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Abstract: Incomplete Cauchy-type problems are considered for linear multi-term equations solved
with respect to the highest derivative in Banach spaces with fractional Riemann–Liouville derivatives
and with linear closed operators at them. Some new existence and uniqueness theorems for solutions
are presented explicitly and the analyticity of the solutions of the homogeneous equations are also
shown. The asymmetry of the Cauchy-type problem under study is expressed in the presence of a
so-called defect, which shows the number of lower-order initial conditions that should not be set
when setting the problem. As applications, our abstract results are used in the study of a class of
initial-boundary value problems for multi-term equations with Riemann–Liouville derivatives in time
and with polynomials of a self-adjoint elliptic differential operator with respect to spatial variables.

Keywords: Riemann–Liouville fractional derivative; incomplete Cauchy-type problem; multi-term
fractional differential equation; defect of Cauchy-type problem; analytic solution in a sector; initial-
boundary value problem
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1. Introduction

A linear multi-term fractional equation

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t) + f (t) (1)

is investigated in this work, where Dγ
t is the Riemann–Liouville derivative with γ > 0,

Jγ
t is the Riemann–Liouville integral, m− 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α,

ml − 1 < αl ≤ ml ∈ N, αl − ml 6= α − m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0,
f ∈ C((0, T); D) ∩ L1(0, T; D), operators Aj, j = 1, 2, . . . , m − 1, Bl , l = 1, 2, . . . , n, Cs,
s = 1, 2, . . . , r, are linear and closed with dense domains in the Banach space Z , and the
intersection D of which are also dense in the space Z and equipped with the sum of the
norms of the graphs of these operators.

In the case Z = R issues of the unique solvability of the Cauchy-type problem

Dα−m+k
t z(0) = zk, k = 0, 1, . . . , m− 1, (2)

for Equation (1) were investigated in [1–7] under various constraints on αn. It is shown
in [6] that this problem is uniquely solvable if and only if αn < α−m + 1. In [8], it is shown
that for Equation (1), generally speaking, only the incomplete Cauchy-type problem
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Dα−m+k
t z(0) = zk, k = m∗, m∗ + 1, . . . , m− 1, (3)

can be solved. Here m∗ is a number defined by a set of orders of derivatives α, α1, α2, . . . ,
αn, it is called the defect of the Cauchy type problem. If a solution of (1) and (2) exists, then
Dα−m+k

t z(0) = 0 for k = 0, 1, . . . , m∗ − 1. This is the asymmetry of the studied Cauchy-type
problem. In [8], the unique solvability of the incomplete Cauchy-type problem (1) and (3)
is proved in the case of bounded operators Aj, j = 1, 2, . . . , m− 1, Bl , l = 1, 2, . . . , n, Cs,
s = 1, 2, . . . , r, at f ∈ C((0, T);Z) ∩ L1(0, T;Z).

In this paper, a class An,r
α (θ0, a0) of tuples of linear closed, densely-defined operators

is introduced into consideration, θ0 ∈ (π/2, π), a0 ≥ 0. It is shown that belonging of
operators to this class implies the existence of a unique classical solution of the problem (1)
and (3), which at f ≡ 0 can be analytically continued into the sector {t ∈ C : | arg t| <
θ0 − π/2, t 6= 0}. Proposed class An,r

α (θ0, a0) generalizes the class of operators Aα(θ0, a0)
(see [9,10]), into which it passes if Aj = Bl = Cs = 0, j = 1, 2, . . . , m− 1, l = 1, 2, . . . , n,
s = 1, 2, . . . , r− 1, βr = 0, and Cr is a linear closed operator with a dense domain in Z . The
unique solvability of the Cauchy-type problem for linear and nonlinear equations with the
Riemann–Liouville derivative and with an operator from Aα(θ0, a0) in the right-hand side
was studied in [11–15]. We also note the works [16,17], in which the initial problems for
multi-term equations of form (1) with the Gerasimov–Caputo derivative were investigated.

This paper is organized as follows. In Section 2, the definitions for the fractional
Riemann–Liouville derivative and integral, for the classical solution of the considered
incomplete Cauchy-type problem and for the defect m∗ of the Cauchy-type problem are
given. In Section 3, the class An,r

α (θ0, a0) of tuples of operators is defined and the existence
and uniqueness of a classical solution for problem (1) and (3) is proved in the case of

(A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) ∈ An,r
α (θ0, a0)

and f ≡ 0. The solution is presented explicitly using the Laplace transform technique.
In Section 4, this result is extended to the case of inhomogeneous Equation (1) with
f ∈ C((0, T); D) ∩ L1(0, T; D). Finally, in Section 5, the obtained results are used for
the statement and the investigation of the unique solvability of a class of initial-boundary
value problems for equations with several Riemann–Liouville derivatives in time and with
polynomials of a self-adjoint elliptic differential operator with respect to spatial variables.
A nontrivial example illustrating our results is also given. In contrast to the results of
work [8] on the problem (1) and (3) with bounded operators, in this case the equations are
considered, in which the degrees of polynomials at lower fractional derivatives in time can
exceed the degree of the polynomial at the highest time-derivative.

2. Incomplete Cauchy Type Problem and Its Defect

Let Z be a Banach space, L(Z) denote the Banach space of linear bounded operators
in Z , and by C l(Z) the set of linear closed operators with dense domains in Z be denoted,
R+ := {a ∈ R : a > 0}, R+ := R+ ∪ {0}, h : R+ → Z . For β > 0 let gβ(t) := tβ−1/Γ(β) at
t > 0,

Jβ
t h(t) := (gβ ∗ h)(t) :=

t∫
0

gβ(t− s)h(s)ds =
1

Γ(β)

t∫
0

(t− s)β−1h(s)ds.

By J0
t , we denote the identity operator. Let α > 0, m be the smallest integer, which is

greater or equal α, Dm
t be the usual derivative of the order m ∈ N, and Dα

t be the fractional
Riemann–Liouville derivative, i.e., Dα

t h(t) = Dm
t Jm−α

t h(t). At β < 0, we will use the
notation Dβ

t h(t) := J−β
t h(t).

By L[h], we denote the Laplace transform of a function h : R+ → Z , and by L−1[H]
the inverse Laplace transform of a function H : Ω→ Z , Ω ⊃ {µ ∈ C : Reµ > ω} at some
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ω ∈ R, is denoted. The Laplace transforms of the fractional Riemann–Liouville integral and
the fractional Riemann–Liouville derivative, respectively satisfy the following equalities

L[Jα
t h](λ) = λ−αL[h](λ)

and

L[Dα
t h](λ) = λαL[h](λ)−

m−1

∑
k=0

λm−1−kDα−m+k
t h(0),

where Dα−m+k
t h(0) := lim

t→0+
Dα−m+k

t h(t). For further details, see [18] and references therein.

