Article

Duality on q-Starlike Functions Associated with Fractional q-Integral Operators and Applications

Ebrahim Amini ${ }^{1(\mathbb{D}}$, Shrideh Al-Omari 2, Mojtaba Fardi ${ }^{3}$ (D) and Kamsing Nonlaopon ${ }^{4, *(\mathbb{C D})}$
1 Department of Mathematics, Payme Noor University, Tehran P.O. Box 19395-4697, Iran
2 Department of Scientific Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan
3 Department of Applied Mathematics, Faculty of Mathematical Science, Shahrekord University, Shahrekord P.O. Box 115, Iran
4 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
* Correspondence: nkamsi@kku.ac.th

check for updates

Citation: Amini, E.; Al-Omari, S.; Fardi, M.; Nonlaopon, K. Duality on q-Starlike Functions Associated with Fractional q-Integral Operators and Applications. Symmetry 2022, 14, 2076. https://doi.org/10.3390/ sym14102076

Academic Editors: Ioan Rașa, Juan Luis García Guirao and Sergei D. Odintsov

Received: 29 August 2022
Accepted: 1 October 2022
Published: 6 October 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper, we make use of the Riemann-Liouville fractional q-integral operator to discuss the class $S_{q, \delta}^{*}(\alpha)$ of univalent functions for $\delta>0, \alpha \in \mathbb{C}-\{0\}$, and $0<|q|<1$. Then, we develop convolution results for the given class of univalent functions by utilizing a concept of the fractional q-difference operator. Moreover, we derive the normalized classes $\mathcal{P}_{\delta, q}^{\zeta}(\beta, \gamma)$ and $\mathcal{P}_{\delta, q}(\beta)$ $(0<|q|<1, \delta \geq 0,0 \leq \beta \leq 1, \zeta>0)$ of analytic functions on a unit disc and provide conditions for the parameters q, δ, ζ, β, and γ so that $\mathcal{P}_{\delta, q}^{\zeta}(\beta, \gamma) \subset S_{q, \delta}^{*}(\alpha)$ and $\mathcal{P}_{\delta, q}(\beta) \subset S_{q, \delta}^{*}(\alpha)$ for $\alpha \in \mathbb{C}-\{0\}$. Finally, we also propose an application to symmetric q-analogues and Ruscheweh's duality theory.

Keywords: Riemann-Liouville; q-analogue; difference operator; q-starlike functions; duality principle; dual set; q-hypergeometric function

MSC: 05A15; 11B68; 26B10; 33E20

1. Introduction

In recent decades, the theory of q-calculus has been applied to various areas of science and computational mathematics. The concept of q-calculus was used in quantum groups, q-deformed super algebras, q-transform analysis, q-integral calculus, optimal control, and many other fields, to mention but a few [1-4]. Soon after the concept of q-calculus was furnished, many basic q-hypergeometric functions, q-hypergeometric symmetric functions, and q-hypergeometric and hypergeometric symmetric function polynomials were discussed in geometric function theory [5]. Jackson [6] was the first to introduce and analyze the q-derivative and the q-integral operator. Later, various researchers applied the concept of the q-derivative to various sub-collections of univalent functions. Srivastava [7] used the q-derivative operator to describe some properties of a subclass of univalent functions. Agrawal et al. [8] extended a class of q-starlike functions to certain subclasses of q-starlike functions. Kanas et al. [9] used convolutions to define a q-analogue of the Ruscheweyh operator and studied some useful applications of their operator. Srivastava et al. [10] defined the q-Noor integral operator by following the concept of convolution. Purohit [11] introduced a subclass of univalent functions by using a certain operator of a fractional q-derivative. Aouf et al. [12] employed subordination results to discuss analytic functions associated with a new fractional q-analogue of certain operators. However, many extensions of different operators can be found in [13-29] and the references cited therein.

Here, we will make use of definitions and notations used in the literature [30,31]. For $a, q \in \mathbb{C}$, the q-analogue of the Pochhammer symbol is defined by

$$
(a ; q)_{k}= \begin{cases}\prod_{j=0}^{k-1}\left(1-a q^{j}\right), & \text { if } k>0 \\ 1, & \text { if } k=0, \\ \prod_{j=0}^{\infty}\left(1-a q^{j}\right), & \text { if } k \rightarrow \infty,\end{cases}
$$

and, hence, it is very natural to write $(a ; q)_{k}=\frac{(a ; q)_{\infty}}{\left(a q^{k}, q\right)_{\infty}},(k \in \mathbb{N} \cup\{\infty\})$. The extension of the Pochhammer symbol to a real number δ is given as

$$
(a ; q)_{\delta}=\frac{(a ; q)_{\infty}}{\left(a q^{\delta} ; q\right)_{\infty}}, \quad(\delta \in \mathbb{R})
$$

Therefore, for any real number $\delta>0$, the q-analogue of the gamma function is defined by

$$
\Gamma_{q}(\alpha)=\frac{(q ; q)_{\infty}}{\left(q^{\delta} ; q\right)_{\infty}}(1-q)^{1-\delta}
$$

The q-analogue of the natural number n and the multiple q-shifted factorial for complex numbers a_{1}, \cdots, a_{k} are, respectively, defined by

$$
[n]_{q}=\frac{1-q^{n}}{1-q}, \quad 0<|q|<1, \text { and }\left(a_{1}, \cdots, a_{k} ; q\right)_{n}=\prod_{j=1}^{k}\left(a_{j} ; q\right)_{n}
$$

