) =
x + 1

α
2φ1

(
q q
q2 ; q, z

)
+

2α− (x + 1)
α

2φ1

(
q q q
q2 q2 ; q, z

)
.

We now consider the Riemann–Liouville fractional q-integral and obtain the following
corollary.

Remark 3. The function F1(x, z) can be expressed in terms of the Riemann–Liouville fractional
q-integral as follows:

F1(x, z) =
x + 1

α

∫ 1

0

1
1− tz

dqt +
2α(1− q)δ − (x + 1)

α

∫ 1

0

∫ 1

0

1
1− vtz

dqvdqt− 2(1− q)



Symmetry 2022, 14, 2076 9 of 12

Proof. Since Equation (18) is satisfied, we have

F1(x, z) =
x + 1

α

∞

∑
n=0

∫ 1

0
tndqtzn +

2α(1− q)δ − (x + 1)
α

∞

∑
n=0

∫ 1

0
vndqv

∫ 1

0
tndtzn

=
x + 1

α

∫ 1

0

(
∞

∑
n=0

tnzn

)
dqt +

2α(1− q)δ − (x + 1)
α

∫ 1

0

∫ 1

0

(
∞

∑
n=0

vntnzn

)
dqvdqt.

This completes the proof of the corollary.

Putting δ = 0 into Remark 3 leads to the following corollary.

Corollary 5. The function F2(x, z) can be expressed in terms of the Riemann–Liouville fractional
q-integral in the following form:

F2(x, z) =
x + 1

α

∫ 1

0

1
1− tz

dqt +
2α− (x + 1)

α

∫ 1

0

∫ 1

0

1
1− vtz

dqvdqt− 2(1− q).

Theorem 4. Let 0 < |q| < 1, δ > 0, 0 ≤ β ≤ 1, and f ∈ Pq,δ(β). We define

Kq =
∫ 1

0

dqt
1− t

. (19)

If

β ≥
1− 2Kq

2(1− Kq)
,

then f ∈ Pq,δ(0), and, hence, it is univalent.

Proof. Let ζ > 0 and γ > 0; we define

φq(z) = 1 +
∞

∑
n=1

[n + 1]qzn,

and

ψq(z) = 1 +
∞

∑
n=1

1
[n + 1]q

zn = 1 +
∞

∑
n=1

∫ 1

0
tndqtzn

=
∫ 1

0

(
1 +

∞

∑
n=1

tnzn

)
dqt =

∫ 1

0

1
1− tz

dqt.

In view of these representations, we can write

Dδ+1
q Iδ

q f (z) + qDδ+2
q Iδ

q f (z) = Dδ+1
q Iδ

q f (z) ∗ φq(z)

and (
Dδ+1

q Iδ
q f (z) + qDδ+2

q Iδ
q f (z)

)
∗ ψq(z) = Dδ+1

q Iδ
q f (z).

Let f ∈ Pq,δ(β). Then, by using Lemma 2, we may restrict our attention to the function
f ∈ Pζ(β, γ) for which

(1− q)δ
(

Dδ+1
q Iδ

q f (z) + qDδ+2
q Iδ

q f (z)
)
= γ(1− β)

1 + xz
1− xz

+ (1− β)(1− γ)
1 + yz
1− yz

+ β.
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Thus, we obtain

(1− q)δDδ+1
q Iδ

q f (z) =
(

γ(1− β)
1 + xz
1− xz

+ (1− β)(1− γ)
1 + yz
1− yz

+ β
)
∗ ψq(z). (20)

Hence, Equation (20) is equivalent to

(1− q)δDδ+1
q Iδ

q f (z) =

(
γ

1 + xz
1− xz

+ (1− γ)
1 + yz
1− yz

)
∗
(
(1− β)ψq(z) + β

)
.

=

(
γ

1 + xz
1− xz

+ (1− γ)
1 + yz
1− yz

)
∗
(∫ 1

0

(
(1− β)

1
1− tz

+ β

)
dqt
)

=

(
γ

1 + xz
1− xz

+ (1− γ)
1 + yz
1− yz

)
∗ Gq(z), (21)

where

Gq(z) =
∫ 1

0

(
(1− β)

1
1− tz

+ β

)
dqt.

Therefore,

Rel
(
Gq(z)

)
=
∫ 1

0

(
(1− β)

1
1− t

+ β

)
dqt = (1− β)kq + β,

where Kq is defined by (19). Note that if β ≥ (1− 2Kq)/2(1− Kq), then ReG(z) ≥ 1/2.
Functions with real parts greater than 1/2 are known to preserve the closed convex hull
under convolution [10], p. 23. Therefore, from (21), we have

(1− q)δDδ+1
q Iδ

q f (z) = γ

(
2

1− xz
− 1
)
∗ Gq(z) + (1− γ)

(
2

1− yz
− 1
)
∗ Gq(z)

= 2γGq(xz)− γ + 2(1− γ)Gq(yz)− (1− γ)

= 2γGq(xz) + 2(1− γ)Gq(yz)− 1.

In addition, since Re{Dδ+1
q Iδ

q f (z)} > 0, we have f ∈ Pq,δ(0). This completes the proof
of the theorem.

4. Conclusions

In this article, a new class of univalent functions was introduced by using Riemann–
Liouville fractional q-integrals and q-difference operators of non-integer orders. Then, some
convolution results for such a class of univalent functions were obtained. In addition, two
classes of normalized analytic functions in the unit disc were derived, and some conditions
on q, δ, ζ, β, and γ were given so that the new classes satisfied P ζ

δ,q(β, γ) ⊂ S∗q,δ(α) and
Pδ,q(β) ⊂ S∗q,δ(α).

The result obtained during this research can be further used for writing fractional
differential and integral operators in order to extend the results of analytic functions.
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