Let m − 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0. Denote

α := max{αl : l ∈ {1, 2, . . . , n}, αl −ml < α, m},

and
α := max{αl : l ∈ {1, 2, . . . , n}, αl −ml > α−m}.

We define
m = dαe and m = dαe,

where d·e indicates the ceiling function.

Remark 1. Note that for integers αl we have αl = ml , so they always fall into the second group,
provided that α is not an integer, otherwise the second group is empty; in the first group there are
fractional numbers only. Therefore, by construction it is always α < m, m < m (otherwise there
will be αl , greater than α). If any of the sets, which determine the numbers α, α, is empty, we put by
definition the corresponding value m or m equal to zero.

In this paper, we consider a linear multi-term fractional differential equation

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t), t ∈ R+, (4)

where Aj ∈ C l(Z), j = 1, 2, . . . , m − 1, Bl ∈ C l(Z), l = 1, 2, . . . , n, Cs ∈ C l(Z), s =
1, 2, . . . , r, i.e., closed linear operators with domains DA1 , DA2 , . . . , DAm−1 , DB1 , DB2 , . . . , DBn ,
DC1 , DC2 , . . . , DCr , respectively. A function z : R+ → Z is called a solution of Equation (4),
if Jm−α

t z ∈ Cm(R+;Z), Jm−α
t z ∈ Cj(R+; DAj), j = 1, 2, . . . , m− 1, Jml−αl

t z ∈ Cml (R+; DBl ),

l = 1, 2, . . . , n, Jβs
t z ∈ C(R+; DCs), s = 1, 2, . . . , r, and equality (4) holds for t ∈ R+.

For the equation, consider the Cauchy-type problem:

Dα−m+k
t z(0) = zk, k = 0, 1, . . . , m− 1. (5)

The following statements were proved in [8].

Corollary 1. If α > αl , αl − ml > α − m for some l ∈ {1, 2, . . . , n} and for some k ∈
{0, 1, . . . , ml − 1} lim

t→0+
Dαl−ml+k

t z(t) 6= 0, then there is no solution to problem (4) and (5).

Corollary 2. If α > αl , αl − ml < α − m for some l ∈ {1, 2, . . . , n} and for some k ∈
{0, 1, . . . , ml − 1} lim

t→0+
Dαl−ml+k

t z(t) 6= 0, then there is no solution to problem (4) and (5).

Corollary 3. If α > 1 and zk 6= 0 for any k ∈ {0, 1, . . . , m − 2}, then there is no solution to
problem (4) and (5).
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Corollary 4. If α > 0 and zk 6= 0 for any k ∈ {0, 1, . . . , m − 1}, then there is no solution of
problem (4) and (5).

By applying results presented above, one can easily see that there exists a solution of
problem (4) and (5), only if

Dα−m+k
t z(0) = 0 for k = 0, 1, . . . , m∗ − 1

and
Dγ

t z(0) = 0 for γ ∈ Λ,

where Λ := {α1 − 1, α1 − 2, . . . , α1 −m1, α2 − 1, α2 − 2, . . . , αn −mn}. Therefore, for Equa-
tion (4) it makes sense to consider only, generally speaking, the incomplete Cauchy-
type problem

Dα−m+k
t z(0) = zk for k = m∗, m∗ + 1, . . . , m− 1, (6)

where m∗ := max{m− 1, m} is the so-called defect of the Cauchy-type problem [8], which
is determined by the set of numbers α, α1, α2, . . . , αn and characterizes the number of the
lower initial conditions omitted in the incomplete problem. It is not difficult to make sure
that 0 ≤ m∗ ≤ m− 1 (see [8]).

3. Analytic in a Sector Solutions of a Homogeneous Equation

Let A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr be closed linear operators with do-
mains DA1 , DA2 , . . . , DA1 , DB1 , DB2 , . . . , DBn , DC1 , DC2 , . . . , DCr respectively. Denote:

D :=
m−1⋂
j=1

DAj ∩
n⋂

l=1

DBl ∩
r⋂

s=1

DCs ,

and

Rλ :=

(
λα I −

m−1

∑
j=1

λα−m+j Aj −
n

∑
l=1

λαl Bl −
r

∑
s=1

λ−βs Cs

)−1

: Z → D.

We supply the set D with the norm

‖ · ‖D = ‖ · ‖Z +
m−1

∑
j=1
‖Aj · ‖Z +

n

∑
l=1
‖Bl · ‖Z +

r

∑
s=1
‖Cs · ‖Z ,

with respect to which D is a Banach space, since it is the intersection of the Banach
spaces DA1 , DA2 , . . . , DAm−1 , DB1 , DB2 , . . . , DBn , DC1 , DC2 , . . . , DCr with the corresponding
graph norms.

Definition 1. A tuple of operators (A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) belongs
to the class An,r

α (θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0, if

(i) D is dense in Z ;
(ii) For all λ ∈ Sθ0,a0 := {µ ∈ C : | arg(µ− a0)| < θ0}, p = 0, 1, . . . , m− 1, operators:

Rλ ·
(

I −
m−1

∑
j=p+1

λj−m Aj

)
∈ L(Z)

exist;
(iii) For any θ ∈ (π/2, θ0), a > a0, there exists such a K(θ, a) that for all λ ∈ Sθ,a, p =

0, 1, . . . , m− 1, we have∥∥∥∥∥Rλ ·
(

I −
m−1

∑
j=p+1

λj−m Aj

)∥∥∥∥∥
L(Z)

≤ K(θ, a)
|λ− a||λ|α−1 .
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Remark 2. It immediately follows from condition (ii) that Rλ ∈ L(Z) (take p = m− 1) and
Rλ Ap ∈ L(Z) for all p = 0, 1, . . . , m− 1, since

Rλ ·
(

I −
m−1

∑
j=p+1

λj−m Aj

)
− Rλ ·

(
I −

m−1

∑
j=p

λj−m Aj

)
= λp−mRλ Ap.

Note also that the inequality in (iii) at p = m− 1 has the form

‖Rλ‖L(Z) ≤
K(θ, a)

|λ− a||λ|α−1 .

Remark 3. When βr = 0, the condition (0, . . . , 0, Cr, 0, . . . , 0) ∈ An,r
α (θ0, a0) is satisfied, if and

only if Cr ∈ Aα(θ0, a0) (see works [9–15]), at α = 1 such an operator is called sectorial [19,20].