Let $a_{1}, \ldots, a_{r}, b_{1}, \ldots b_{s}$ be complex numbers; then, the q-hypergeometric series ${ }_{r} \phi_{s}$ is denoted as

$$
{ }_{r} \phi_{s}\left(\begin{array}{ccc}
a_{1}, & \cdots, & a_{r} \tag{1}\\
b_{1}, & \cdots, & b_{s}
\end{array} ; q, z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \cdots, a_{r} ; q\right) n}{\left(b_{1}, \cdots, b_{s} ; q\right) n} z^{n}\left(-q^{\frac{n-1}{2}}\right)^{n(s-r+1)}
$$

It is clear that the series representation of the function $r \phi_{s}$ converges absolutely for all $z \in \mathbb{C}$ if $r \leq s$ and converges only for $|z|<1$ if $r=s+1$. Now, let \mathcal{A} be the collection of all analytic functions in the open unit $\operatorname{disc} \mathcal{U}=\{z \in \mathbb{C} ;|z|<1\}$ expressed in the normalized form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{2}
\end{equation*}
$$

and let \mathcal{A}_{0} be a collection comprising all functions g such that $z g \in \mathcal{A}$ and $g(0)=1, z \in \mathbb{C}$. Then, the sub-collection of \mathcal{A} of functions that are univalent in \mathcal{U} is denoted by S. However, in geometric function theory, a variety of sub-collections of univalent functions have been discussed. See the monographs published by $[32,33]$ for details.

Let us consider the Riemann-Liouville fractional q-integral operator of a non-integer of order δ defined by [34]

$$
\begin{equation*}
I_{q}^{\delta} f(z)=\frac{1}{\Gamma_{q}(\delta)} \int_{0}^{z}(x-[q t])^{\delta-1} f(t) d_{q} t \tag{3}
\end{equation*}
$$

Then, $I_{q}^{\delta} f \longrightarrow I_{q}$ when $\delta \longrightarrow 1$, where $I_{q} f$ is the q-Jackson integral defined by [6]

$$
I_{q} f(z)=\int_{0}^{z} f(t) d_{q}(t) \quad z \in \mathcal{U}, z \neq 0,|q|<1
$$

With the concept of the Riemann-Liouville fractional q-integral of the non-integer order δ, we recall some rules associated with I_{q}^{δ} by (3):
(i) $I_{q}^{\delta}(c f)=c I_{q}^{\delta} f, \quad c \in \mathbb{C}-\{0\}, f \in \mathcal{A}$,
(ii) $I_{q}^{\delta}(f+g)=I_{q}^{\delta} f+I_{q}^{\delta} g, \quad f, g \in \mathcal{A}$,
(iii) $\quad I_{q}^{\delta}|f| \leq\left|I_{q}^{\delta} f\right|$.

Agarwal [34] defined the q-analogue difference operator of a non-integer order δ as follows:

$$
\begin{equation*}
D_{q}^{\delta} f(z)=\frac{1}{(1-q)^{\delta} z^{\delta}} \sum_{n=0}^{\infty} \frac{\left(q^{-\delta} ; q\right)_{n}}{(q ; q)_{n}} q^{n} f\left(q^{n} z\right) . \tag{4}
\end{equation*}
$$

Note that $D_{q}^{\delta} f \longrightarrow D_{q} f$ when $\delta \longrightarrow 1 . D_{q} f$ is the q-derivative of the function f introduced in [6] in the subsequent form:

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{z(1-q)}, \quad z \in \mathcal{U}, z \neq 0,|q|<1 . \tag{5}
\end{equation*}
$$

Thus, for $n \in \mathbb{N}$, through simple computations, we obtain

$$
D_{q}^{\delta} z^{n}=\frac{z^{n-\delta}}{(1-q)^{\delta}} \frac{\left(q^{1+n-\delta} ; q\right)_{\infty}}{\left(q^{1+n} ; q\right)_{\infty}} \text { and } I_{q}^{\delta} z^{n}=\frac{\left(q^{n+1+\delta} ; q\right)_{\infty}}{\left(q^{n+1} ; q\right)_{\infty}} z^{n+\delta} .
$$

Let $0<|q|<1, \delta \geq 0 \zeta>0,0 \leq \beta \leq 1$, and $0<\gamma \leq 1$. By the definition of the q-analogue difference operator with the non-integer order δ, the following rules of D_{q}^{δ} hold:
(i) $\quad D_{q}^{\delta}(c f)=c D_{q}^{\delta} f, \quad c \in \mathbb{C}-\{0\}, f \in \mathcal{A}$,
(ii) $D_{q}^{\delta}(f+g)=D_{q}^{\delta} f+D_{q}^{\delta} g, \quad f, g \in \mathcal{A}$.

We define $\mathcal{P}_{\delta, q}^{\tau}(\beta, \gamma)$ as the class of all functions $f \in \mathcal{A}$ satisfying the following condition:

$$
\operatorname{Re}\left\{\frac{(1-q)^{\delta}\left(D_{q}^{\delta+1} I_{q}^{\delta} f(z)+\frac{1-\gamma}{\zeta \gamma} z D_{q}^{\delta+2} I_{q}^{\delta} f(z)\right)-\beta}{1-\beta}\right\}>0, \quad|z|<1 .
$$

For $0<|q|<1, \delta \geq 0$, and $0 \leq \beta \leq 1$, the class $\mathcal{P}_{\delta, q}(\beta)$ consists of functions satisfying the following condition:

$$
\operatorname{Re}\left\{\frac{(1-q)^{\delta}\left(D_{q}^{\delta+1} I_{q}^{\delta} f(z)+q z D_{q}^{\delta+2} I_{q}^{\delta} f(z)\right)-\beta}{1-\beta}\right\}>0, \quad|z|<1 .
$$

