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Abstract: Traditional indoor human activity recognition (HAR) has been defined as a time-series
data classification problem and requires feature extraction. The current indoor HAR systems still
lack transparent, interpretable, and explainable approaches that can generate human-understandable
information. This paper proposes a new approach, called Human Activity Recognition on Signal
Images (HARSI), which defines the HAR problem as an image classification problem to improve
both explainability and recognition accuracy. The proposed HARSI method collects sensor data
from the Internet of Things (IoT) environment and transforms the raw signal data into some visual
understandable images to take advantage of the strengths of convolutional neural networks (CNNs) in
handling image data. This study focuses on the recognition of symmetric human activities, including
walking, jogging, moving downstairs, moving upstairs, standing, and sitting. The experimental
results carried out on a real-world dataset showed that a significant improvement (13.72%) was
achieved by the proposed HARSI model compared to the traditional machine learning models. The
results also showed that our method (98%) outperformed the state-of-the-art methods (90.94%) in
terms of classification accuracy.

Keywords: machine learning; image classification; human activity recognition; convolutional neural
networks; Internet of Things

1. Introduction

Human activity recognition (HAR) is the task of correctly identifying human activities
(i.e., walking, eating, standing, and working) by analyzing sensor data collected by Internet
of Things (IoT) devices. It is useful for understanding the behavioral human patterns in an
IoT system. Our work focuses on human activity recognition in indoor environments.

The indoor HAR systems are important in many domains, such as assisted living and
healthcare [1,2], biometric user identification for security [3], wellbeing in smart homes [4],
evaluating employee performances in smart factories for Industry 4.0 [5], body motion
analysis in sports, and monitoring safety (falls, injuries, and collisions) [6,7] in an IoT
environment. Activity recognition is a significant indicator of participation, quality of life,
and lifestyle. Human activities carry a lot of information about the context (i.e., a person’s
identity, personality, and mental state) and help systems to achieve context-awareness. For
example, patient activity recognition is critical in analyzing treatment progress and can
provide context information for decision-making for better treatment and care. Similarly,
rehabilitation specialists and therapists can remotely benefit from information on patient
activities outside of a health center. Having detected the activities, a broad range of analyses
(i.e., activities by age group, by gender, by location, by day of the week) can be performed
to answer the questions of where and when users perform which types of activities. It can
help detect the abnormalities in surveillance systems, therefore preventing any unfavorable
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consequences. Using wearable sensors, HAR applications detect the actions of the users to
provide them with intelligent personal assistance and recommendation. In the military, it is
important to recognize the activities of the soldiers to provide feedback to their managers
that assist them in real time. Consequently, there are numerous potential computing
systems where recognizing human activities plays an important role.

One of the main problems associated with the current indoor HAR systems is that
they have been considered as black-box systems, using nonunderstandable sensor data
and providing predictions without being able to explain them. Without explainability
and transparency, an HAR model is not trustworthy for making real-world decisions,
especially the high-risk ones in the IoT systems. The main aim of this study is to provide
an interpretable, basic, and reliable approach to indoor HAR problems.

The main contributions of this study can be summarized as sixfold. (i) It proposes a
new approach, called Human Activity Recognition on Signal Images (HARSI), which converts
the time-series data to signal images and feeds them into a CNN for the image classification
task. (ii) It is the first attempt to combine four methodologies: signal image-based indoor
HAR, IoT, explainable artificial intelligence (XAI), symmetry, and deep learning (DL). (iii) It
provides an important contribution by improving human-level explainability for smart
sensor data by using signal images in the field of indoor HAR. (iv) It takes into consider-
ation symmetric human activities. (v) This study is also original in that it compares the
performances of different nine CNN architectures on signal image data in terms of accuracy
to determine the best one for indoor HAR. (vi) The proposed method outperformed both
the classical machine learning methods (13.72% improvement) and the state-of-the-art
methods (7.06% improvement) on the same dataset.

With quantitative evaluation in experiments, we demonstrated the effectiveness of
the proposed HARSI approach on a real-world dataset. The experimental results showed
that HARSI accurately recognized symmetric human activities, including walking, jogging,
standing, sitting, moving downstairs, and moving upstairs. The results also showed that a
significant improvement was achieved by the proposed HARSI method (98%) compared
to the traditional machine learning methods (84.28%) and the state-of-the-art methods
(90.94%) in terms of recognition accuracy.

The organization of the paper is as follows. Section 2 explains the recent previous
studies on HAR that use a deep learning technique. Section 3 describes the proposed
HARSI method in detail. Section 4 provides a brief description of the data and presents
the experimental results. This section also gives debates on the subject and explains our
solutions. Section 5 presents concluding remarks with the main findings and opportunities
for further research.

2. Related Work

Research in the field of HAR is becoming increasingly important with the rapid de-
velopment of smart sensor systems [8]. Especially, HAR is of great significance in the
Internet of Things (IoT) applications, which include sensor and communication technolo-
gies. Different sensor types have been utilized in the HAR systems, including wearable
sensors [9–13], vision-based sensors/cameras [14–16], health sensors [17], and environmen-
tal sensors [6,18,19]. The ambient sensor-based HAR applications detect activities from
the sensors that are installed at fixed locations (i.e., home, factory) or placed on a fixed
object (i.e., fridge, door, toilet flush). In this study, we focused on wearable sensors since
they provide many advantages such as privacy protection, wide coverage area, and high
robustness when modeling an activity classifier.

Wearable sensors are lightweight (few grams), small in size (few mm), easy to program,
and low cost. Using either a strap or an adhesive, they can be easily attached to many
different body parts (i.e., arm, waist, shoulder, wrist, or leg) depending on the human
activities being studied [11,20]. A pair of sensors can be symmetrically located on a
human body to collect synchronized measurements of them, allowing for the assessment
of symmetric human behaviors. The accelerometer (A) [21–24] is one of the widely used
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sensors to collect acceleration data related to human activity. Besides the accelerometer,
gyroscope (G) and magnetometer (M) sensors are attached to the body in various ways
for monitoring actions at a particular point in time. The combination of the sensors (A, G,
M) can also provide useful information when analyzed by machine learning methods to
recognize human activities [25]. Most HAR systems [26,27] have been currently developed
by smartphones; even other types of smart devices such as smartwatches, wristbands, and
smart glasses have also been successfully employed.

Deep learning (DL) is one of the most exciting technologies that implements symmetry
in computer science. In the literature, deep learning techniques have been proven to
be powerful in classification. The recent studies [1–32] on human activity recognition
that use deep learning technology are given in Table 1. A variety of DL methods have
been successfully used for HAR, such as recurrent neural networks (RNN) [24,26,28,29],
long short-term memory (LSTM) [22,23,30], autoencoder (AE) [4,20], deep neural network
(DNN) [1,9,13], and convolutional neural network (CNN) [31,32].

Table 1. Comparison of the recent HAR studies with our study.