Theorem 1. Let m − 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 <
αl ≤ ml ∈ N, αl − ml 6= α − m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈
C l(Z), j = 1, 2, . . . , m − 1, Bl ∈ C l(Z), l = 1, 2, . . . , n, Cs ∈ C l(Z), s = 1, 2, . . . , r,
(A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) ∈ An,r

α (θ0, a0), zk ∈ D, k = m∗, m∗ + 1, . . . ,
m− 1. Then there exists a unique solution to problem (4) and (6), and it has the form

z(t) =
m−1

∑
p=m∗

Zp(t)zp,

where:

Zp(t) =
1

2πi

∫
Γε,r0

λm−αRλ

(
λα−1−p I −

m−1

∑
j=p+1

λα−m−1+j−p Aj

)
eλtdλ,

Γε,r0 := Γ+
ε,r0
∪ Γ−ε,r0

∪ Γ0
ε,r0

, Γ0
ε,r0

:= {λ ∈ C : |λ− a0− ε| = r0 > 0, arg λ ∈ (−θ0 + ε, θ0− ε)},
Γ±ε,r0

:= {λ ∈ C : arg(λ− a0 − ε) = ±(θ0 − ε), |λ− a0 − ε| ∈ [r0, ∞)}, ε ∈ (0, θ0 − π/2),
r0 > 0. Moreover, the solution can be analytically continued in the sector {t ∈ C : | arg t| <
θ0 − π/2, t 6= 0}.

Proof. Note that by virtue of Definition 1 for λ ∈ Γε,r0 ,∥∥∥∥∥λm−αRλ

(
λα−1−p I −

m−1

∑
j=p+1

λα−m−1+j−p Aj

)∥∥∥∥∥
L(Z)

≤ K(θ0 − ε, a0 + ε)|λ|m−α−p

|λ− a0 − ε| .

Consider the integral defining Zp(t) for t > 0, on the part Γ+
ε,r0

of the contour Γε,r0 ,
take λ = a0 + ε + rei(θ0−ε) and get an upper bound for the norm of this integral at p = 0,
we then obtain

c1e(a0+ε)t
+∞∫
r0

rm−α−1er cos(θ0−ε)tdr ≤ c1e(a0+ε)t
+∞∫

tr0c2

τm−α−1e−τ

tm−αcm−α
2

dτ

≤
c1cα−m

2 Γ(m− α)e(a0+ε)t

tm−α
,

where c2 = | cos(θ0 − ε)|. For p = 1, 2, . . . , m− 1, we get

c1e(a0+ε)t
+∞∫
r0

rm−α−1−pe−c2rtdr ≤
c1rm−α−p

0 e[(a0+ε)−c2r0]t

α−m + p
.
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On Γ−ε,r0
, we have similar inequalities. Such an estimate for the norm of the integral on

the part Γ0
ε,r0

of the contour is obtained after substituting λ = a0 + ε + r0eiϕ and have the
form at p = 0, 1, . . . , m− 1,

c1rm−α−1−p
0 e(a0+ε)t

θ0−ε∫
−θ0+ε

etr0 cos ϕdϕ ≤ 2πc1rm−α−1−p
0 e(a0+ε+r0)t.

As a result,

‖Z0(t)‖L(Z) ≤
Ce(a0+ε)t

tm−α
, ‖Zp(t)‖L(Z) ≤ Ce(a0+ε+r0)t (7)

for p = 1, 2, . . . , m− 1, and to the functions Zp, p = 0, 1, . . . , m− 1, the Laplace transform
can be applied, since m− α < 1. In addition, it follows from estimates (7) that the families
of operators {Zp(t) : t > 0}, p = 0, 1, . . . , m− 1, can be analytically continued into the
sector {t ∈ C : | arg t| < θ0 − π/2, t 6= 0}, since ε ∈ (0, θ0 − π/2) is arbitrary.

Take µ ∈ C from the right side of the contour Γε,r0 , we have∥∥∥∥∥λm−αRλ

µ− λ
·
(

λα−1−p I −
m−1

∑
j=p+1

λα−m−1+j−p Aj

)∥∥∥∥∥
L(Z)

≤ K(θ0 − ε, a0 + ε)|λ|m−α−p

|λ− a0 − ε||µ− λ| .

Since 2 + p + α−m > 1, the function

L[Zp](µ) =
1

2πi

∫
Γε,r0

λm−αRλ

µ− λ
·
(

λα−1−p I −
m−1

∑
j=p+1

λα−m−1+j−p Aj

)
dλ

= µm−1−pRµ

(
I −

m−1

∑
j=p+1

µj−m Aj

) (8)

is analytic in the part of the plane C-bounded from the left by the contour Γε,r0 . Since ε and
r0 can be taken arbitrarily small, then L[Zp](µ) are analytic in Sθ0,a0 at p = 0, 1, . . . , m− 1.
Using this fact, it is not difficult to show that the value of Zp(t) does not depend on the
choice of parameters ε ∈ (0, θ0 − π/2), r0 > 0.

For p = 0, 1, . . . , m− 1, p ≥ m∗, zp ∈ D, we have

L
[

Jm−α
t Zp

]
(µ) = µα−1−pRµ

(
I −

m−1

∑
j=p+1

µj−m Aj

)
,

Jm−α
t Zp(t)zp =

1
2πi

∫
Γε,r0

Rλ

(
λα I −

m−1

∑
j=p+1

λα−m+j Aj

)
eλtdλ

λp+1 zp

=
1

2πi

∫
Γε,r0

eλtdλ

λp+1 zp +
1

2πi

∫
Γε,R

Rλ

(
p

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λ−βs Cs

)
eλtdλ

λp+1 zp

and∥∥∥∥∥∥∥
∫

Γε,R

Rλ

(
p

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λ−βs Cs

)
dλ

λp+1 zp

∥∥∥∥∥∥∥
Z

≤ c1

∫
Γε,R

(
p

∑
j=1
|λ|−m+j‖Ajzp‖Z +

n

∑
l=1
|λ|αl−α‖Blzp‖Z +

r

∑
s=1
|λ|−βs−α‖Cszp‖Z

)
|dλ|
|λ|p+1 → 0,
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when R → ∞, since p + 1 + m − p = m + 1 > 1, p + 1 + α − αl ≥ 1 + α − αl > 1,
p + 1 + α + βs > 1. Therefore, Jm−α

t Z0(0)z0 = z0 for z0 ∈ D and Jm−α
t Zp(0)zp = 0 for

zp ∈ D, p = 1, 2, . . . , m− 1.
Next, let m∗ = 0, i.e., m ≤ 1 and m = 0. This means that αl −ml < α−m and αl < 1