Now, for two functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

we recall the convolution (or the Hadamard product) of f and g, denoted by $f * g$, which is given by

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}, \quad z \in \mathcal{U} .
$$

For a set $\mathcal{V} \subseteq \mathcal{A}_{0}$, the dual set \mathcal{V}^{*} is defined by

$$
\mathcal{V}^{*}=\left\{g \in \mathcal{A}_{0}:(f * g)(z) \neq 0, \forall f \in \mathcal{V}, z \in \mathcal{U}\right\} .
$$

However, the second dual of \mathcal{V} is defined as $\mathcal{V}^{* *}=\left(\mathcal{V}^{*}\right)^{*}$. However, $\mathcal{V} \subseteq \mathcal{V}^{* *}$. For basic reference to this theory, we may refer to the book by Ruscheweyh [35] (see also [36-38]).

In this paper, we define the class $S_{q, \delta}^{*}$ for $\delta>0,0<|q|<1$, and establish the convolution condition of this class. Furthermore, we find conditions for q, δ, ζ, β, and γ so that $\mathcal{P}_{\delta, q}^{\zeta}(\beta, \gamma) \subset S_{q, \delta}^{*}(\alpha)$ and $\mathcal{P}_{\delta, q}(\beta) \subset S_{q, \delta}^{*}(\alpha)$.

2. Preliminary Lemmas

The following lemmas are very useful in our investigation.
Lemma 1 (Duality principle; see [35]). Let $\mathcal{V} \subseteq \mathcal{A}_{0}$ be compact; it has the following property:

$$
\begin{equation*}
f \in \mathcal{V} \Longrightarrow \forall|x| \leq 1: f_{x} \in \mathcal{V} \tag{6}
\end{equation*}
$$

where $f_{x}(z)=f(x z)$. Then,

$$
\varphi(\mathcal{V})=\varphi\left(\mathcal{V}^{* *}\right)
$$

for all continuous linear functionals φ on \mathcal{A}, and

$$
\overline{\operatorname{co}}(\mathcal{V}) \subseteq \overline{\operatorname{co}}\left(\mathcal{V}^{* *}\right),
$$

where $\overline{\text { co }}$ stands for the closed convex hull of a set.
Lemma 2 ([35]). Let $0 \leq \gamma<1$ and $\beta \in \mathbb{R}, \beta \neq 1$. If

$$
\begin{equation*}
V_{\beta, \gamma}=\left\{\gamma(1-\beta) \frac{1+x z}{1-x z}+(1-\gamma)(1-\beta) \frac{1+y z}{1-y z}+\beta,|x|=|y|=1, \quad z \in \mathcal{U}\right\} \tag{7}
\end{equation*}
$$

then

$$
V_{\beta, \gamma}^{*}=\left\{f \in \mathcal{A}_{0}: \exists \zeta \in \mathbb{R}, \operatorname{Re}\left\{g(z)-\frac{1-2 \beta}{2(1-\beta)}\right\}>0, g(z)=f_{x}(z),|x| \leq 1\right\}
$$

and

$$
V_{\beta, \gamma}^{* *}=\left\{f \in \mathcal{A}_{0} ; \operatorname{Re}\left\{\frac{g(z)-\beta}{1-\beta}\right\}>0, g(z)=f_{x}(z),|x| \leq 1\right\}
$$

We see that the set $V_{\beta, \gamma}$ in (7) does not satisfy the property (6), i.e., if $f \in V_{\beta, \gamma}$, then $f(x z) \in V_{\beta, \gamma}$ for all $|x| \leq 1$, as is required in the Duality Principle. However, the Duality Principle can be stated with a slightly weaker but more complicated condition that $V_{\beta, \gamma}$ can be seen to satisfy (see [35] for more details).

3. Main Results

Definition 1. Let $f \in \mathcal{A}, \delta>0$, and $\alpha \in \mathbb{C}-\{0\}$. Then, a function f is said to be in the class $S_{q, \delta}^{*}(\alpha)$ if it satisfies the following inequality:

$$
\operatorname{Re}\left\{1+\frac{1}{\alpha}\left(\frac{z D_{q}^{\delta+1} I_{q}^{\delta} f(z)}{f(z)}-\frac{1}{(1-q)^{\delta}}\right)\right\}>0
$$

where the operators D_{q}^{δ} and I_{q}^{δ} are given by (4) and (3), respectively.
Putting $\delta=0$ into Definition 1 leads to the following definition.
Definition 2. The function $f \in \mathcal{A}$ is said to be in the class of q-starlike functions of order $\alpha, S_{q}^{*}(\alpha)$, if it satisfies the following inequality:

$$
\operatorname{Re}\left\{1+\frac{1}{\alpha}\left(\frac{z D_{q} f(z)}{f(z)}-1\right)\right\}>0, \quad \alpha \in \mathbb{C}-\{0\}
$$

where $D_{q} f(z)$ is given by (5).
Theorem 1. Let $f \in \mathcal{A}, \delta>0, \alpha \in \mathbb{C}-\{0\}$, and $|z|<R<1$. Then, $f \in S_{q, \delta}^{*}(\alpha)$ if and only if

$$
\frac{f(z)}{z} * \frac{1+q z\left(\frac{x+1}{2 \alpha(1-q)^{\delta}}-1\right)}{(1-z)(1-q z)} \neq 0
$$

where $|x|=1$ and $x \neq-1$.
Proof. Since $\frac{z D_{q}^{\delta+1} I_{q}^{\delta} f(z)}{f(z)}-\frac{1}{(1-q)^{\delta}}=0$ at $z=0$, we have

$$
1+\frac{1}{\alpha}\left(\frac{z D_{q}^{\delta+1} I_{q}^{\delta} f(z)}{f(z)}-\frac{1}{(1-q)^{\delta}}\right) \neq \frac{x-1}{x+1},|x|=1, x \neq-1
$$