Ref Year
Method

Description Sensor
Types Data Sensor

Location

Number
of Activi-

ties

Sensor-
Data-
Based

Signal-
Image-
Based

XAI
CNN DNN RNN LSTM AE

[8] 2022
√ √ √ Channel state information

(CSI) based HAR
Wireless
signal CSI Room 6

√
X X

[9] 2022
√ √ √

Gait pattern analysis A, G, M SG * Center of
mass 7

√
X X

[10] 2022
√

Personalization in HAR A, G, M

UniMiB
SHAR

Pocket

17

√
X XMotion

Sense 6

MobiAct 15

[11] 2022
√ √ HAR from

piezoelectric-based
kinetic energy signals

KEH
transducers KEH Hand,

waist 5
√

X X

[12] 2022
√ Feature extraction-based

approach A WISDM Pocket 6
√

X X

[13] 2022
√ √ √ Comparative study on

classifying human
activities

A, G UCI-
HAR Waist 6

√
X X

[14] 2022
√ √ Gesture recognition in

videos Camera SG Room 4
√

X X

[1] 2021
√ HAR from highly sparse

body sensor data A, RFID
Roomset1

Chest 4
√

X X
Roomset2

[2] 2021
√ √ √ Feature extraction-based

approach A, G, M UniMiB-
SHAR Pocket 17

√
X X

[3] 2021
√ √ Biometric user

identification A, G

UCI-
HAR

Waist

6
√

X XUSC-
HAD 12

[4] 2021
√ √ √

HAR in smart homes Env. sensors Orange4Home Room 24
√

X X

[5] 2021
√ √ Industry 4.0-oriented

approach A WISDM Pocket 6
√

X X

[6] 2021
√ √ Human pose and motion

estimation

Camera
SG Room

5 √
X X

Env. sensors 8

[15] 2021
√ √ Hybrid

deep-learning-based
model

Motion Kinect
sensor SG Room 12

√
X X

[16] 2021
√ HAR using skeleton

datasets
Camera

UTD-
MHAD

Room
27 √

X X
MSR-

Action3D 20
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Table 1. Cont.

Ref Year
Method

Description Sensor
Types Data Sensor

Location

Number
of Activi-

ties

Sensor-
Data-
Based

Signal-
Image-
Based

XAI
CNN DNN RNN LSTM AE

[17] 2021
√ Feature fusion-based

approach A, G, M MHEALTH
Ankle,
arm,
chest

12
√

X X

[18] 2021
√ √ Causality feature

extraction based
approach

Env. sensors

Aruba

Room

10
√

X XMilan 15

Cairo 13

[19] 2021
√ √ HAR based on the

Inception-ResNet
model

A, G UCI-
HAR Waist 6

√
X X

Env. and body
sensors Opportunity Room,

body 18

A Daphnet Legs, hip 2

A, G, M PAMAP2 Chest,
ankle 18

[20] 2021
√ √ Multiple domain DL

framework A, G, M SG Head,
wrist, leg 12

√
X X

[21] 2021
√ Feature-fusion-based

approach A, G
SG

Waist 6
√

X XUCI-
HAR

[22] 2021
√ √ Recognizing

transitional activities
A, G

HAPT
Waist

12 √
X X

HAD 5

[23] 2021
√ √ Optimal

deep-learning-based
approach

A, G

UCI-
HAR

Waist
6 √

X X
USC-
HAD 12

[24] 2021
√ √ HAR using time-series

data

A UniMiB
SHAR Pocket 17

√
X XA WISDM Pocket 6

A UCI-
HAR Waist 6

[25] 2021
√ HAR on

microcontrollers A, G, M PAMAP2
Hand,
chest,
ankle

12
√

X X

[26] 2021
√ √ √ Hybrid

deep-learning-based
approach

A, G UCI-
HAR Waist

6
√

X X
A WISDM Pocket

[27] 2021
√ Feature-fusion-based

approach A, G
SG Pocket

6
√

X XUCI-
HAR Waist

[28] 2021
√ √ √ Attention-based

mechanism

A, G HHAR
Hand,
chest,
ankle

6

√
X X

A, G, M PAMAP2 12

A, G USC-
HAD 12

[29] 2021
√ √ HAR using multimodal

sensors Multimodal CMU-
MMAC Room 11

√
X X

[30] 2021
√ Multimodal complex

HAR
A, G, M

Lifelog
Pocket,
wrist,
chest

9
√

X X

PAMAP2
Wrist,
arm,

chest,
18

[31] 2021
√ √ Hierarchical hybrid

deep-learning-based
approach

A, G
UCI-

HAPT Waist 12 √
X X

MobiAct Pocket 11

[32] 2021
√ Resource-constrained

HAR EMG sensors
Myo-TL Elbow,

wrist

9 √
X X

Db5 18

Our
Approach

√ Human activity
recognition on signal
images (HARSI)

A WISDM Pocket 6
√ √

* SG: self-generated.

In the literature, most HAR systems [33–77] applied a supervised learning method; on
the other hand, other types of machine learning, such as unsupervised or semisupervised
learning, have also been investigated. The most widely used classification methods in HAR
systems are decision trees [33–37,39,45,48,49], multilayer perceptron [33,34,41,46,48,49],



Symmetry 2022, 14, 2022 5 of 25

support vector machines [12,35,37–40,42,44,45], naive Bayes [37,45,46], logistic regres-
sion [33,34,39,48,49], k-nearest neighbors [35–37,42,45], AdaBoost [47], and random for-
est [12,35–39,43,50].

In the literature, most HAR studies [12,13,21] focused on the identification of daily
living activities such as standing, sitting, and walking. However, some previous studies
tried to detect more specific types of activities such as cheating activity in an exam [14],
rope jumping [25], shopping [30], housekeeping [18], hand-oriented activities (i.e., eating,
clapping, writing) [78], virtual reality (VR) users’ activities (slash, thrust, guard) [79], and
sports activities (i.e., basketball, bowling, boxing, and tennis) [16]. Besides these high-level
activities, some works [2,22] focused on the transitions between the activities, such as
sit-to-stand or stand-to-sit. In addition, recognizing group activities such as punching,
kicking, and pushing were also investigated in previous studies [80]. In this study, we built
a CNN model to recognize six different activities, including walking, jogging, standing,
sitting, moving downstairs, and moving upstairs.

Typically, an HAR framework contains the following stages: data collection, data
preprocessing, feature extraction, feature selection, training, performance evaluation, clas-
sification, and decision-making. Using raw sensor data directly in machine learning is
usually not practical since it does not carry sufficient information to distinguish different
human activities. In other words, only one particular value at a specific time instant of
an action does not carry enough information to describe an activity itself. For this reason,
the standard HAR studies involve the feature extraction phase to transform time-series
data into samples that summarize the data over a particular time period. In general,
frequency-domain features and time-domain features are extracted from the raw sensor
data, such as max, min, median, mean, peak-to-peak value, standard deviation, the number
of zero crossings, skewness, kurtosis, and signal entropy [10]. Among them, the skewness
informs about the symmetry of the signal. In the literature, some studies [17,21,27] mainly
concentrated on the feature extraction issue since it plays an important role in the final
system performance.

