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Abstract: This paper suggests an approach to generate pseudo-random sequences based on the
discrete-time model of the simple memristive chaotic system. We show that implementing Euler’s
and Runge–Kutta’s methods for the simulation solutions gives the possibility of obtaining chaotic
sequences that maintain general properties of the original chaotic system. A preliminary criterion
based on the binary sequence balance estimation is proposed and applied to separate any binary
representation of the chaotic time sequences into random and non-random parts. This gives us the
possibility to delete obviously non-random sequences prior to the post-processing. The investigations
were performed for arithmetic with both fixed and floating points. In both cases, the obtained
sequences successfully passed the NIST SP 800-22 statistical tests. The utilization of the unidirectional
asymmetric coupling of chaotic systems without full synchronization between them was suggested
to increase the performance of the chaotic pseudo-random number generator (CPRNG) and avoid
identical sequences on different outputs of the coupled systems. The proposed CPRNG was also
implemented and tested on FPGA using Euler’s method and fixed-point arithmetic for possible usage
in different applications. The FPGA implementation of CPRNG supports a generation speed up to
1.2 Gbits/s for a clock frequency of 50 MHz. In addition, we presented an example of the application
of CPRNG to symmetric image encryption, but nevertheless, one is suitable for the encryption of any
binary source.

Keywords: memristive chaotic circuit; chaotic PRNG; balance property; coupled chaotic systems;
symmetric encryption

1. Introduction

A chaotic system generates signals that combine the properties of deterministic and
random processes. Contrary to the deterministic nature, a chaotic system is a source
of information that provides the average value of Shannon entropy over zero, which
distinguishes it from periodic sources that characterize zero entropy. Chaotic signals
are generated by determined nonlinear systems, but they are unpredictable at long time
intervals and very sensitive to the initial conditions. The random character of signals
generated by dynamical systems makes it possible to use these systems as a base for
creating the generator of pseudo-random numbers (PRNG) for many applications in circuit
theory and communication systems [1–5].

There are two types of chaotic systems: discrete and continuous. The first type is
described by maps, and the second one is described by nonlinear differential equations.
To obtain a digital realization of continuous chaotic systems, we applied one of the well-
known ODE modeling methods to a mathematical model of the system. The modeling
methods and precision of calculation should be chosen correctly to ensure the original
dynamics of systems [4].
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A Random Number Generator (RNG) is a basic element of cryptographic applications
and is widely used to generate keys, keystreams for Vernam cipher, digital signatures,
etc. There are two types of generators—truly random number generator (TRNG) and
PRNG—which differ by the reproducibility of the previously generated sequence and
its repeatability. To build an RNG, physical processes with unpredictable behavior are
usually used, such as amplified thermal noise; the state of a deterministic system that
is very sensitive to thermal noise; the timing of radioactive decay; or pauses between
key switching.

The application of chaotic systems for an RNG has been proposed in many arti-
cles [6–10]. The classification, main structures, and a comparison of chaotic TRNGs can be
found in [11]. In [8], the one-dimensional map was utilized to obtain a sequence that was
previously digitized by a one-bit ADC influenced by noise and perturbation equal to half
of the quantization step. This technique provides a random sequence generation speed
over 10 Mbit/s, and the output sequence successfully passed the NIST tests. Nonlinear
post-processing or feedback correction was used in [9] to increase the randomness of a
TRNG. Integral implementation is also proposed and simulated in [10].

In contrast to TRNG, PRNG can be only implemented digitally. The pseudorandom
sequence depends on the value of a secret key. The secret key can be used many times to
reproduce the same sequence. PRNG has to ensure a sufficiently long repetition period
and statistical characteristics close to TRNG according to the requirements for crypto-
graphic security. Many papers have focused on the design of PRNGs in software or FPGA
implementations for encryption [7,12–18].