By following simple computations, we can rewrite this as

$$
\begin{equation*}
(x+1)(1-q)^{\delta} z D_{q}^{\delta+1} I_{q}^{\delta} f(z)-\left(2 \alpha(1-q)^{\delta}-x-1\right) f(z) \neq 0 \tag{8}
\end{equation*}
$$

Since the function f satisfies (2), we obtain

$$
z D_{q}^{\delta+1} I_{q}^{\delta} f(z)=\frac{1}{(1-q)^{\delta}}\left(z+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n}\right)=\frac{1}{(1-q)^{\delta}}\left(f(z) * \frac{z}{(1-z)(1-q z)}\right)
$$

Now, as Equation (8) is equivalent to

$$
\left(f(z) * \frac{(x+1) z}{(1-z)(1-q z)}\right)+\left(f(z) * \frac{z\left(2 \alpha(1-q)^{\delta}-x-1\right)}{1-z}\right) \neq 0
$$

it simplifies to

$$
f(z) * \frac{(x+1) z+z(1-q z)\left(2 \alpha(1-q)^{\delta}-x-1\right)}{(1-z)(1-q z)} \neq 0 .
$$

Hence, the required result has been proven.
Putting $\delta=0$ into Theorem 1, we get the following corollary.
Corollary 1. Let $\alpha \in \mathbb{C}-\{0\},|x|=1$, and $x \neq-1$. Then, the function f is a q-starlike function of order α if and only if

$$
\begin{equation*}
\frac{f(z)}{z} * \frac{1+q z\left(\frac{x+1}{2 \alpha}-1\right)}{(1-z)(1-q z)} \neq 0,|z|<R \leq 1 . \tag{9}
\end{equation*}
$$

Theorem 2. Let $\delta>0,0<q<1, \alpha \in \mathbb{C}-\{0\}, \zeta>0,0 \leq \beta<1,0<\gamma<1$, and $|x|=1$ with $x \neq-1$. Then, $\mathcal{P}_{q, \delta}^{\zeta}(\beta, \gamma) \subseteq S_{q, \delta}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\{F(x, z)\}>-\frac{(1-q)^{\delta}}{\zeta \gamma(1-\beta)} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x, z)=\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{(x+1)[n+1]_{q}+2 \alpha(1-q)^{\delta}-(x+1)}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)} z^{n},|z|<R \leq 1,|z|<R \leq 1 . \tag{11}
\end{equation*}
$$

Proof. Let the function f be in the class $\mathcal{P}_{q, \delta}^{\zeta}(\beta, \gamma),|z|<R \leq 1$. If we denote

$$
g(z)=(1-q)^{\delta}\left(D_{q}^{\delta+1} I_{q}^{\delta} f(z)+\frac{1-\gamma}{\zeta \gamma} z D_{q}^{\delta+2} I_{q}^{\delta} f(z)\right)
$$

then we have $g \in V_{\beta, \gamma}^{* *}$. If f satisfies (2), then we obtain

$$
\begin{aligned}
g(z) & =1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}+\sum_{n=2}^{\infty} \frac{1-\gamma}{\zeta \gamma}[n]_{q}[n-1]_{q} a_{n} z^{n-1} \\
& =1+\sum_{n=2}^{\infty}[n]_{q} a_{n}\left(1+\frac{1-\gamma}{\zeta \gamma}[n-1]_{q}\right) z^{n-1} \\
& =1+\sum_{n=2}^{\infty}[n]_{q} a_{n}\left(\frac{\zeta \gamma+(1-\gamma)[n-1]_{q}}{\zeta \gamma}\right) z^{n-1} .
\end{aligned}
$$

Therefore,

$$
\frac{f(z)}{z}=1+\sum_{n=2}^{\infty} a_{n} z^{n-1}=g(z) *\left(1+\sum_{n=2}^{\infty} \frac{\zeta \gamma}{[n]_{q}\left(\zeta \gamma+(1-\gamma)[n-1]_{q}\right)} z^{n-1}\right) .
$$

We now obtain a one-to-one correspondence between $\mathcal{P}_{q, \delta}^{\zeta}(\beta, \gamma)$ and $V_{\beta, \gamma}^{* *}$. Thus, by Theorem 1, $\mathcal{P}_{q, \delta}^{\zeta}(\beta, \gamma) \subseteq S_{q, \delta}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
g(z) *\left(1+\sum_{n=2}^{\infty} \frac{\zeta \gamma}{[n]_{q}\left(\zeta \gamma+(1-\gamma)[n-1]_{q}\right)} z^{n-1}\right) * \frac{1+q z\left(\frac{x+1}{2 \alpha(1-q)^{\delta}}-1\right)}{(1-z)(1-q z)} \neq 0 \tag{12}
\end{equation*}
$$

For $z \in \mathcal{U}$, consider the continuous linear functional $\lambda_{z}: \mathcal{A}_{0} \longrightarrow \mathbb{C}$ such that

$$
\lambda_{z}(h)=h(z) *\left(1+\sum_{n=2}^{\infty} \frac{\zeta \gamma}{[n]_{q}\left(\zeta \gamma+(1-\gamma)[n-1]_{q}\right)} z^{n-1}\right) * \frac{1+q z\left(\frac{x+1}{2 \alpha(1-q)^{\delta}}-1\right)}{(1-z)(1-q z)} \neq 0
$$