HAR models can be considered in two categories: per-subject (personalized) and cross-
subject (generalized) models. In per-subject models, both the training and testing data are
all from the same individual, since each person has unique characteristics of movements,
such as speed corresponding to its physical properties (i.e., age, gender, height, and weight)
and habits. On the other hand, in cross-subject models, the training and testing data come
from all the persons. They provide many advantages, such as working on a large amount of
data to build a robust classifier and dealing with a single classifier instead of multiple ones.

Our study differs from the studies aforementioned here in several aspects. In our study,
we do not use the features that were extracted from sensor data as most HAR systems do;
rather, we transfer time-series data into signal images that reflect the properties of activities.
Here, we present a detailed analysis of the performances of different CNN architectures on
human activity signal image data for the first time. Our aim is to provide an explainable
artificial intelligence (XAI) approach that can give human-understandable information
and prediction in an IoT system. In other words, in this study, we provide human-level
explainability for smart sensor data in the field of indoor HAR. To the best of our knowledge,
five concepts together (signal image-based indoor HAR, XAI, IoT, symmetry, and DL) have
not been studied so far.

3. Proposed Method
3.1. Problem Definition

Human activity recognition is a problem of classifying data obtained from sensors into
well-defined actions performed by humans, e.g., walking, jogging, and sitting. Recognition
of activities is a challenging time-dependent task since there is no single and precise way
or formula to define specific movements. Machine learning methods have played a major
role in the analysis of sensor data for providing real-time feedback in HAR applications.
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In an HAR system, an accelerometer sensor embedded in an IoT device is placed at a
specific location on the human body and is synchronized to emit data in an IoT environment.
The accelerometer measures three-dimensional acceleration referenced with the Earth’s
gravity during dynamic states. The sensor generates a signal along the x-axis, y-axis, and
z-axis at a time step t ε {1,2, . . . ,T}. Accelerometer measurements are collected in a time
interval for a person. For this sensor, the sensing data along time can be represented by a
multidimensional time series S = [s1, s2, . . . , st, . . . ] where st is the sensing signal of the
sensor placed at a body location at time t. Each signal record has six attributes {datetime,
sensorID, x-axis, y-axis, z-axis, activity}.

A single measurement is not enough to classify an activity because of the time-
dependent nature of activities. To deal with this problem, S is segmented into multiple
frames, called windows, and then, each frame is mapped into a predefined activity label.
In our study, temporal segmentation through the sliding window technique is necessary
to define the boundaries of signal images. Each image is annotated by an activity from a
label set, which is denoted by ai ε {A1, A2, . . . ., Am}, where m is the number of potential
activities to be recognized. For instance, the class labels can be as follows: A1 = walking,
A2 = sitting, and A3 = stairs.

The activity recognition problem can be described as follows. Given a recorded signal
time series S, the task is to detect an activity (e.g., walking) that infers human behavior
in a time period. In the proposed approach, time-series data are converted to images by
drawing three lines according to the recorded x–y–z values, and then, the images are fed
into a CNN for the image classification task.

The concept of symmetry has been considered in many topics; similarly, it can be
also discussed related to indoor human activity recognition. Figure 1 shows the example
of symmetric and asymmetric activities with respect to the y-axis or arms/legs positions.
Human activity such as walking can be considered as a symmetric movement depending on
the biped’s parameters such as slope angles. Similarly, a jogging activity is also symmetric
since the arm and legs are coordinated and moving together at the same frequency; i.e.,
the phase-plane cycles of the two legs are identical. Some group activities are also defined
as symmetric, such as shaking hands and hugging. Similarly, the activity “WalkTogether”
is symmetric because “I am walking together with you” is the same as “you are walking
together with me”. On the other hand, some activities, such as kicking, falling down,
pushing, picking up, and punching, can be categorized as asymmetric activities since
two legs or two arms do not move simultaneously at the same angle or at the regions on
symmetric sides.

Figure 1. Examples of symmetric and asymmetric activities.



Symmetry 2022, 14, 2022 7 of 25

3.2. Proposed Approach

In a traditional indoor HAR system, features are commonly extracted from time-
series sensor data by using statistical methods such as max, min, mean, peak-to-peak
value, standard deviation, the number of zero crossings, skewness, kurtosis, and entropy.
However, this input data cannot be interpretable by humans, as can be seen in Figure 2.
For humans, the numerical values such as in Figure 2 cannot be matched with the activities.
For instance, when the numeric feature vector [339, 27, 0.3, 0.4, 0.08, 0.06, 0.05, 0.07, . . . ] is
seen by a human, it cannot be directly associated with the “walking” activity since it lacks
visual representation.

Figure 2. An example of sensor data, which cannot be interpretable by humans.

To provide human-level explainability for smart sensor data, we propose an approach
that visualizes the data with charts, as can be seen in Figure 3. Generating signal images
makes data understandable for humans. Each chart can be easily associated with activities
by humans. For example, Figure 3b corresponds to the “jogging” activity since both
the amplitude and frequency of the signal are high as a result of the high velocity and
displacement of the person on the ground.

Figure 3. Cont.
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Figure 3. Explainable and understandable sensor data for each human activity.

Figure 3 shows sample signal images that include the x, y, and z axes values of an
accelerometer sensor (Ax (red), Ay (green), and Az (blue)) over time for each activity. The
activity images can be easily understandable, interpretable, and explainable by humans
since each one has different characteristics. For example, walking is more periodic than
standing. Jogging requires higher effort and power than walking since it requires more
intense muscle contractions. It can also be seen that very low x–y–z-values are observed
for sitting. Moreover, a human may require different relaxation times when moving
upstairs, and sometimes, he/she stops to have a rest, moves slowly, and spends more
time because he/she feels tired. The acceleration curve of moving downstairs is similar to
moving upstairs, but the cycle of motion is shorter. These observations are also consistent
with the energy harvesting from human activities. Sitting and standing activities are
nonperiodic since they are stable and straightforward postures, while other activities are
mainly repetitive and quasi-periodic. The walking activity is symmetric since the human
legs are coordinated and moving together at the same frequency and the phase-plane
cycles of the two legs are the same. Signal data show a symmetric pattern for some
human activities. For jogging activity, the signal amplitude is symmetric with the zero
axis. By using the differences in the figures, a CNN algorithm can successfully distinguish
the activities.

In this study, we do not extract features from raw sensor data as the traditional
HAR studies do. Instead, we assemble x-axis, y-axis, and z-axis accelerometer signal
sequences into an image to enable CNNs to learn the optimal features automatically from
the signal image for the human activity classification task. In other words, we propose an
approach, called HARSI, which transforms numerical sensor data into image format data
and builds a CNN model that enables human activity recognition on these signal images.
The main purpose of our study is to provide an interpretable and robust approach to indoor
HAR problems.