The most known continuous-time chaotic systems do not describe real electric circuits
but rather other physical processes, such as atmospheric phenomena [19], chemical reac-
tion [20], and artificial mathematical constructions [21], modeled by Lorentz, Rösler and
Sprott systems, respectively. The integral implementation of such systems is realizable but
more complicated in comparison with the original electrical circuits; for example, Chua and
Colpitts oscillators. It should be noted that for any dynamical system, nonlinearity is the
main reason for chaotic behavior. The usage of new nonlinear elements allows the number
of simple chaotic circles to be increased. An adequate element is the memristor, foreseen in
1971 by Chua as a result of searching the symmetry between fundamental elements [22] and
then developed by HP [23]. The memristor is the fourth fundamental element of electrical
circuits, next to the resistor, capacitor, and inductance. This is a resistor with memory that
can form a major part of computing devices instead of transistors [24,25].

Currently, the properties of the memristor are being extensively investigated [26–28].
The analysis of the direct and alternating currents of the nonlinear dynamics of a tantalum
oxide memristor is presented in [29,30].

Many periodic and chaotic oscillators based on memristors or memristive devices with
different models of their nonlinear characteristics were proposed and studied in [31–38].
Besides the above-mentioned works, four fractional-order memristive chaotic systems have
been proposed recently. These circuits provide a variety of dynamic states, such as the coex-
istence of hidden, chaotic, and hyperchaotic attractors, and other complex phenomena [39].

The development of algorithms for image encryption using chaotic dynamics is a key
field of the current state-of-the-art research. One of the main challenges is a generalization of
approaches to the realization of complex high-order chaotic systems or their combinations,
algorithms of transformation of chaotic sequences in encryption keys, and increasing
encryption efficiency [40–42]

In this paper, the utilization of an electrical oscillator model is offered based on a
memristive device for creating PRNG [35]. This circuit consists of three elements—a
capacitor, inductance, and nonideal memristor—which were implemented experimentally.

To obtain a pseudorandom sequence, we use a binary representation of chaotic num-
bers in the computing device memory. The bits balance is proposed and substantiated as a
preliminary criterion to separate non-random (most significant) bits, which are discarded,
and random (least significant) bits, which can be exposed for post-processing to conceal
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a generator state. In contradistinction to [14,15,17,40,43–46], the bit balance allows us to
clearly distinguish and discard bits that cause a correlation between two sequential chaotic
iterations, avoiding intuitive or empirical decisions.

One of the ways to improve the quality of CPRNG, namely the repetition period,
is to increase the dimension of the basic chaotic system that is reached by coupling low-
dimensional systems. The variety of coupling methods includes the ring, cross-section,
and star structure, ultra-weakly coupled interaction, and others [47–50]. In this paper, we
propose to use a unidirectional connection of systems to increase the number of output
variables; thus, the performance of the CPRNG can be increased. In order to ensure that
there is not complete synchronization between systems with arbitrary coupling strength, we
propose to connect them via an asymmetric connection, such as the inertial or dissipative
coupling of different circuit points, allowing us to optimize the productivity of CPRNG
considering the available resources and making our method differ from others [47,49,50].

The organization of the paper is as follows. In Section 2, the model description and
solution simulation are presented. Simulation results and the practical implementation of
numerical methods by FPGA and NIST tests are given in Section 3. Coupling methods of
low-dimensional chaotic systems to increase the output number and performance of PRNG
are described in Section 4. The example of the application of CPRNG to image encryption
is presented in Section 5. Finally, in Section 6 the main results are concluded.

2. Description of Mathematical Model and Solutions Simulation
2.1. Memristive Structure-Based Chaotic System

One of the simplest generators of chaotic oscillations based on a memristive structure
was described and realized in [35]. The circuit consists of three series-connected elements:
inductance, a capacitor, and a nonideal memristor (Figure 1). The used memristor model is
a model of a generalized memristive device [51] whose characteristics do not correspond
to characteristics of the ideal memristor introduced in [23]. The memristive structure is a
non-linear active element that replaces the third reactive element that is needed to provide
chaotic oscillations in a circuit.

L

−

+

C

− +
VC

iM

M

+

−

VM

Figure 1. Electric scheme of simple memristive structure-based chaotic circuit.