By the Duality Principle, we have $\lambda_{z}(V)=\lambda_{z}\left(V_{\beta, \gamma}^{* *}\right)$. Therefore, (12) holds if and only if

$$
\begin{aligned}
\left(1+2(1-\beta) \sum_{k=1}^{\infty} z^{k}\right) & *\left(1+\sum_{n=1}^{\infty} \frac{\zeta \gamma}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)} z^{n}\right) \\
& *\left(1+\sum_{n=1}^{\infty}\left([n+1]_{q}+\left(\frac{(x+1) q}{2 \alpha(1-q)^{\delta}}-q\right)[n]_{q}\right) z^{n}\right) \neq 0 .
\end{aligned}
$$

Using the properties of convolution, we obtain

$$
1+\frac{2(1-\beta) \zeta \gamma}{2 \alpha(1-q)^{\delta}} \sum_{n=1}^{\infty} \frac{2 \alpha(1-q)^{\delta}[n+1]_{q}+\left(q(x+1)-2 \alpha q(1-q)^{\delta}\right)[n]_{q}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)} z^{n} \neq 0 .
$$

Since $[n+1]_{q}=1+q[n]_{q}$, we get

$$
1+\frac{2(1-\beta) \zeta \gamma}{2 \alpha(1-q)^{\delta}} \sum_{n=1}^{\infty} \frac{(x+1)[n+1]_{q}+2 \alpha(1-q)^{\delta}-(x+1)}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)} z^{n} \neq 0
$$

Hence, we have

$$
\begin{equation*}
\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{(x+1)[n+1]_{q}+2 \alpha(1-q)^{\delta}-(x+1)}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)} z^{n} \neq-\frac{(1-q)^{\delta}}{\zeta \gamma(1-\beta)^{\delta}}, \tag{13}
\end{equation*}
$$

where $z \in \mathcal{U},|x|=1$. The equality on the right side of Equation (13) takes its value on the line Rew $\neq-\frac{(1-q)^{\delta}}{\zeta \gamma(1-\beta)}$, and so (13) is equivalent to (10).

Remark 1. Under the hypothesis of Theorem 2, the inequality (10) can be written in the form

$$
\begin{aligned}
& \frac{(1-q)^{\delta}}{\zeta \gamma(1-\beta)}+\operatorname{Re}\left\{\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{z^{n}}{\zeta \gamma+(1-\gamma)[n]_{q}}\right\} \\
& +(1-q)^{\delta} \operatorname{Re}\left\{\sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)}\right\}-\operatorname{Re}\left\{\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)}\right\} \\
& \geq \operatorname{Re}\left\{\frac{x}{\alpha}\left(\sum_{n=1}^{\infty} \frac{z^{n}}{\zeta \gamma+(1-\gamma)[n]_{q}}-\sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)}\right)\right\} .
\end{aligned}
$$

Therefore, for more clarification, we can see that this satisfies the inequality when

$$
\begin{align*}
& \frac{(1-q)^{\delta}}{\zeta \gamma(1-\beta)}+\operatorname{Re}\left\{\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{z^{n}}{\zeta \gamma+(1-\gamma)[n]_{q}}\right\} \\
& +(1-q)^{\delta} \operatorname{Re}\left\{\sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)}\right\}-\operatorname{Re}\left\{\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)}\right\} \\
& \geq\left|\frac{1}{\alpha}\left(\sum_{n=1}^{\infty} \frac{z^{n}}{\zeta \gamma+(1-\gamma)[n]_{q}}-\sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)}\right)\right| \tag{14}
\end{align*}
$$

Assume that the function ψ is given by

$$
\psi(z)=\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)} .
$$

Then, inequality (14) can be written in the form

$$
\begin{equation*}
\frac{(1-q)^{\delta}}{\zeta \gamma(1-\beta)}+\operatorname{Re}\left\{D_{q} z \psi(z)+\left(2 \alpha(1-q)^{\delta}-1\right) \psi(z)\right\} \geq\left|D_{q} z \psi(z)+\psi(z)\right| \tag{15}
\end{equation*}
$$

Hence, $\psi(z) \in S_{q, \delta}^{*}(\alpha)$ if and only if (15) is satisfied.
Putting $\delta=0$ into Theorem 2 leads to the following corollary.
Corollary 2. Let $0<q<1, \alpha \in \mathbb{C}-\{0\}, \zeta>0,0 \leq \beta<1,0<\gamma<1$, and $|x|=1$ with $x \neq-1$. Then, $\mathcal{P}_{q, 0}^{\tau}(\beta, \gamma) \subseteq S_{q}^{*}(\alpha)$ if and only if

$$
\operatorname{Re}\left\{F_{1}(x, z)\right\}>\frac{1}{\zeta \gamma(1-\beta)},
$$

where

$$
F_{1}(x, z)=\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{(x+1)[n+1]_{q}+2 \alpha-(x+1)}{[n+1]_{q}\left(\zeta \gamma+(1-\gamma)[n]_{q}\right)} z^{n},|z|<R \leq 1 .
$$

Similarly, from Theorem 2, we get the following theorem.
Theorem 3. Let $\delta>0,0<q<1, \alpha \in \mathbb{C}-\{0\}, 0 \leq \beta<1$, and $|x|=1$ with $x \neq-1$. Then, $\mathcal{P}_{q, \delta}(\beta) \subseteq S_{q, \delta}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{F_{1}(x, z)\right\}>-\frac{(1-q)^{\delta}}{(1-\beta)}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{1}(x, z)=\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{(x+1)[n+1]_{q}+2 \alpha(1-q)^{\delta}-(x+1)}{[n+1]_{q}^{2}} z^{n},|z|<R \leq 1 . \tag{17}
\end{equation*}
$$