for all l = 1, 2, . . . , n. Then for α > 1 we have α− αl > 1 and for z0 ∈ D,

L
[

Dα−m+1
t Z0(t)z0

]
(µ) = µαRµ

(
z0 −

m−1

∑
j=1

µj−m Ajz0

)
− z0

= Rµ

(
n

∑
l=1

µαl Bl +
r

∑
s=1

µ−βs Cs

)
z0

and

Dα−m+1
t Z0(t)z0 =

1
2πi

∫
Γε,r0

Rλ

(
n

∑
l=1

λαl Bl +
r

∑
s=1

λ−βs Cs

)
eλtz0dλ,

therefore, Dα−m+1
t Z0(0)z0 = 0. Continuing this process, at the mth step we get

Dα−1
t Z0(t)z0 =

1
2πi

∫
Γε,r0

Rλ

(
n

∑
l=1

λαl+m−2Bl +
r

∑
s=1

λ−βs+m−2Cs

)
eλtz0dλ

and
Dα−1

t Z0(0)z0 = 0,

since ml ≤ 1, αl + m− 2− α < ml − 2 ≤ −1.
Let m∗ ≤ p, i.e., m ≤ p + 1, m ≤ p. Then αl < p + 1 for αl − ml < α− m, and also

αl ≤ p for αl −ml > α−m. We get at p = 1, 2, . . . , m− 1, q = 1, 2, . . . , p, zp ∈ D such that

Dα−m+q
t Zp(t)zp =

1
2πi

∫
Γε,r0

eλtdµ

λp−q+1 zp

+
1

2πi

∫
Γε,r0

Rλ

(
p

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λ−βs Cs

)
eλtzpdλ

λp−q+1 .

Therefore, at q < p, since p− q + 1 ≥ 2, we obtain Dα−m+q
t Zp(0)zp = 0. From here it

can be seen that Dα−m+p
t Zp(0)zp = zp due to the inequalities m− p + 1 > 1, α− αl + 1 > 1,

α + βs + 1 > 1.
For p ≤ m− 2 and zp ∈ D, we have

L
[

Dα−m+p+1
t Zp(t)zp

]
(µ) = µαRµ

(
zp −

m−1

∑
j=p+1

µj−m Ajzp

)
− zp

= Rµ

(
p

∑
j=1

µα−m+j Aj +
n

∑
l=1

µαl Bl +
r

∑
s=1

µ−βs Cs

)
zp

and

Dα−m+p+1
t Zp(t)zp =

1
2πi

∫
Γε,r0

Rλ

(
p

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λ−βs Cs

)
eλtzpdλ.
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In this case, j−m ≤ p−m ≤ −2, for αl −ml < α−m,

α− αl > m−ml ≥ m−m ≥ m− (p + 1) ≥ m− (m− 2)− 1 = 1,

is executed and for αl −ml > α−m, the inequalities are valid α− αl ≥ α− p ≥ α−m + 2 > 1.
Hence, α > 1, Dα−m+p+1

t Zp(0)zp = 0. Continuing the process, we get at p ≤ m − 3,
q = p + 2, p + 3, . . . , m− 1,

Dα−m+q
t Zp(t)zp =

1
2πi

∫
Γε,r0

λq−p−1Rλ

(
p

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λ−βs Cs

)
eλtzpdλ,

since j−m + q− p− 1 ≤ q−m− 1 ≤ 2, for αl −ml < α−m, we have

p + 1− q + α− αl > p + 2−m + m−ml = p + 2−ml ≥ 1,

and for αl −ml > α−m, the inequalities

p + 1− q + α− αl ≥ p + 2−m + α− p = 2−m + α > 1

hold. Since p + 1− q < 0, it follows that α > 1, Dα−m+q
t Zp(0)zp = 0.

Further, by virtue of Corollaries 1 and 2, we obtain

lim
t→0+

Dαl−ml+k
t Zp(t)zp = 0 for zp ∈ D and l = 1, 2, . . . , n,

which implies

L
[
Dα

t Zp(t)zp
]
(µ) = µαL[Zp(t)zp](µ)− µm−1−pzp

= µαRµ

(
µm−1−pzp −

m−1

∑
j=p+1

µj−1−p Ajzp

)
− µm−1−pzp

=

(
m−1

∑
j=1

µα−m+j Aj +
n

∑
l=1

µαl Bl +
r

∑
s=1

µ−βs Cs

)
µm−1−pRµ

(
zp −

m−1

∑
j=p+1

µj−m Ajzp

)

−
m−1

∑
j=p+1

µj−1−p Ajzp

= L

[
m−1

∑
j=1

AjD
α−m+j
t Zp(t)zp +

n

∑
l=1

Bl D
αl
l Zp(t)zp +

r

∑
s=1

Cs Jβs
t Zp(t)zp

]
(µ).

By acting of the inverse Laplace transform, we get that Zp(t)zp at zp ∈ D is a solution
of Equation (4) for t > 0 and p = m∗, m∗ + 1, . . . , m− 1.

Let z1(t) and z2(t) be two solutions of problem (4) and (6) on R+. Fix T > 0, then
y(t) = z1(t)− z2(t) is a solution of problem (4) and (6) with zp = 0, p = m∗, m∗+ 1, . . . , m−
1, on the interval (0, T). Let us define the function y as zero for t ∈ [T,+∞). Such a function
is bounded and is also a solution to this problem for all t > 0, except maybe t = T. Note
that by virtue of Corollaries 1 and 2, lim

t→0+
Dαl−ml+k

t y(t) = 0 for l = 1, 2, . . . , n. Let us act by

the Laplace transform on both parts of the equality

Dα
t y(t) =

m−1

∑
j=1

AjD
α−m+j
t y(t) +

n

∑
l=1

Bl D
αl
t y(t) +

r

∑
s=1

Cs Jβl
t y(t)
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and hence we get

L[Dα
t y](µ) = µαL[y](µ)

= L

[
m−1

∑
j=1

AjD
α−m+j
t y +

n

∑
l=1

Bl D
αl
t y +

r

∑
s=1

Cs Jβs
t y

]
(µ)

=

(
m−1

∑
j=1

µα−m+j Aj +
n

∑
l=1

µαl Bl +
r

∑
s=1

µ−βs Cs

)
L[y](µ),

which deduces(
µα I −

m−1

∑
j=1

µα−m+j Aj −
n

∑
l=1

µαl Bl −
r

∑
s=1

µ−βs Cs

)
L[y](µ) ≡ 0

and L[y](µ) ≡ 0 at µ ∈ Sθ0,a0 . Therefore, we obtain z1(t)− z2(t) = y(t) ≡ 0 for t ∈ (0, T).
Since T > 0 can be chosen arbitrarily large, z1(t) = z2(t) for all t > 0.