Figure 4 shows a general overview of the proposed HARSI approach. The approach
mainly includes the following stages: data collection, data transformation, training, testing,
and classification. (i) The data collection stage comprises obtaining raw signal values via an
accelerometer sensor available in an IoT environment when performing human actions.
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After that, the collected raw data are transferred to a server through WiFi communication
technology. (ii) In the data transformation stage, the time-series signal data are divided into
fixed-size segments, called windows, by using a sliding-window method. After that, an
image is generated for each window by drawing lines on sample values. Here, each signal
image corresponds to a single activity such as standing, sitting, or walking. (iii) In the
training stage, each signal image is fed to CNN as an input vector, and then CNN learns
different features of the image through different layers. (iv) In the classification stage, the
CNN model gives insight according to the features of the signal image. In other words, the
CNN model makes a prediction for a given input image according to the class probabilities
of activities, such as standing, sitting, jogging, walking, moving downstairs, and moving
upstairs. (v) In the testing stage, the performance of the CNN model is assessed by using a
test set to evaluate how well it recognizes human activities. If the prediction accuracy of
the CNN model is at an acceptable level (i.e., >80%), it can be further used to recognize
real-time human activities. Afterward, the final prediction can be considered in a decision
support stage to provide guidance to the decision-maker. Since the indoor environment of
HAR systems is dynamic and ever-evolving, it is required to update the model periodically
by following the same stages to achieve high accuracy consistently.

Figure 4. The general workflow of the proposed HARSI approach.

As seen in Figure 4, the CNN contains an input layer, multiple hidden layers, and an
output layer. Signal image data are processed layer-by-layer, where the output of each layer
becomes the input for the next layer. Each layer contains multiple units, which are denoted
by Ul

i to indicate the ith unit in layer l. The hidden layers are composed of convolutional,
pooling, and fully connected layers.

Convolutional layer (CL): These are used as feature extractors to automatically obtain
high-level representations of input images. Formally, a feature map is extracted using a
convolution procedure, as follows:

Fl+1
j = α

|Fl |

∑
i=1

Kl
j,iF

l
j + bl

j

 (1)

where Fl
j denotes the jth feature map in layer l, | Fl

∣∣∣ is the number of feature maps in layer

l, α() is an activation function, bl
j is a bias vector, and Kl

j,i represents the kernel applied on
feature map i in layer l to obtain jth feature map in layer (l + 1).

Pooling layer (PL): Pooling layers are used to reduce dimensionality, as well as the num-
ber of parameters. A PL is usually inserted between successive CLs in a CNN architecture.
Formally, max pooling is given by:

vl+1
i = max

1≤k≤r

(
vl

i+k

)
(2)
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where r is the pooling size and vl
i refers to the value of the ith unit in layer l.

Fully connected layer (FCL): After multiple CLs and PLs, the classification process is han-
dled in a fully connected layer, which produces an output vector, as given in Equation (3).

zl+1 = vl
iw (3)

where w represents a weight vector and vector z includes nonnormalized log probabilities.
The output of the FCL is fed into a softmax classifier, which predicts the activity label
as follows:

So f tmax(zi) = P(o = a | zi) =
ezi

∑m
j=1 ezj

(4)

Where a is an activity label, o denotes the output of the classification model, zj rep-
resents the jth element of log probability vector z, and m is the number of class labels.
The predicted activity label (al) for a given image is assigned to the one with the highest
probability, as given in Equation (5).

al ← argmaxm
a=1P(o = a | image) (5)

3.3. Formal Definition

Let the raw dataset D be a set of instances collected by an accelerometer sensor. Each
instance in dataset D includes a set of pairs of x–y–z axis values and the corresponding
activity label, which is denoted by D = {(x1, y1, z1, a1), (x2, y2, z2, a2), . . . ., (xn, yn, zn, an)},
where n is the number of instances. In other words, ai is the activity (class label) belonging
to the axes values of the sensor (xi, yi, zi). The output attribute O = {a1, a2, . . . , an} has m
different human activities, which is denoted by ai ε {A1, A2, . . . ., Am} for i = 1,2, . . . ,n. For
example, in a four-activity classification (sitting, standing, stairs, walking), the class labels
of the instances are A1 = sitting, A2 = standing, A3 = stairs, and A4 = walking.

In the proposed HARSI approach, the raw sensor data D are transformed into signal
images using a sliding window method. In this process, a large time-series dataset is split
into fixed-sized chunks, referred to as windows, denoted as W = (w1, w2, . . . , wn/q), where
q is the window size.

Definition 1 (window). A window is defined as a set of consecutive sensor measurements obtained
within a time interval such that w = {sr, sr+1, . . . , sr+q-1}, where q refers to the window size and r
corresponds to an arbitrary position, such as 1 ≤ r ≤ n-q+1, where n is the data size.

After generating windows, a single activity label ai ε {A1, A2, . . . ., Am} is assigned
to each window {(w1, ai), (w2, ai), . . . , (wn/q, ai)} such that all the samples within the
window belong to the respective class. After that, an image is generated for each window
by drawing lines on sample values. Each signal image is labeled with the corresponding
activity a.

Definition 2 (activity). An activity is a human movement characterized by a body action or
posture, e.g., walking. An activity label aiε {A1, A2, . . . ., Am} is associated with an image that is
generated from a window with fixed length (q) by segmenting the raw sensor data D, where m is the
number of potential activities to be recognized.

The problem studied in this work is to detect a corresponding activity implicated in a
certain temporal sequence based on the classification. In other words, the aim of HAR is
to build a model M(image, •) to infer the correct activity label for a given image, where •
denotes all the parameters to be learned during the training process.

Definition 3 (activity recognition task). Given a set of training images with their corresponding
activity labels and a query image, the aim is to find a mapping functionf: image→ activity that
correctly infers the human behavior for the query image. The predicted activity label should be as
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similar as possible to the actual class label. Therefore, the task is to build a classification model M by
minimizing total loss L(M).

It should be noted that a sliding-window method can be performed in either an
overlapping or nonoverlapping way. A nonoverlapping method indicates that the values
in one image do not intersect with the values of the other successive image, i.e., w1 ∩ w2 =
∅. On the other hand, an overlapping method is defined by a particular percentage, which
indicates how many samples from the previous image are repeated in the current image,
i.e., w1 ∩ w2 6= ∅. In this study, we prefer to use the nonoverlapping image technique to
prevent information duplication.

A crucial factor in a sliding window method is to select a suitable window size to
achieve high recognition accuracy since the ideal window size varies in accordance with
the characteristics of signals being processed. In general, a small window size can be
useful to detect faster-changing activities better; however, using short windows may lead
to misclassification because some vital information about a complex activity may not be
captured by multiple windows. On the other hand, large windows can detect complex
activities and semi-complex activities. However, a large window generates a signal image
that belongs to more than one human activity, and this leads to a decrease in recognition
accuracy. Considering this tradeoff, researchers usually determine the optimal window size
by trying empirical values and assessing classification accuracy. In this study, the size of
each window was set to 100 samples since the dataset was collected at a rate of 20 samples
per second, and it is a sufficient sampling value to make a reasonable prediction for human
activity.