The nonlinear characteristic of the memristive structure is described by the next equations:
VM = β(z2 − 1)iM

dz
dt

= iM − αz− iMz
(1)

where VM is the voltage drop across the memristive structure, iM is the current through the
memristive structure, z is the internal variable responsible for the memory effect, and α, β
are the memristive structure parameters.
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The circuit dynamic (Figure 1) is described by the following equations [35]:
dx
dt = y

C
dy
dt = − 1

L [x + β(z2 − 1)y]
dz
dt = −y− αz + yz

(2)

where x, y, z are the state variables, and x = uC, y = −iM, C = 1 F, L = 3 H, α = 0.6, and
β = 1.6 are the system parameters.

The positive value of the largest Lyapunov exponent indicates the chaotic behavior
in the system. For the equations system (2), the corresponding diagram of Lyapunov
exponents that is obtained by Benettin’s method is given in Figure 2.
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Figure 2. The dependence of the Lyapunov exponents for (a) C = 1F, β = 1.52, α = 0.6; (b) L = 3H,
β = 1.52, α = 0.6; (c) C = 1F, L = 3H, α = 0.6.
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The periodic (λ1 = 0) and chaotic (λ1 > 0) modes appear in the system for the values
of β ∈ [1, 1.7].

Figure 2a indicates that when C = 1 F, L = 3 H, β = 1.52, and α = 0.6, the Lyapunov
exponents are λ1 = 0.0335, λ2 = 0.0008, and λ3 = −0.596. The largest exponent is greater
than zero, and the sum of exponents is negative λ1 + λ2 + λ3 = −0.563, which shows the
chaotic behavior of the system [52].

The changing of other system parameters (L and C) for α = 0.6 (see Figure 2b,c) leads
to the occurrence of different chaotic and periodic modes in the system (2) in a wide range
of values of its parameters.

2.2. Solutions Simulation

The numerical simulation methods of differential equations differ according to their
approximation degree of the exact system solutions. Among them, the most used methods
are the Euler and the Runge–Kutta methods. Widely used methods of numerical simula-
tion imply the transformation of the continuous system into a discrete map. Due to the
sensitivity to arbitrarily small deviations of the initial conditions, the exact solutions of
chaotic systems models cannot be obtained with any methods. Nevertheless, a discrete
model can be used to study the original system when the outputs of both have the same
statistical properties.

The essence of numerical methods is to present a system of differential equations
in the form of a recurrent dependence and calculate sequence points on the trajectory in
discrete moments with timestep ∆t.

The least computational complexity is achieved with Euler’s method, where the
ratio between adjacent points of the system trajectories (2) is described by the following
equations: 

xn+1 = f1(tn, yn)∆t + xn

yn+1 = f2(tn, xn, yn, zn)∆t + yn

zn+1 = f3(tn, yn, zn)∆t + zn

(3)

where f1 = yn
C , f2 = − 1

L
[
xn + β(z2

n − 1)yn
]
, f3 = −yn − αzn + ynzn.

The Runge–Kutta fourth-order method is characterized by a higher precision of calcu-
lations. According to this method, the ratio between the system states in successive time
points is as follows: 

xn+1 = xn +
1
6 (k1 + 2k2 + 2k3 + k4)∆t

yn+1 = yn +
1
6 (m1 + 2m2 + 2m3 + m4)∆t

zn+1 = zn +
1
6 (l1 + 2l2 + 2l3 + l4)∆t

(4)

where k1 = f1(tn, yn), m1 = f2(tn, xn, yn, zn), l1 = f3(tn, yn, zn), k2 = f1(tn + ∆t
2 , yn +

m1
2 ), m2 = f2(tn + ∆t

2 , xn + k1
2 , yn + m1

2 , zn + l1
2 ), l2 = f3(tn + ∆t

2 , yn + m1
2 , zn + l1

2 ), k3 =

f1(tn +
∆t
2 , yn +

m2
2 ), m3 = f2(tn +

∆t
2 , xn +

k2
2 , yn +

m2
2 , zn +

l2
2 ), l3 = f3(tn +

∆t
2 , yn +

m2
2 , zn

+ l2
2 ), k4 = f1(tn + ∆t, yn + m3), m4 = f2(tn + ∆t, xn + k3, yn + m3, zn + l3), l4 = f3(tn +