Remark 4. From equality (8), it can be seen that for zp ∈ D,

Zp(t)zp = Jp
t Z0(t)zp +

1
2πi

∫
Γε,r0

Rµ

p

∑
j=1

µj−p−1 Ajzpeµtdµ.

4. Inhomogeneous Equation

Consider the linear inhomogeneous multi-term fractional equation:

Dα
t z(t) =

m−1

∑
j=1

AjD
α−m+j
t z(t) +

n

∑
l=1

Bl D
αl
t z(t) +

r

∑
s=1

Cs Jβs
t z(t) + f (t) (9)

with initial conditions

Dα−m+k
t z(0) = 0, k = m∗, m∗ + 1, . . . , m− 1. (10)

A function z : (0, T)→ Z is called a solution of (9) and (10), if Jm−α
t z ∈ Cm((0, T);Z)∩

Cm−1([0, T);Z), Jm−α
t z ∈ Cj((0, T); DAj), j = 1, 2, . . . , m − 1, Jml−αl

t z ∈ Cml ((0, T); DBl ),

l = 1, 2, . . . , n, Jβs
t z ∈ C((0, T); DCs), s = 1, 2, . . . , r, and equalities (9) for t ∈ (0, T) and (10)

are satisfied. Recall that

Zm−1(t) :=
1

2πi

∫
Γε,r0

(
λα I −

m−1

∑
j=1

λα−m+j Aj −
n

∑
l=1

λαl Bl −
r

∑
s=1

λβs Cs

)−1

eλtdλ, t > 0,

and introduce the operators

Vκ(t) :=
1

2πi

∫
Γε,r0

λκ Rλeλtdλ, t > 0, κ ∈ R.

Theorem 2. Let m − 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 <
αl ≤ ml ∈ N, αl − ml 6= α − m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈
C l(Z), j = 1, 2, . . . , m − 1, Bl ∈ C l(Z), l = 1, 2, . . . , n, Cs ∈ C l(Z), s = 1, 2, . . . , r,
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(A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) ∈ An,r
α (θ0, a0) and f ∈ C((0, T); D)∩

L1(0, T; D). Then the function

z f (t) :=
t∫

0

Zm−1(t− s) f (s)ds

is a unique solution to problem (9) and (10).

Proof. Arguing as in the proof of the inequality (8), we obtain at κ < α− 1 and t ∈ [0, T],

‖Vκ(t)‖L(Z) ≤ 2c1e(a0+ε)t
+∞∫
r0

rκ−αe−rc2tdr + c1rκ−α
0 e(a0+ε)t

θ0+ε∫
−θ0+ε

etr0 cos ϕdϕ

≤
2c1e(a0+ε−r0c2)trκ−α+1

0
α− κ − 1

+ 2πc1e(a0+ε+r0)trκ−α
0 ≤ Ce(a0+ε+r0)t

for some C > 0. Hence,∥∥∥∥∥∥
t∫

0

Vκ(t− s) f (s)ds

∥∥∥∥∥∥
Z

≤ Ce(a0+ε+r0)t
t∫

0

‖ f (s)‖Zds for κ < α− 1. (11)

Also, for α ∈ (0, 1] and z0 ∈ D, we have

Vα−1(t)z0 =
1

2πi

∫
Γε,r0

λα−1Rλeλtz0dλ

=
1

2πi

∫
Γε,r0

eλtdλ

λ
z0 +

1
2πi

∫
Γε,r0

λ−1Rλ

(
m−1

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λβs Cs

)
z0eλtdλ

= z0 +
1

2πi

∫
Γ

λ−1Rλ

(
m−1

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λβs Cs

)
z0eλtdλ,

while for λ ∈ Γε,r0 ,∥∥∥∥∥λ−1Rλ

(
m−1

∑
j=1

λα−m+j Aj +
n

∑
l=1

λαl Bl +
r

∑
s=1

λβs Cs

)
z0

∥∥∥∥∥
Z

≤ c1‖z0‖D

|λ|1+δ
,

where δ = min{1, α− αl : l = 1, 2, . . . , n}. Therefore, for t ∈ [0, T], we get

‖Vα−1(t)z0‖Z ≤ Ce(a0+ε+r0)t‖z0‖D for α ≤ 1,

and ∥∥∥∥∥∥
t∫

0

Vα−1(t− s) f (s)ds

∥∥∥∥∥∥
Z

≤ Ce(a0+ε+r0)t
t∫

0

‖ f (s)‖Dds for α ≤ 1. (12)

Next, we define f as zero for t ∈ [T, ∞) and get the equalities

L[z f ](µ) = L[Zm−1](µ)L[ f ](µ) = RµL[ f ](µ),

L[Jm−α
t z f ](µ) = µα−mRµL[ f ](µ)
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and

Jm−α
t z f (t) =

t∫
0

Vα−m(t− s) f (s)ds,

therefore, Jm−α
t z f (0) = 0, due to (12), if α ≤ 1, or (11) in other cases. By taking into account

inequality (11) when k = 1, 2, . . . , m− 2, and inequality (12) at k = m− 1, we obtain

L[Dα−m+k
t z f ](λ) = µα−m+kRµL[ f ](µ),

Dα−m+k
t z f (t) =

t∫
0

Vα−m+k(t− s) f (s)ds

and
Dα−m+k

t z f (0) = 0.

Note that according to corollaries 1 and 2, we have

Dγ
t z f (0) = 0

for γ = αl −ml + k, k ∈ {0, 1, . . . , ml − 1} and l = 1, 2, . . . , n. Therefore,

L[Dα
t z f ](µ) = µαRµL[ f ](µ)

= L[ f ](µ) +

(
m−1

∑
j=1

µα−m+j Aj +
n

∑
l=1

µαl Bl +
r

∑
s=1

µ−βs Cs

)
RµL[ f ](µ)

= L[ f ](µ) + L

[
m−1

∑
j=1

AjD
α−m+j
t z f (t) +

n

∑
l=1

Bl D
αl
t z f (t) +

r

∑
s=1

Cs Jβs
t z f (t)

]
.

Acting by the inverse Laplace transform on both parts of this equality, we obtain
equality (9) at t ∈ (0, T), since f ∈ C((0, T); D).

The proof of the uniqueness of a solution is the same as for the homogeneous
equation.

Due to the linearity of the Equation (9) under study, we immediately get the follow-
ing result.