Algorithm 1 shows the pseudocode of the proposed HARSI method. In the algorithm,
first, a sliding window technique is used to split accelerometer sensor data (D) into windows
with size q. In other words, it segments data streams into windows of equal length. For
a dataset with n samples, the algorithm generates n/q windows, where each one ranges
between I × q and I × q + q − 1 for i = 0, 1, . . . , n/q. After that, an image is generated for
each window by drawing lines on sample values. Here, a small window is shifted along
the continuous data stream, converting contiguous portions of sensor readings into images.
Each image is labeled with the corresponding activity. A CNN classifier M is then trained
on the signal image dataset. In the final step, the activity (class label) of each unseen image
in the test set T is predicted by using the classifier.

Algorithm 1. Human Activity Recognition on Signal Images (HARSI)

Inputs: D = {(x1, y1, z1, a1), (x2, y2, z2, a2), . . . ., (xn, yn , zn , an)}
q: window size
T: Test set

Output: O = {o1, o2, . . . , ot} a set of outputs for test images
Begin:

for i = 0 to n/q do
W = Ø
for j = i *q to i * q + q − 1 do

W = W U (xj, yj , zj ,)
activity = aj

end for
image = ConvertToImage(W)
I = I U <image, activity>

end for
M = CNN(I)
foreach image i in T do

o = Classify(M, i)
O = O U o

end foreach
Return O

End

4. Experimental Studies

This section presents a detailed study that was carried out to evaluate the performance
of the proposed HARSI method. The effectiveness of the method was demonstrated on
a real-world dataset by using different CNN architectures, including AlexNet, ResNet,
SqueezeNet, DenseNet, and VGG. The parameter settings and the number of parameters for
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each CNN architecture are given in Table 2. The structures of CNNs are different from each
other in several aspects, such as the number of parameters and the number of layers. For
instance, ResNet34 consists of a residual network with 34 layers. Compared to ResNet50,
the DenseNet121 has more layers, whilst VGG19 has fewer layers. Some parameter settings
are common in all models, i.e., rectified linear unit (ReLU) was used as activation function
and the output probability was calculated by softmax. As the nature of the models used,
batch layers predate each ReLU. In all models, Adam and cross entropy were used as the
optimizer and loss function, respectively. These techniques have lately gained popularity
and performed promising outcomes for deep learning applications.

Table 2. Parameter settings and the number of parameters.

Model Learning
Rate

Activation
Function Optimizer Loss

Function
Total

Parameters

Total
Trainable

Parameters

Total
Nontrainable
Parameters

HARSI-ResNet34 2 × 10−3

ReLU
(Rectified

Linear
Unit)

Adam
(Adaptive
Moment

Estimation)

Cross
Entropy

21,815,104 547,456 21,267,648
HARSI-ResNet50 6 × 10−4 25,617,472 2,162,560 23,454,912

HARSI-ResNet101 1 × 10−3 44,609,600 2,214,784 42,394,816
HARSI-AlexNet 2 × 10−3 2,736,960 267,264 2,469,696

HARSI-DenseNet121 4 × 10−4 8,010,624 1,140,416 6,870,208
HARSI-SqueezeNet_v1.0 2 × 10−3 1,265,856 530,432 735,424
HARSI-SqueezeNet_v1.1 1 × 10−3 1,252,928 530,432 722,496

HARSI-VGG16 1 × 10−3 15,253,568 538,880 14,714,688
HARSI-VGG19 2 × 10−3 20,565,824 541,440 20,024,384

In this study, optimal learning rate parameters were determined for each model sep-
arately to speed up the training process, adapt itself to the problem, and strengthen the
generalization ability of the classifiers. While a low learning rate slows the convergence
of the training process, a high learning rate can cause an unpleasant divergence in perfor-
mance. Therefore, a suitable learning rate is vital for obtaining a satisfactory performance;
however, finding an appropriate learning rate is both laborious and hard to decide. To solve
this problem, we used the lr_find() method in Fast.AI, which is a deep learning library built
on top of PyTorch. This method works on the principle of using a very low learning rate
initially to train a minibatch and calculate the loss. In the next step, the method trains the
next minibatch with a small-scale higher learning rate than the previous one until it finds a
learning rate where the model diverges. The optimal learning rate values determined for
each model are listed in Table 2.

One of the main differences between the CNN models is the number of parameters,
which can reflect the computational complexity of the model. It may be noted that as the
number of total parameters increases, the time required for training usually increases. There
are two categories of parameters: one is trainable parameters (i.e., weights of connections
between layers) that are continuously updated to reduce the loss, and the other one is
nontrainable parameters (i.e., biases) that are not optimized during the training process. For
instance, in VGG19 architecture, the number of trainable parameters is 541,440, while
the number of nontrainable parameters is approximately 20 million. As seen in Table 2,
SqueezeNet has the smallest total number of parameters, whilst ResNet101 has the largest.
The architectures have approximately 2, 15, and 25 million parameters for AlexNet, VGG16,
and ResNet50, respectively. These values may be associated with computational complexity,
where the higher the number of parameters, the greater the computational load during the
training process.

The method was implemented in Python by using the PyTorch framework and various
libraries such as Fastai, NumPy, Pandas, Scikit-Learn, Matplotlib, and Seaborn. In this
study, the CNN models were trained on a computer equipped with an Nvidia GTX 1060
graphics card using the Cuda toolkit in order to make use of the GPU computational
capability and reduce implementation time through a rapid and simple design.
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To demonstrate the superiority of the proposed approach (HARSI) over the previous
approaches, we compared it with the classical machine learning methods (SVM, DT, NB,
KNN, MLP, AdaBoost, and RF) [12,33–50] and also compared it with the state-of-the-art
methods [5,12,13,24,26,34,51–77] on the same dataset.

In this study, we split the dataset into two subsets: 80% of the data were used for
training and the remaining 20% were used for testing. This standard split approach was
chosen since it is common in the previous studies [5,71,72,74] that used the same dataset. In
order to provide comparability with the literature, the same split approach was preferred.
In addition, the training part of the data was divided into training and validation sets as
80% and 20%, respectively. The test set contains 100 images from each category; therefore, it
includes 600 images in total. Four different metrics were used to evaluate the performance
of each CNN architecture: accuracy, recall, precision, and f-measure. Accuracy is the
fraction of correct predictions of the model to total prediction. Equation (6) shows how the
accuracy rate is calculated.