∆t, yn + m3, zn + l3).
The phase portraits obtained by Euler’s and Runge–Kutta’s fourth-order methods

when C = 1 F, L = 3 H, β = 1.52, and α = 0.6 are shown in Figure 3. All attractors are
characterized by the same structure, which is similar to the one acquired for the system
emulator in [35] and shown in Figure 4.
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(a) (b)

(c) (d)

Figure 3. Chaotic attractor of (x, y)-plane for system (2). (a,c) for Euler’s method; (b,d) for Runge–
Kutta’s method. (a,b) are obtained for ∆t = 0.001; (c,d) are obtained for ∆t = 0.01.

Figure 4. Chaotic attractor obtained by emulator in [35].

The histogram analyses of state variable x for different time steps and calculation
methods are similar, as shown in Figure 5, indicating a saving of chaotic time series
properties and the fractal dimension of the system.
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Figure 5. Histograms of distribution of (x, y)-plane for system (2). (a,c) for Euler’s method; (b,d) for
Runge–Kutta’s method. (a,b) are obtained for ∆t = 0.001; (c,d) are obtained for ∆t = 0.01.

3. Generating of Pseudorandom Sequences
3.1. Time Series Balance Property

Original time series of chaotic systems usually have an uneven distribution, as can
be seen in Figure 5, and a strong correlation between adjacent points. Therefore, such
sequences are not random. The balance property is one of the basic requirements of any
periodic binary sequences that are used as a test for randomness [53].

The system (2) produces three output variables (i.e., signals): x, y, and z. All of them
separately or together can be used to obtain a pseudo-random sequence. Each number in
x, y, and z is a binary sequence of length M. In order to reach a uniform distribution, it
is first necessary to discard several of the most significant bits. To determine the number
of bits K that should be rejected, the balance property was used for a sequence of bits at
the same position in the binary code of numbers. Dropping a part of the bits eliminates
possible synchronization attacks, similar to that described in [54], the purpose of which is
to determine generator parameters.

The matrix type (5) of size K × M was formed with elements xi,j, yi,j, and zi,j,
i = 1 . . . M, j = 1 . . . K in order to pick up the bits with a better balance property:

a1,1, a1,2, . . . , a1,j, . . . , a1,M−1, a1,M

a2,1, a2,2, . . . , a2,j, . . . , a2,M−1, a2,M
...
ai,1, ai,2, . . . , ai,j, . . . , ai,M−1, ai,M
...
aK,1, aK,2, . . . , aK,j, . . . , aK,M−1, aK,M

(5)

where K is the iteration numbers of variables x, y, or z, and M is the length of the bit string
containing the chaotic number.
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The binary matrix (5) is transformed into a new matrix with elements bi,j = ai,j ⊕ ai+1,j.
This transformation allows the detection of the correlation between the adjacent elements
of the matrix columns (5).

For each column, the number of “0” symbols is N0 and that of “1” symbols is N1; thus,
N0 + N1 = N is computed. The sequence can be random only if the quotient N0/N or
N1/N is close to 0.5.

The balance of bits generated by (3) when ∆t = 0.001 using Q6.26 fixed-point arith-
metic for variables xi,j, yi,j, and zi,j is shown in Figure 6. One bit is used to define the sign
and 26 bits are used for the fractional part. As shown in Figure 6, only the bits from 17 to
32 have approximately the same number of “0”s and “1”s in a sequence. We must reject at
least 16 of the most significant bits for each output to obtain a balanced sequence.

0 5 10 15 20 25 30
0

0.2

0.4

Number of bit

N
0/

N

x
y
z

Figure 6. The balance of bits generated by system (3) that is implemented by a Simulink-model using
fixed-point arithmetic Q6.26.

In the case of double-precision floating-point arithmetic and Runge–Kutta’s fourth-
order method (4) and ∆t = 0.001, it is necessary to remove at least the 22 most significant
bits (Figure 7).