Putting $\delta=0$ into Theorem 3 leads to the following corollary.
Corollary 3. Let $0<q<1, \alpha \in \mathbb{C}-\{0\}, 0 \leq \beta<1$, and $|x|=1$ with $x \neq-1$. Then, $\mathcal{P}_{q, 0}(\beta,) \subseteq S_{q}^{*}(\alpha)$ if and only if

$$
\operatorname{Re}\left\{F_{2}(x, z)\right\}>-\frac{1}{(1-\beta)^{\prime}},
$$

where

$$
F_{2}(x, z)=\frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{(x+1)[n+1]_{q}+2 \alpha-(x+1)}{[n+1]_{q}^{2}} z^{n},|z|<R \leq 1 .
$$

Remark 2. The function $F_{1}(x, z)$ can be represented in terms of a q-hypergeometric function as follows:

$$
F_{1}(x, z)=\frac{x+1}{\alpha}{ }_{2} \phi_{1}\left(\begin{array}{cc}
q & q \\
q^{2} & ; q, z
\end{array}\right)+\frac{2 \alpha(1-q)^{\delta}-(x+1)}{\alpha} 2 \phi_{1}\left(\begin{array}{ccc}
q & q & q ; q, z \\
q^{2} & q^{2} & ; q,
\end{array}\right) .
$$

Proof. From the definition of $F_{1}(x, z)$ introduced in (11), we infer that

$$
\begin{align*}
F_{1}(x, z) & =\frac{x+1}{\alpha} \sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}}+\frac{2 \alpha(1-q)^{\delta}-(x+1)}{\alpha} \sum_{n=1}^{\infty} \frac{z^{n}}{[n+1]_{q}^{2}} \\
& =\frac{x+1}{\alpha} \sum_{n=0}^{\infty} \frac{z^{n}}{[n+1]_{q}}+\frac{2 \alpha(1-q)^{\delta}-(x+1)}{\alpha} \sum_{n=0}^{\infty} \frac{z^{n}}{[n+1]_{q}^{2}}-2(1-q) . \tag{18}
\end{align*}
$$

Since $[n+1]_{q}=\frac{\left(q^{2} ; q\right)_{n}}{(q ; q)_{n}}$, we have
$F_{1}(x, z)=\frac{x+1}{\alpha} \sum_{n=0}^{\infty} \frac{(q ; q)_{n}}{\left(q^{2} ; q\right)_{n}} z^{n}+\frac{2 \alpha(1-q)^{\delta}-(x+1)}{\alpha} \sum_{n=0}^{\infty} \frac{(q ; q)_{n}(q ; q)_{n}}{\left(q^{2} ; q\right)_{n}\left(q^{2} ; q\right)_{n}} z^{n}-2(1-q)$.
Hence, by using the definition of ${ }_{r} \phi_{s}$ from (1), the proof of the corollary is complete.
Putting $\delta=0$ into Remark 2 leads to the following corollary.
Corollary 4. The function $F_{2}(x, z)$ can be expressed in terms of the q-hypergeometric function as follows:

We now consider the Riemann-Liouville fractional q-integral and obtain the following corollary.

Remark 3. The function $F_{1}(x, z)$ can be expressed in terms of the Riemann-Liouville fractional q-integral as follows:
$F_{1}(x, z)=\frac{x+1}{\alpha} \int_{0}^{1} \frac{1}{1-t z} d_{q} t+\frac{2 \alpha(1-q)^{\delta}-(x+1)}{\alpha} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-v t z} d_{q} v d_{q} t-2(1-q)$

Proof. Since Equation (18) is satisfied, we have

$$
\begin{aligned}
F_{1}(x, z) & =\frac{x+1}{\alpha} \sum_{n=0}^{\infty} \int_{0}^{1} t^{n} d_{q} t z^{n}+\frac{2 \alpha(1-q)^{\delta}-(x+1)}{\alpha} \sum_{n=0}^{\infty} \int_{0}^{1} v^{n} d_{q} v \int_{0}^{1} t^{n} d_{t} z^{n} \\
& =\frac{x+1}{\alpha} \int_{0}^{1}\left(\sum_{n=0}^{\infty} t^{n} z^{n}\right) d_{q} t+\frac{2 \alpha(1-q)^{\delta}-(x+1)}{\alpha} \int_{0}^{1} \int_{0}^{1}\left(\sum_{n=0}^{\infty} v^{n} t^{n} z^{n}\right) d_{q} v d_{q} t .
\end{aligned}
$$

This completes the proof of the corollary.
Putting $\delta=0$ into Remark 3 leads to the following corollary.
Corollary 5. The function $F_{2}(x, z)$ can be expressed in terms of the Riemann-Liouville fractional q-integral in the following form:

$$
F_{2}(x, z)=\frac{x+1}{\alpha} \int_{0}^{1} \frac{1}{1-t z} d_{q} t+\frac{2 \alpha-(x+1)}{\alpha} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-v t z} d_{q} v d_{q} t-2(1-q) .
$$

Theorem 4. Let $0<|q|<1, \delta>0,0 \leq \beta \leq 1$, and $f \in \mathcal{P}_{q, \delta}(\beta)$. We define

$$
\begin{equation*}
K_{q}=\int_{0}^{1} \frac{d_{q} t}{1-t} \tag{19}
\end{equation*}
$$