Accuracy =
TP + TN

TP + FN + FP + TN
(6)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
Precision describes how precise the model is out of the samples predicted positive, and
how many of them are actually positive. Recall indicates how many of the actual positives
the model captures through classifying them as positive. F-measure offers a single score
that balances both the concerns of recall and precision values. Equations (7)–(9) show the
calculations of precision, recall, and f-measure values, respectively.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Fmeasure =
2× precision× recall

precision + recall
(9)

4.1. Dataset Description

In order to show the effectiveness of the proposed approach, a publicly available
dataset, named WISDM (Wireless Sensor Data Mining) dataset [33], was used in the ex-
periments. The dataset is available at the website https://www.cis.fordham.edu/wisdm/
dataset.php (accessed on 25 September 2022). It was released by the Laboratory at Ford-
ham University in the United States. This dataset is one of the important and popu-
lar large-scale benchmark datasets in the field of HAR. It has been used in many stud-
ies [5,12,13,24,26,33–77], so it is suitable for making comparisons with previous works.
The dataset is appropriate for detecting symmetric activities. Before collecting the data,
the researchers obtained approval from the University Board since it involved research
on human subjects and involved some risks, i.e., the subject could fall down while jog-
ging. The data collection process was fully monitored and guided by researchers in the
laboratory environment to ensure the quality of the data. The dataset contains routine
motion patterns with a significant number of processable movement samples. The dataset
has 1,098,207 samples that were collected from 36 different participants while performing
six activities. Therefore, it could possibly be used to analyze the movement behaviors of
different persons. The percentages of each activity in the dataset are as follows: jogging
31.2%, moving downstairs 9.1%, walking 38.6%, moving upstairs 11.2%, standing 4.4%, and
sitting 5.5%. There is no missing value in the dataset. While collecting data, the participants
are requested to carry an accelerometer sensor in their front pockets. They were asked to
jog, walk, descend stairs, ascend stairs, stand, and sit for specific periods of time. With
this experiment setup, accelerometer data were retrieved at every 50 ms, which means

https://www.cis.fordham.edu/wisdm/dataset.php
https://www.cis.fordham.edu/wisdm/dataset.php
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20 samples per second, while participants were performing activities. The raw dataset
consists of x-, y-, and z-axis values obtained by an accelerometer sensor embedded in a
smart device.

In this study, image representations were first generated from the raw x, y, and z
values in the accelerometer sensor data. In other words, we converted the time-series
data into signal images by drawing three lines on sample x, y, and z values. Here, a small
window was shifted along the continuous data stream converting contiguous portions
of sensor readings into images. In the generated images, x, y, and z drawing lines are
represented with different colors; red, green, and blue, respectively. While generating
charts from sensor data values, attention was paid to choosing a fixed range for all the
graphs. Accordingly, the max and min values were found by searching the x, y, and z
axes values in the dataset. The vertical range of the graph in each image approximately
lies between [–20, 20]. The horizontal range of the graph was set to 100 samples since the
dataset was collected at a rate of 20 samples per second, and therefore it is a sufficient range
to make a reasonable prediction for activity. Each image is labeled with the corresponding
activity, such as standing, sitting, or walking. To create a balanced dataset, 400 images were
generated for each activity; therefore, in total, 2400 images were generated. Figure 3 shows
sample signal images for each activity.

By transforming numerical sensor data into image data, we aim to improve both
explainability and recognition accuracy. The generated images provide human-level ex-
plainability for smart sensor data. Since each image reflects the properties of activities, they
can be easily interpretable by humans. Rather than solving a time-series data classification
problem, we define the HAR problem as an image classification problem. In this way, we
provide an interpretable and robust approach to HAR problems.

4.2. Comparison of Different CNN Architectures

On the dataset described in the previous section, the effectiveness of the proposed
approach (HARSI) was demonstrated by using different CNN architectures, including Alex
Network (AlexNet), Residual Network (ResNet), Visual Geometry Group (VGG) Network,
SqueezeNet, and Dense Convolutional Network (DenseNet). These CNN architectures
were selected because of their popularity, high robustness, proven efficiency, and ability in
image classification. They automatically extract features of images that are useful in the
identification of human activities. They use a gradient descent algorithm to optimize the
CNN parameters.

Table 3 shows the performance of the proposed HARSI method on different CNN
architectures for the same dataset. Based on the accuracy rates, it is possible to say that all
the CNN models have good classification ability. However, VGG19 is the most successful
model among them with a 98% of success rate. Following this, ResNet34 has also a
high accuracy rate (97.33%) in distinguishing human activities. This success is the result
of the strengths of CNNs in classifying images. CNNs are capable of extracting key
features directly and effectively from images, learning useful information layer-by-layer,
and successfully classifying them into different classes.

In addition to accuracy, we also evaluated the performance of the proposed HARSI
approach on different CNN architectures in terms of recall, precision, and f-measure metrics.
The values of these metrics range between 0 and 1, where 1 is the best value. As can be
seen in Table 3, the recall value obtained by the VGG19 model is closer to 1 than the others.
This means that the VGG19 model often tends to give better predictions than the rest. As
can be observed, the VGG16 model also outperformed the others in terms of precision
and f-measure.
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Table 3. The performance of the proposed HARSI method on different CNN architectures. The best
values are highlighted in bold.

Model Accuracy (%) Precision Recall F-Measure

HARSI-ResNet34 97.33 0.97433 0.97333 0.97326
HARSI-ResNet50 96.00 0.96054 0.96000 0.96006
HARSI-ResNet101 97.17 0.97194 0.97166 0.97161
HARSI-AlexNet 89.17 0.89018 0.89166 0.89077
HARSI-DenseNet121 96.67 0.96695 0.96666 0.96671
HARSI-SqueezeNet_v1.0 89.67 0.90025 0.89666 0.89725
HARSI-SqueezeNet_v1.1 93.00 0.92915 0.93000 0.92937
HARSI-VGG16 96.83 0.96871 0.96833 0.96826
HARSI-VGG19 98.00 0.97999 0.98000 0.97999

In Figure 5, the loss values in both the training and validation processes are shown.
While the vertical axis indicates the loss value, the horizontal axis represents the number
of batches processed. In initial batches, the training loss is higher than the validation loss.
As can be seen, both the training and validation losses reduce with the increase of the
batches. The training loss and validation loss converged after approximately 200 batches
were processed. When the minimum validation loss was obtained, the training process was
stopped to avoid overfitting.

Figure 5. Loss values in the training and validation processes.

Figure 6 presents the confusion matrix to show the predictive performance of the
proposed HARSI method on each human activity separately. The rows in the confusion
matrix represent the predicted activity labels, whereas the columns represent the actual
activity labels. Each cell in the matrix is a percentage value, indicating what percent of
the data belongs to the column class but is incorrectly classified as the row class. All
correctly classified samples are positioned on the diagonal of a confusion matrix, so, its
diagonal should contain the highest values possible, and all the other elements should
be close to zero. According to the matrix given in Figure 6, it is possible to say that the
model usually had no difficulty in distinguishing human activities. For example, 98 out of
100 walking activities were predicted correctly; however, only two of the walking activities
were misclassified by the classifier. Although each activity was recognized with a high
accuracy rate, downstairs and upstairs activities were slightly confused with each other
since they are similar activities. The algorithm produced an equal accuracy value (95%) for
moving upstairs and moving downstairs activities since they have similar characteristics
to others. It can be concluded from the confusion matrix that the best accuracies were
achieved in the sitting, standing, and jogging activities.
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Figure 6. Confusion matrix obtained by the proposed HARSI method.

Figure 7 shows the execution times of the proposed HARSI method on different
CNN architectures in minutes. Although all the times are close to each other, AlexNet
and SqueezeNet are the fastest ones among their counterparts. They are followed by the
ResNet34 model (1.11 min). The VGG models are also efficient in terms of training time
(1.19 and 1.24 min). The DenseNet model may take a longer time (1.28 min), especially
handling large image datasets. This is probably because of the higher number of layers in
its architecture. Similarly, the required time for training ResNet101 is higher than others
since it has a higher number of parameters to be assessed. The size and resolution of
the images are also factors that affect computation time. When the sizes of the images
are reduced by the resizing process, the time required for analyzing them decreases, and
therefore, the performance of the HAR system is positively affected.