Theorem 3. Let m− 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0, Aj ∈ C l(Z), j = 1, 2, . . . , m− 1,
Bl ∈ C l(Z), l = 1, 2, . . . , n, Cs ∈ C l(Z), s = 1, 2, . . . , r,

(A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) ∈ An,r
α (θ0, a0),

zk ∈ Z , k = m∗, m∗ + 1, . . . , m− 1, f ∈ C((0, T); D) ∩ L1(0, T; D). Then there exists a unique
solution to problem (6) and (9), and it has the form

z(t) =
m−1

∑
p=m∗

Zp(t)zp +

t∫
0

Zm−1(t− s) f (s)ds.

5. Initial-Boundary Value Problems

Let J ⊂ {1, 2, . . . , m− 1}. Define polynomials P1, Pj
2, Pl

3, Ps
4 by

P1(λ) =
ν1

∑
p=0

apλp, Pj
2(λ) =

ν
j
2

∑
p=0

bj
pλp, Pl

3(λ) =
νl

3

∑
p=0

cl
pλp and Ps

4(λ) =
νs

4

∑
p=0

ds
pλp,
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where ap, bj
p, cl

p, ds
p ∈ R, aν1 bj

ν
j
2

cl
νl

3
ds

νs
4
6= 0, j ∈ J, l = 1, 2, . . . , n, s = 1, 2, . . . , r and the degree

of at least one of the polynomials Pj
2, Pl

3, Ps
4 be greater than the degree of P1. Put Pj

2 ≡ 0 at
j ∈ {1, 2, . . . , m− 1} \ J.

Let Ω ⊂ Rd be a boundary region with a smooth boundary ∂Ω,

(Au)(ξ) = ∑
|q|≤2ρ

aq(ξ)
∂|q|u(ξ)

∂ξ
q1
1 ∂ξ

q2
2 . . . ∂ξ

qd
d

, aq ∈ C∞(Ω),

and

(Bγu)(ξ) = ∑
|q|≤ργ

bγq(ξ)
∂|q|u(ξ)

∂ξ
q1
1 ∂ξ

q2
2 . . . ∂ξ

qd
d

, bγq ∈ C∞(∂Ω), γ = 1, 2, . . . , ρ,

where q = (q1, q2, . . . , qd) ∈ Nd
0, |q| = q1 + · · ·+ qd and the operator pencil A,B1,B2, . . .,

Bρ are regularly elliptic (see [21]). Assume that the operator A1 ∈ C l(L2(Ω)) has the domain

DA1 = H2ρ

{Bγ}(Ω) := {v ∈ H2ρ(Ω) : Bγv(ξ) = 0, γ = 1, 2, . . . , ρ, ξ ∈ ∂Ω}

and A1v := Av. Suppose that A1 is self-adjoint, then the spectrum σ(A1) of A1 is real and
discrete (see [21]). Moreover, let the spectrum σ(A1) be bounded from the right and does not
contain zero point, {ϕk : k ∈ N} is an orthonormal in the L2(Ω) system of eigenfunctions of
the operator A1, numbered with respect to non-increasing of the corresponding eigenvalues
{λk : k ∈ N}, taking into account their multiplicity.

Take h : Ω× (0, T) → R, 1 < α < 2, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤
ml ∈ N, αl −ml 6= α−m, l = 1, 2, . . . , n, β1 > β2 > · · · > βr ≥ 0. Determine by the set
of these numbers the defect m∗ ∈ {0, 1}, choose the maximal degree ν0 of polynomials Pj

2,
Pl

3, Ps
4 , j ∈ J, l = 1, 2, . . . , n, s = 1, 2, . . . , r, (then ν0 > ν1) and consider the initial-boundary

value problem
Dα−m+k

t u(ξ, 0) = uk(ξ), k = 0, 1 or k = 1, ξ ∈ Ω, (13)

BγA
ku(ξ, t) = 0, k = 0, 1, . . . , ν0 − 1, γ = 1, 2, . . . , ρ, (ξ, t) ∈ ∂Ω× (0, T), (14)

Dα
t P1(A)u(ξ, t) = ∑

j∈J
Pj

2(A)Dα−m+j
t u(ξ, t) +

n
∑

l=1
Pl

3(A)Dαl
t u(ξ, t)+

+
r
∑

s=1
Ps

4(A)Jβs
t u(ξ, t) + h(ξ, t), (ξ, t) ∈ Ω× (0, T).

(15)

Set

X = {v ∈ H2ρν1(Ω) : BγA
kv(ξ) = 0, k = 0, 1, . . . , ν1 − 1, γ = 1, 2, . . . , ρ, ξ ∈ ∂Ω},

Y = L2(Ω), L = P1(A) ∈ L(X ;Y), Mj = Pj
2(A) ∈ C l(X ;Y) for j = 1, 2, . . . , m − 1,

Nl = Pl
3(A) ∈ C l(X ;Y) for l = 1, 2, . . . , n, Ss = Ps

4(A) ∈ C l(X ;Y) for s = 1, 2, . . . , r. The
domains of these closed operators are defined by polynomials, for example,

DBl = {v ∈ H2ρνl
3(Ω) : BγA

kv(ξ) = 0, k = 0, 1, . . . , νl
3 − 1, γ = 1, 2, . . . , ρ, ξ ∈ ∂Ω}.

Therefore,

D = {v ∈ H2ρν0(Ω) : BγA
kv(ξ) = 0, k = 0, 1, . . . , ν0 − 1, γ = 1, 2, . . . , ρ, ξ ∈ ∂Ω}

is dense set in X .
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Theorem 4. Let in the conditions of this section be ν0 > ν1, P1(λk) 6= 0 for all k ∈ N, and the
following conditions hold:

(i) In case of odd ν0 − ν1, the inequalities bj

ν
j
2

/aν1 > 0 at ν
j
2 = ν0, cl

νl
3
/aν1 > 0 at νl

3 = ν0 and

cs
νs

4
/aν1 > 0 at νs

4 = ν0 hold;

(ii) In case of even ν0 − ν1, the inequalities bj

ν
j
2

/aν1 < 0 at ν
j
2 = ν0, cl

νl
3
/aν1 < 0 at νl

3 = ν0 and

cs
νs

4
/aν1 < 0 at νs

4 = ν0 hold;

(iii) βs ≤ α at νs
4 = ν0.

Then (A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) ∈ An,r
α (θ0, a0).