If

$$
\beta \geq \frac{1-2 K_{q}}{2\left(1-K_{q}\right)}
$$

then $f \in \mathcal{P}_{q, \delta}(0)$, and, hence, it is univalent.
Proof. Let $\zeta>0$ and $\gamma>0$; we define

$$
\phi_{q}(z)=1+\sum_{n=1}^{\infty}[n+1]_{q} z^{n},
$$

and

$$
\begin{aligned}
\psi_{q}(z) & =1+\sum_{n=1}^{\infty} \frac{1}{[n+1]_{q}} z^{n}=1+\sum_{n=1}^{\infty} \int_{0}^{1} t^{n} d_{q} t z^{n} \\
& =\int_{0}^{1}\left(1+\sum_{n=1}^{\infty} t^{n} z^{n}\right) d_{q} t=\int_{0}^{1} \frac{1}{1-t z} d_{q} t .
\end{aligned}
$$

In view of these representations, we can write

$$
D_{q}^{\delta+1} I_{q}^{\delta} f(z)+q D_{q}^{\delta+2} I_{q}^{\delta} f(z)=D_{q}^{\delta+1} I_{q}^{\delta} f(z) * \phi_{q}(z)
$$

and

$$
\left(D_{q}^{\delta+1} I_{q}^{\delta} f(z)+q D_{q}^{\delta+2} I_{q}^{\delta} f(z)\right) * \psi_{q}(z)=D_{q}^{\delta+1} I_{q}^{\delta} f(z)
$$

Let $f \in \mathcal{P}_{q, \delta}(\beta)$. Then, by using Lemma 2, we may restrict our attention to the function $f \in P_{\zeta}(\beta, \gamma)$ for which

$$
(1-q)^{\delta}\left(D_{q}^{\delta+1} I_{q}^{\delta} f(z)+q D_{q}^{\delta+2} I_{q}^{\delta} f(z)\right)=\gamma(1-\beta) \frac{1+x z}{1-x z}+(1-\beta)(1-\gamma) \frac{1+y z}{1-y z}+\beta
$$

Thus, we obtain

$$
\begin{equation*}
(1-q)^{\delta} D_{q}^{\delta+1} I_{q}^{\delta} f(z)=\left(\gamma(1-\beta) \frac{1+x z}{1-x z}+(1-\beta)(1-\gamma) \frac{1+y z}{1-y z}+\beta\right) * \psi_{q}(z) \tag{20}
\end{equation*}
$$

Hence, Equation (20) is equivalent to

$$
\begin{align*}
(1-q)^{\delta} D_{q}^{\delta+1} I_{q}^{\delta} f(z) & =\left(\gamma \frac{1+x z}{1-x z}+(1-\gamma) \frac{1+y z}{1-y z}\right) *\left((1-\beta) \psi_{q}(z)+\beta\right) . \\
& =\left(\gamma \frac{1+x z}{1-x z}+(1-\gamma) \frac{1+y z}{1-y z}\right) *\left(\int_{0}^{1}\left((1-\beta) \frac{1}{1-t z}+\beta\right) d_{q} t\right) \\
& =\left(\gamma \frac{1+x z}{1-x z}+(1-\gamma) \frac{1+y z}{1-y z}\right) * G_{q}(z), \tag{21}
\end{align*}
$$

where

$$
G_{q}(z)=\int_{0}^{1}\left((1-\beta) \frac{1}{1-t z}+\beta\right) d_{q} t
$$

Therefore,

$$
\operatorname{Rel}\left(G_{q}(z)\right)=\int_{0}^{1}\left((1-\beta) \frac{1}{1-t}+\beta\right) d_{q} t=(1-\beta) k_{q}+\beta,
$$

where K_{q} is defined by (19). Note that if $\beta \geq\left(1-2 K_{q}\right) / 2\left(1-K_{q}\right)$, then $\operatorname{Re} G(z) \geq 1 / 2$. Functions with real parts greater than $1 / 2$ are known to preserve the closed convex hull under convolution [10], p. 23. Therefore, from (21), we have

$$
\begin{aligned}
(1-q)^{\delta} D_{q}^{\delta+1} I_{q}^{\delta} f(z) & =\gamma\left(\frac{2}{1-x z}-1\right) * G_{q}(z)+(1-\gamma)\left(\frac{2}{1-y z}-1\right) * G_{q}(z) \\
& =2 \gamma G_{q}(x z)-\gamma+2(1-\gamma) G_{q}(y z)-(1-\gamma) \\
& =2 \gamma G_{q}(x z)+2(1-\gamma) G_{q}(y z)-1 .
\end{aligned}
$$

In addition, since $\operatorname{Re}\left\{D_{q}^{\delta+1} I_{q}^{\delta} f(z)\right\}>0$, we have $f \in \mathcal{P}_{q, \delta}(0)$. This completes the proof of the theorem.

4. Conclusions

In this article, a new class of univalent functions was introduced by using RiemannLiouville fractional q-integrals and q-difference operators of non-integer orders. Then, some convolution results for such a class of univalent functions were obtained. In addition, two classes of normalized analytic functions in the unit disc were derived, and some conditions on q, δ, ζ, β, and γ were given so that the new classes satisfied $\mathcal{P}_{\delta, q}^{\zeta}(\beta, \gamma) \subset S_{q, \delta}^{*}(\alpha)$ and $\mathcal{P}_{\delta, q}(\beta) \subset S_{q, \delta}^{*}(\alpha)$.

The result obtained during this research can be further used for writing fractional differential and integral operators in order to extend the results of analytic functions.