Figure 7. The execution time of the proposed method on different CNNs.

4.3. Comparison with the Classical Machine Learning Methods

In order to show the superiority of our method, we compared it with the classical
machine learning methods such as multilayer perceptron (MLP), support vector machines
(SVM), decision tree (DT), naive Bayes (NB), logistic regression (LR), k-nearest neighbors
(KNN), AdaBoost, and random forest (RF). In order to make a plausible comparison, the
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most important factor is to use the same data. Therefore, the results obtained by the
classical machine learning methods on the same dataset [33] were used in the comparison.
Table 4 lists the related studies with their methods and the corresponding accuracy rates.
It can be seen from the table that the proposed HARSI method outperformed the other
methods [12,33–50] with a 13.72% improvement on average. Employing HARSI achieved
higher accuracy (98%) than the traditional machine learning models on the same dataset.

Table 4. Comparison of the proposed HARSI method against the classical machine learning methods
on the same dataset.

Ref. Year Method Accuracy (%)

[12] 2022
Support Vector Machines 87.40

Random Forest 86.10

[34] 2021

Decision Tree 82.00
Logistic Regression 68.00

Multilayer Perceptron 80.00
Neural Networks 94.00

[35] 2021

Decision Tree 89.76
Linear Discriminant Analysis 86.64

Gradients Boosting 89.65
K-Nearest Neighbors 92.54

Bagging 92.48
Random Forest 92.71

Linear Kernel SVM 78.55
RBF Kernel SVM 89.07

Polynomial Kernel SVM 92.48

[36] 2021

Random Forest 79.38
K-Nearest Neighbors 75.04

Decision Tree 77.60
Gradient Boosting 74.80

[37] 2020

Random Forest 83.35
Neural Networks 77.02
Decision Tree (J48) 75.96

Reduced-Error Pruning (REP) Tree 74.64
K-Nearest Neighbors 72.08

KStar 71.84
Naive Bayes 63.89

Support Vector Machines 55.45

[38] 2020
Random Forest 92.78

Support Vector Machines 91.39

[39] 2020

Neural Networks 89.10
Decision Tree 87.45

Support Vector Machines 95.13
Linear Support Vector Classifier 86.20

Logistic Regression 81.10
Random Forest 82.10

[40] 2020 Support Vector Machines 82.00

[41] 2020 Multilayer Perceptron 86.95

[42] 2019
K-Nearest Neighbors 92.00

Support Vector Machines 93.50
Bagging 93.80

[43] 2018
Random Forest 82.66

K-Nearest Neighbors 66.19

[44] 2018 Support Vector Machines 82.27
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Table 4. Cont.

Ref. Year Method Accuracy (%)

[45] 2018

Naive Bayes 80.12
Decision Tree 81.02

K-Nearest Neighbors 77.58
Support Vector Machines 80.93

[46] 2017

Naive Bayes Tree 87.70
Multilayer Perceptron 77.52

DT + LR + MLP 91.62
NB Tree + MLP 96.35

[47] 2016

AdaBoost + J48 97.83
AdaBoost + REP Tree 97.33

AdaBoost + Random Tree 95.69
AdaBoost + Random Forest 94.44
AdaBoost + Hoeffding Tree 87.84
AdaBoost + Decision Stump 57.31

[48] 2015

Decision Tree (J48) 86.08
Logistic Regression 77.52

Multilayer Perceptron 88.81
J48 + LR + MLP 91.62

[49] 2015

Decision Tree (J48) 92.40
Logistic Regression 84.30

Multilayer Perceptron 91.70
J48 + LR + MLP 93.00

[50] 2015
Neural Networks with Dropout 85.36

Random Forest 83.46

[33] 2010
Logistic Regression 78.10
Decision Tree (J48) 85.10

Multilayer Perceptron 91.70

Average 84.28

Our Approach Human Activity Recognition on Signal Images
(HARSI) 98.00

4.4. Comparison with the State-of-the-Art Methods

This section presents comparative results which highlight the performance of the
proposed method over the state-of-the-art methods in the literature. Table 5 shows the
performance improvement of our method over the state-of-the-art methods [5,12,13,24,26,
34,51–77]. The results were taken directly from the referenced studies since the researchers
used the same dataset [33] as our study. It can be seen from the table that the proposed
HARSI method outperformed the other methods with a 7.06% improvement on average.

Table 5. Comparison of the proposed HARSI method against the state-of-the-art methods on the
same dataset.

Ref. Year Method Accuracy(%)

[12] 2022
CNN—Transfer Learning 90.40

Convolutional Neural Networks 88.20

[5] 2021
CNN + Long Short-Term Memory 97.76

Long Short-Term Memory 96.61
Convolutional Neural Networks 94.51

[13] 2021 Deep Neural Networks 93.00

[24] 2021 Vanilla RNN + LSTM + GRU 97.13
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Table 5. Cont.

Ref. Year Method Accuracy(%)

[26] 2021

CNN + Random Forest 97.77
Deep Neural Networks 74.00

Deep Neural Networks + LSTM 81.00
Deep Neural Networks + Gated Recurrent Unit (GRU) 80.00

Convolutional Neural Networks 88.00
Convolutional Neural Networks + LSTM 94.00
Convolutional Neural Networks + GRU 82.00

[34] 2021 Deep Neural Networks 95.00

[51] 2021
Residual Network 95.66

Convolutional Neural Networks 92.19

[52] 2021 Deep Convolutional Neural Networks 91.25

[53] 2021
1D Convolutional Neural Networks 91.12
1D CNN + Fuzzy Neural Network 92.96

[54] 2021
Ensemble of Autoencoders (EAE) 82.00

KNN + Very Fast Decision Tree + Naive Bayes (EkVN) 73.00

[55] 2021 NOvelty discrete data stream for Human Activity
Recognition (NOHAR) 93.00

[56] 2021 Deep Convolutional Neural Networks Ensemble 89.01

[57] 2021 Convolutional AutoEncoder (CAE) 95.60

[58] 2021
Convolutional Neural Networks 95.00

Long Short-Term Memory 97.50

[59] 2020 Convolutional Neural Networks 93.25

[60] 2020
Deep Convolutional Neural Networks 94.18

Region-based CNN 93.68

[61] 2020 CNN—DenseNet 94.65

[62] 2020 Bidirectional Long Short-Term Memory 94.10

[38] 2020 Genetic algorithm-based classifier 95.37

[39] 2020
Convolutional Neural Networks 83.98

Long Short-Term Memory 95.45

[63] 2020 LSTM–Convolutional Neural Networks 95.75

[64] 2020 Lightweight Recurrent Neural Network—LSTM 95.78

[65] 2020 Multihead Convolutional Attention 95.40

[66] 2020 Two-Stage End-to-end CNN with data augmentation
(TSE + CNN + Aug) 95.70

[41] 2020

Gramian Angular Field + Multidilated Kernel Residual
Network 96.83

Long Short-Term Memory 87.53
1D Convolutional Neural Network 93.66

[6] 2020 EnsemConvNet (CNN-Net + Encoded-Net +
CNN-LSTM) 97.20

[68] 2020 Convolutional Neural Networks 97.51

[69] 2020
Convolutional Neural Networks 94.11

Residual Network 95.72
Residual Network of Residual Network 96.73

[40] 2020
Convolutional Neural Networks 81.70

Recurrent Convolutional Network (RCN) 94.00
Recurrent Convolutional Network + SVM 91.50
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Table 5. Cont.