Proof. For v ∈ D,(
λα I −

m−1

∑
j=1

λα−m+j Aj −
n

∑
l=1

λαl Bl −
r

∑
s=1

λ−βs Cs

)
v =

∞

∑
k=1

λαQk(λ, λk)〈v, ϕk〉ϕk,

where,

Qk(λ, λk) := 1−∑
j∈J

λj−m Pj
2(λk)

P1(λk)
−

n

∑
l=1

λαl−α Pl
3(λk)

P1(λk)
−

r

∑
s=1

λ−βs−α Ps
4(λk)

P1(λk)
.

It is evident, that for a fixed k ∈ N, lim
|λ|→∞

Qk(λ, λk) = 1. Choose a sufficiently large

N ∈ N so large R > 0, that Qk(λ, λk) ≥ 1/2 for k = 1, 2, . . . , N and |λ| > R. Since
lim
k→∞

λk = −∞, letting k→ ∞, we have

Pj
2(λk)

P1(λk)
∼ a−1

ν1
bj

ν
j
2

λ
ν

j
2−ν1

k for j ∈ J,

Pl
3(λk)

P1(λk)
∼ a−1

ν1
cl

νl
3
λ

νl
3−ν1

k for l = 1, 2, . . . , n,

and
Ps

4(λk)

P1(λk)
∼ a−1

ν1
ds

νs
4
λ

νs
4−ν1

k for s = 1, 2, . . . , r.

Hence for a fixed λ as k→ ∞, we get

Qk(λ, λk) ∼ 1− ∑
ν

j
2=ν0

λj−ma−1
ν1

bj

ν
j
2

λν0−ν1
k

− ∑
νl

3=ν0

λαl−αa−1
ν1

cl
νl

3
λν0−ν1

k − ∑
νs

4=ν0

λ−βs−αa−1
ν1

ds
νs

4
λν0−ν1

k

= |λk|ν0−ν1

|λk|ν1−ν0 − signλν0−ν1
k

 ∑
ν

j
2=ν0

λj−ma−1
ν1

bj

ν
j
2

+ ∑
νl

3=ν0

λαl−αa−1
ν1

cl
νl

3
+ ∑

νs
4=ν0

λ−βs−αa−1
ν1

ds
νs

4

.
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For sufficiently large k, λk < 0 due to properties of the spectrum of A1, therefore,
due to conditions (i) and (ii) of this theorem all coefficients at the degrees of λ in the last
expression are negative. Hence at λ > 0 and for sufficiently large k Q(λ, λk) > 0. Take a
sufficiently large a0 > R and θ ∈ (π/2, π/α), so that the ball BR := {λ ∈ C : |λ| ≤ R} lies
outside the sector Sθ0,a0 . Then for λ ∈ Sθ0,a0 \R subject to condition (iii) of this theorem,∣∣∣∣∣∣∣arg

signλν0−ν1
k

 ∑
ν

j
2=ν0

λj−ma−1
ν1

bj

ν
j
2

+ ∑
νl

3=ν0

λαl−αa−1
ν1

cl
νl

3
+ ∑

νs
4=ν0

λ−βs−αa−1
ν1

ds
νs

4



∣∣∣∣∣∣∣∈ (0, π),

therefore, Qk(λ, λk) 6= 0. If ∂Sθ0,a0 contains zeros (with respect to λ) of functions Qk(λ, λk)
at some k ∈ N, beginning with N + 1, make the shift of a0 on 1 to the right and go back
to the previous designation a0. Now due to the continuity of the functions Qk(λ, λk) with
respect to λ we can state that for λ ∈ Sa0,θ0 , we have |Qk(λ, λk)| ≥ c > 0.

Thus, for every λ ∈ Sθ0,a0 , we obtain∥∥∥∥∥
(

λα I −
m−1

∑
j=1

λα−m+j Aj −
n

∑
l=1

λαl Bl −
r

∑
s=1

λ−βs Cs

)
v

∥∥∥∥∥
X

≥ c|λ|α‖v‖X ,

consequently, there exists the inverse operator

Rλ :=

(
λα I −

m−1

∑
j=1

λα−m+j Aj −
n

∑
l=1

λαl Bl −
r

∑
s=1

λ−βs Cs

)−1

∈ L(X ),

and for all λ ∈ Sθ0,a0 ,

‖Rλ‖ ≤
C

|λ|α−1|λ− a| .

For v ∈ D and λ ∈ Sθ0,a0 , we have∥∥∥∥∥Rλ ·
(

I −
m−1

∑
j=p+1

λj−m Aj

)
v

∥∥∥∥∥
2

X

≤
∞

∑
k=1

2

(
1 +

m−1
∑

j=p+1
|λ|2(j−m) |P

j
2(λk)|2
|P1(λk)|2

)
|〈v, ϕk〉|2

|λ|2α|Q(λ, λk)|2

≤
∞

∑
k=1

C1|λk|2(ν0−ν1)

|λk|−2(ν0−ν1) + ∑
ν

j
2=ν0

|aν1 |−2|bj

ν
j
2

|2|λ|2(j−m)

|〈v, ϕk〉|2

|λ|2α|λk|2(ν0−ν1)|Q1(λ, λk)|2

≤
∞

∑
k=1

C2|〈v, ϕk〉|2

|λ|2(α−1)|λ− a|2
≤

C2‖v‖2
X

|λ|2(α−1)|λ− a|2
,

and

Q1(λ, λk) = λ
−(ν0−ν1)
k − ∑

ν
j
2=ν0

λ−m+ja−1
ν1

bj

ν
j
2

− ∑
νl

3=ν0

λαl−αa−1
ν1

cl
νl

3
− ∑

νs
4=ν0

λ−βs−αa−1
ν1

ds
νs

4
.

We take into account, that λk 6= 0 for all k ∈ N, therefore, due to the pointiness of the
spectrum {λk} there exists min

k∈N
|λk| > 0.

Remark 5. For the case of ν0 ≤ ν1, a similar result in the absence of constraints (i)–(iii) from
Theorem 4 is obtained in [8].
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Due to Theorem 3 for arbitrary u0, u1 ∈ X , or only u1 ∈ X , depending on the defect
value, under the condition L−1h ∈ C((0, T); D) ∩ L1(0, T; D) there exists a unique solution
to problem (13)–(15).

Finally, a nontrivial example illustrating Theorem 4 is given.