Author Contributions: Conceptualization, M.F. and S.A.-O.; methodology, E.A.; formal analysis, E.A.; investigation, M.F.; resources, S.A.-O.; writing-original draft preparation, E.A.; writing-review and editing, S.A.-O.; writing-review and editing, M.F.; supervision, S.A.-O.; project administration, K.N.; funding acquisition, K.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: This research received funding support from the National Science 43 Research and Innovation Fund (NSRF) of Thailand.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Kac, V.; Cheung, P. Quantum Calculus (Universitext). In Softcover Reprint of the Original, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2001
2. Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281-300. [CrossRef]
3. Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193, 229-243. [CrossRef]
4. Tang, Y.; Zhang, T. A remark on the q-fractional order differential equations. Appl. Math. Comput. 2019, 350, 198-208. [CrossRef]
5. Srivastava, H.M.; Owa, S. Univalent Functions, Fractional Calculus, and Their Applications; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989.
6. Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193-203.
7. Al-Omari, S. Estimates and properties of certain q-Mellin transform on generalized q-calculus theory. Adv. Differ. Equ. 2021, 242, 1-11. [CrossRef]
8. Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15-27. [CrossRef]
9. Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183-1196. [CrossRef]
10. Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babes-Bolyai Mat. 2018, 63, 419-436. [CrossRef]
11. Purohit, S.D. A new class of multivalently analytic functions associated with fractional q-calculus operators. Fract. Differ. Calc. 2012, 2, 129-138. [CrossRef]
12. Aouf, M.K.; Mostafa, A.O. Subordination results for analytic functions associated with fractional q-calculus operators with complex order. Afr. Mat. 2020, 31, 1387-1396. [CrossRef]
13. Al-Omari, S. On a q-Laplace-type integral operator and certain class of series expansion. Math. Methods Appl. Sci. 2021, 240, 8322-8332. [CrossRef]
14. Amini, E.; Al-Omari, S.; Nonlaopon, K.; Baleanu, D. Estimates for Coefficients of Bi-Univalent Functions Associated with a Fractional q-Difference Operator. Symmetry 2022, 14, 879. [CrossRef]
15. Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36-44. [CrossRef]
16. Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequalities 2016, 1, 135-145. [CrossRef]
17. Özkan Uçar, H.E. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122-126. [CrossRef]
18. Al-Omari, S.; Baleanu, D.; Purohit, D. Some results for Laplace-type integral operator in quantum calculus. Adv. Differ. Equ. 2018, 124, 1-10. [CrossRef]
19. Al-Omari, S. On q-analogues of Mangontarum transform of some polynomials and certain class of H-functions. Nonlinear Stud. 2016, 23, 51-61.
20. Cheng, W.T.; Nasiruzzaman, M.; Mohiuddine, S.A. Stancu-Type Generalized q-Bernstein-Kantorovich Operators Involving Bézier Bases. Mathematics 2022, 10, 2057. [CrossRef]
21. Al-Omari, S. On q-analogues of the Mangontarum transform for certain q-Bessel functions and Some application. J. King Saud Univ. Sci. 2016, 28, 375-379. [CrossRef]
22. Al-Omari, S. q-analogues and properties of the Laplace-type integral operator in the quantum calculus theory. J. Inequalities Appl. 2014, 2020, 203. [CrossRef]
23. Srivastava, H.; Karlsson, P. Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985.
24. Al-Omari, S. The q-Sumudu transform and its certain properties in a generalized q-calculus theory. Adv. Differ. Equ. 2021, 2021, 10. [CrossRef]
25. Alotaibi, A.; Yaying, T.; Mohiuddine, S.A. Sequence Spaces and Spectrum of q-Difference Operator of Second Order. Symmetry 2022, 14, 1155. [CrossRef]
26. Chandak, S.; Suthar, D.; Al-Omari, S.; Gulyaz-Ozyurt, S. Estimates of classes of generalized special functions and their application in the fractional (k, s)-calculus theory. J. Funct. Spaces 2022, 2022, 9582879. [CrossRef]
27. Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Results on Univalent Functions Defined by q-Analogues of Salagean and Ruscheweh Operators. Symmetry 2022, 14, 1725. [CrossRef]
28. Srivastava, H. Operators of basic (or $q-$) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327-344. [CrossRef]
29. Al-Omari, S.; Suthar, D.; Araci, S. A Fractional q-integral Operator Associated with Certain Class of q-Bessel Functions and q-generating Series. Advan. Contin. Discr. Models Theo. Appli. 2021, 41, 1-13. [CrossRef]
30. Gasper, G. Basic Hypergeometric Series (Encyclopedia of Mathematics and its Applications), 2nd ed.; Series Number 96; Cambridge University Press: Cambridge, UK, 2004.
31. Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations, 1st ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2012.
32. Duren, P.L. Univalent Functions Grundlehren der Mathematischen Wissenschaften 259, 1983 ed.; Springer: Berlin/Heidelberg, Germany, 2001.
33. Graham, I. Geometric Function Theory in One and Higher Dimensions Pure and Applied Mathematics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019.
34. Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Math. Proc. Camb. Philos. Soc. 1969, 66, 365-370. [CrossRef]
35. Ruscheweyh, S. Convolutions in Geometric Function Theory; Gaetan Morin Editeur Ltee: Quebec, Canada, 1982.
36. Ruscheweyh, S. Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc. Trans. Am. Math. Soc. 1975, 210, 63-74. [CrossRef]
37. Ruscheweyh, S. Some convexity and convolution theorems for analytic functions. Math. Ann. 1978, 238, 217-228. [CrossRef]
38. Ponnusamy, S.; Ronning, F. Duality for Hadamard products applied to certain integral transforms. Complex Var. Theory Appl. Int. J. 1997, 32, 263-287. [CrossRef]