Ref. Year Method Accuracy(%)

[70] 2019

U-Net 96.40
Mask Region-based CNN (R-CNN) 86.20

SegNet: A Deep Convolutional Encoder-Decoder Arch. 95.70
Full Convolutional Network (FCN) 87.90

Deep Convolutional and LSTM 94.80
Long Short-Term Memory 93.80

Convolutional Neural Networks 94.10

[71] 2019 LSTM–Recurrent Neural Networks 93.81

[42] 2019

Supervised Regularization-based Robust
Subspace (SRRS) 93.50

Robust Principal Component Analysis 85.70
Latent Low-Rank Representation (LLRR) 91.90

Joint Embedding Learning and Sparse
Regression (JELSR) 73.40

Principal Component Analysis (PCA) 92.30
Linear Discriminant Analysis (LDA) 71.50

[72] 2019 Long Short-Term Memory 97.00

[44] 2018 Convolutional Neural Networks 91.97

[45] 2018 Multivariate Bag-Of-SFA-Symbols 83.35

[73] 2018 Deep Autoencoder-Set Network 94.90

[74] 2018 Long Short-Term Memory 97.00

[43] 2018 Convolutional Neural Networks 93.32

[75] 2017 Impersonal Smartphone-based Activity
Recognition (ISAR) 75.21

[76] 2016 Long Short-Term Memory 92.10

[77] 2015 STream learning for mobile Activity
Recognition (STAR) 71.20

Average 90.94

OurApproach Human Activity Recognition on Signal Images
(HARSI) 98.00

4.5. Discussion

The main debates in the field of HAR and our solutions can be summarized as follows.

• In HAR, the ideal input data format is still a subject of much debate and there are
various ongoing works for improving the accuracy of the models. Traditional HAR
has been defined as a time-series data classification problem and requires feature
extraction. In contrast, we transfer time-series data into signal images that reflect
the properties of human activities. It avoids the need to perform an explicit feature
generation and selection stage. We improved accuracy by working on signal image
data, instead of numerical time-series data.

• Many applications in HAR [33–50] have used classical machine learning methods
such as DT, SVM, MLP, NB, LR, KNN, and RF. However, the performance of these
methods is still highly debated. In this study, we take advantage of the strengths of
deep learning approaches.

• Another debate is how to design CNN architecture to be able to obtain good perfor-
mance. For example, the number of layers and parameter settings are still subjects
of much debate. In this study, we compared nine different CNN architectures to
determine the best suitable one.

• In the activity recognition community, there is an open debate on providing explain-
ability in the HAR systems. The main problem is how to increase the transparency



Symmetry 2022, 14, 2022 21 of 25

and interpretability of the models. In this study, to increase human-level explain-
ability, we visualize the data with charts since generating signal images makes data
understandable for humans.

• Another ongoing debate is which activities can be predicted more precisely. This study
showed that the best accuracies were achieved in the sitting, standing, and jogging
activities due to their diverse natures.

• The proposed HAR model can be connected to many different fields of study such as
health monitoring, fitness tracking, home and work automation, and self-managing
system. With the rapid technological developments in smartphones, the model can en-
able new opportunities for developing informative systems on a large scale to perceive
and act on what users (i.e., your children, elderly mother, or sick family member) are
doing. Recognizing human activities is important for the treatment of patients and can
provide useful feedback to the clinicians since the activity is associated with health. For
example, it can be used to monitor patients in rehabilitation since the functional status
of a person is an important parameter in this area. In addition, it could be used to offer
activity-aware services to smartphone users, such as movement recommendations. A
number of lifestyle diseases and movement disorders are associated with inactivity;
therefore, our model can be used to give information to prevent diseases. The users
can participate in the tracking of their activities for the sake of health, fitness, or other
purposes due to its strength in providing personalized support.

5. Conclusions and Future Works

Classical HAR has been defined as a standard data classification problem and extracts
statistical features (i.e., min, max, skewness, kurtosis) from data, which cannot be readable
and interpretable by humans. Transparent and explainable indoor HAR systems are
required to generate human-understandable information. For this purpose, an approach,
called Human Activity Recognition on Signal Images (HARSI), is proposed in this study.
The proposed approach creates image representations of the time-series sensor data to
improve both explainability and recognition accuracy. This is the first attempt to combine
five methodologies: signal image-based indoor HAR, XAI, IoT, symmetry, and DL. It takes
advantage of the strengths of CNNs in handling signal image data. In the experimental
studies, we demonstrated the effectiveness of the proposed HARSI approach compared to
the previous studies on a real-world dataset.

The main findings of the study can be concluded as follows:

• The proposed approach improves human-level explainability for smart sensor data by
using signal images in the field of HAR.

• The proposed HARSI approach improves the recognition accuracy in the HAR prob-
lems by converting time-series data to image data.

• The experimental results showed that HARSI successfully (98%) recognized six sym-
metric human activities, including walking, jogging, standing, sitting, moving down-
stairs, and moving upstairs.

• According to the experimental results, it can be concluded that the best suitable and
consistent CNN model for the WISDM dataset is VGG19. It achieved the best results
on all the metrics (accuracy, precision, recall, and f-measure). Therefore, this model
can be successfully used to identify human activities.

• The prediction accuracy changes according to human activities. Among the activities,
sitting, standing, and jogging were correctly predicted by the proposed method. On
the other hand, the model had a little difficulty in classifying downstairs and upstairs
activities with an accuracy of 95% for the WISDM dataset.

• The number of layers and number of parameters of a CNN model may be associated
with computational complexity, where the higher the number of layers and parameters,
the greater the computational load during the training process.
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• A significant improvement (13.72% on average) was achieved by the proposed HARSI
model compared to the classical machine learning methods such as KNN, DT, SVM,
NB, LR, MLP, AdaBoost, and RF.

• Our approach achieved higher classification accuracy than the state-of-the-art ap-
proaches. It outperformed them by 7.06% on average on the same dataset.

• The proposed HARSI approach has the potential to expand the application of machine
learning in many different sectors, thanks to its advantages.

One limitation of this study is related to sensors such as signal delays, noises, damages,
battery capacity, and shelf-life. However, this limitation is also valid for all other wearable
sensor-based HAR applications. It can be overcome in the future with developments in
sensor technology. Another limitation is that it focuses on single-person activity detection.
In the future, we plan to adapt it for recognizing group activities such as handshaking
and hugging.
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