Example 1. Take α = 7/4, m = 2, n = 1, r = 1, α1 = 4/5, β1 = 5, P1(λ) = λ, ν1 = 1,
P1

2 (λ) ≡ 0, J = ∅, P1
3 (λ) = c0 + c1λ + c2λ2, ν3 = 2, P1

4 (λ) = d0 + d1λ, ν4 = 1, ν0 :=
max{ν3, ν4} = 2, d = 1, Ω = (0, π), ρ = 1, Au = ∂2u

∂ξ2 and B1 = I. Then m = 0, m = 1,
m∗ = 1, and problem (13)–(15) has the form

D7/4
t

∂2u
∂ξ2 (ξ, t) =

(
c0 + c1

∂2

∂ξ2 + c2
∂4

∂ξ4

)
D4/5

t u(s, t) +
(

d0 + d1
∂2

∂ξ2

)
J5
t u(ξ, t)

for (ξ, t) ∈ (0, π)×R+,

u(0, t) = u(π, t) =
∂2u
∂s2 (0, t) =

∂2u
∂s2 (π, t) = 0 for t ∈ R+,

and
D3/4u(ξ, 0) = u1(ξ) for ξ ∈ (0, π).

It is solvable at c2 > 0 by Theorem 4 (i), since ν0 − ν1 = 1 is odd, ν3 = ν0, ν4 < ν0. Here
the problem does not contain the initial condition for J1/4u(ξ, 0), since m∗ = 1 and the equality
J1/4u(ξ, 0) ≡ 0 is necessarily fulfilled.

6. Conclusions

For a linear equation with several Riemann–Liouville derivatives and with constant
coefficients, the authors of this work showed that the set of orders of derivatives from
the equation determines the defect of the Cauchy-type problem, which determines the
number of lower-order initial conditions that must be excluded from the statement of the
problem for its solvability. In this paper, the incomplete Cauchy problem is considered
for linear multi-term equations solved with respect to the highest derivative in Banach
spaces with fractional Riemann–Liouville derivatives and with linear closed operators at
them. A class of tuples of operators An,r

α (θ0, a0) is introduced, generalizing to the case of
several operators a class of generators of analytic in a sector resolving families of operators,
called sectorial operators. Using the Laplace transform technique, it is proved that the
incomplete Cauchy-type problem for the multi-term equation with a tuple of operators
from An,r

α (θ0, a0) has a unique classical solution. Some new existence and uniqueness
theorems for solutions are presented explicitly and the analyticity of the solutions of the
homogeneous equations are also shown. Our abstract results are used in the study of a
class of initial boundary value problems for multi-term equations with Riemann–Liouville
derivatives in time and with polynomials of a self-adjoint elliptic differential operator
with respect to spatial variables. In contrast to our earlier result, the consideration of the
equation with unbounded operators allowed us to investigate the case when the highest
of the degrees of the polynomials at lower time-fractional derivatives is greater than the
degree of the polynomial at the highest derivative.

Author Contributions: Conceptualization, V.E.F. and W.-S.D.; methodology, V.E.F. and W.-S.D.;
software, M.M.T.; validation, V.E.F. and M.M.T.; formal analysis, M.M.T.; investigation, V.E.F., W.-S.D.
and M.M.T.; resources, W.-S.D.; data curation, V.E.F. and W.-S.D.; writing—original draft preparation,
V.E.F. and M.M.T.; writing—review and editing, V.E.F. and W.-S.D.; visualization, M.M.T.; supervision,
V.E.F. and W.-S.D.; project administration, V.E.F. and W.-S.D.; funding acquisition, V.E.F. and W.-S.D.
All authors have read and agreed to the published version of the manuscript.



Symmetry 2022, 14, 75 16 of 16

Funding: The first and the third authors is partially supported by the Russian Foundation for Basic
Research and Vietnam Academy of Science and Technology, grant number 21-51-54003, and by the
grant of the President of the Russian Federation to support leading scientific schools, project number
NSh-2708.2022.1.1. The second author is partially supported by grant no. MOST 110-2115-M-017-001
of the Ministry of Science and Technology of the Republic of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their hearty thanks to the anonymous referees for
their valuable suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luchko, Y.F.; Srivastava, H.M. The exact solution of certain differential equations of fractional order by using operational calculus.

Comput. Math. Appl. 1995, 29, 73–85. [CrossRef]
2. Hadid, S.B.; Luchko, Y.F. An operational method for solving fractional differential equations of an arbitrary real order. Panam.

Math. J. 1996, 6, 57–73.
3. Ozturk, I. On the theory of fractional differential equation. Rep. Adyg. (Circassian) Int. Acad. Sci. 1998, 3, 35–39.
4. Nakhushev, A.M. Fractional Calculus ant Its Applications; Fizmatlit: Moscow, Russia, 2003. (In Russian)
5. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Publishing:

Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany, 2006.
6. Pskhu, A.V. Initial-value problem for a linear ordinary differential equation of noninteger order. Sb. Math. 2011, 202, 571–582.

[CrossRef]
7. Bhrawy, A.H.; Tharwat, M.M.; Yildirim, A. A new formula for fractional integrals of Chebyshev polynomials: Application for

solving multi-term fractional differential equations. Appl. Math. Model. 2013, 37, 4245–4252. [CrossRef]
8. Fedorov, V.E.; Turov, M.M. The defect of a Cauchy type problem for linear equations with several Riemann–Liouville derivatives.

Sib. Math. J. 2021, 62, 925–942. [CrossRef]
9. Bajlekova, E.G. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven,

The Netherlands, 2001.
10. Romanova, E.A.; Fedorov, V.E. Resolving operators of a linear degenerate evolution equation with Caputo derivative. The

sectorial case. Math. Notes NEFU 2016, 23, 58–72.
11. Fedorov, V.E.; Avilovich, A.S. A Cauchy type problem for a degenerate equation with the Riemann–Liouville derivative in the

sectorial case. Sib. Math. J. 2019, 60, 359–372. [CrossRef]
12. Fedorov, V.E.; Avilovich, A.S.; Borel, L.V. Initial problems for semilinear degenerate evolution equations of fractional order in the

sectorial case. Springer Proc. Math. Stat. 2019, 292, 41–62.
13. Avilovich, A.S.; Gordievskikh, D.M.; Fedorov, V.E. Issues of unique solvability and approximate controllability for linear fractional

order equations with a Hölderian right-hand side. Chelyabinsk Phys. Math. J. 2020, 5, 5–21.
14. Fedorov, V.E.; Nagumanova, A.V.; Avilovich, A.S. A class of inverse problems for evolution equations with the Riemann–Liouville

derivative in the sectorial case. Math. Methods Appl. Sci. 2021, 44, 11961–11969. [CrossRef]
15. Fedorov, V.E.; Avilovich, A.S. Semilinear fractional-order evolution equations of Sobolev type in the sectorial case. Complex Var.

Elliptic Equ. 2021, 66, 1108–1121. [CrossRef]
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