It is worth noting that bit balance depends not only on arithmetic precision, but also
timestep ∆t is important. An increase of ∆t leads to a decreasing correlation between two
sequential iterations and requires the rejection of a smaller number of most significant bits;
however, this can lead to the collapse of chaotic dynamics [55].

0 10 20 30 40 50 60
0

0.2

0.4

Number of bit

N
0/

N
t

x
y
z

Figure 7. The balance of bits in the binary representation of x, y, and z, which are generated by the
system (4) implemented as the Simulink model with floating-point double-precision arithmetic.

The actions described above can be considered as a preliminary criterion for selecting
pseudorandom bits from chaotic time sequences.

3.2. Design of CPRNG

The general diagram for CPRNG from the output time series of chaotic systems is
shown in Figure 8.
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initial conditions, parameters
value, number of iterations

chaotic system

rejection bits

+

+

pseudorandom sequence

ci
bi,k...p bi,p+1...m

bi,k...m

si,k...m

Figure 8. The general scheme of CPRNG.

The initial conditions and parameter values are the keys of CPRNG, and they have to
be chosen to provide the chaotic behavior of the system. Lyapunov exponents diagrams are
useful for giving suitable parameter values. Iterations of the discretized chaotic system are
performed K times to reach the required sequence length. The bit balance criterion is used
to select the appropriate part from M bits for each time series. The XOR operation with
feedback is applied to the selected bits si,k...m, which improves the statistical properties of the
sequence bi,k...m. The bit sequence bi,k...m is divided into two identical-length subsequences
bi,k...p and bi,p+1...m, which are added by modulo 2 such that ci = bi,k...p ⊕ bi,p+1...m. The
last operation due to XOR properties is non-invertible and makes it impossible to retrieve
sequences bi,k...m by the output pseudorandom sequence ci, thus hiding the state of the
chaotic system at each iteration.

The applicability of the algorithm does not depend on the number of output system
variables; therefore, it is possible to use an array of chaotic systems.

3.3. FPGA-Implementation

Figure 9 shows the Simulink model of the suggested algorithm developed for the
Euler method. The pseudorandom binary sequences xbin, ybin, and zbin occur after the
post-processing of chaotic time series x, y, and z, respectively.

The Simulink-model based on system (2) and (3) was implemented on FPGA Cyclone
IV EP4CE115 using an HDL-coder to generate Verilog code and FPGA-in-the-loop MATLAB
tools for data capture from the target board. The target board DE2-115 with FPGA chip
EP4CE115 was connected to a PC by an Ethernet interface.

The chaotic attractor of the system (3) that was implemented on FPGA and transmitted
through the VGA output on the DE2-115 board is shown in Figure 10. It is similar to the
attractor in Figure 4.

If the developed generator is used as a separate module on FPGA with Q6.26 fixed-
point arithmetic and the Euler method is used to solve ODEs, the speed of pseudorandom
sequence generation can reach 1.2 Gbps at a clock frequency of 50 MHz.
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(a)

(b)

Figure 9. Simulink model of PRNG: (a) memristive chaotic circuit (2); (b) post-processing block.

Figure 10. Captured phase portrait of (2) obtained on FPGA.

3.4. Testing of CPRNG Based on One System

One of the most common statistical tests is the suite of statistical tests provided by
the National Institute of Standards and Technology (NIST SP 800-2). This suite consists of
15 tests. A binary sequence is marked as statistically safe if all the tests are successfully
passed [56].

Two test sequences were obtained for the Euler and fourth-order Runge–Kutta meth-
ods of numerical integration using the discrete model of the chaotic system.

We used the Euler method for ODEs (3), fixed-point calculation with rounding to zero,
and an accuracy of 32 bits to implement the proposed CPRNG by FPGA. The format of a
number was as follows:

• 1 bit defined the sign;
• 5 bits were used for the integer part;
• 26 bits were used for the fractional part.

This partition was made to avoid overflow and distortion of the calculations.
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According to the balance criterion (Figure 6), the bits from k = 17 to m = 32 of
each output time series were selected for the following application. The pseudorandom
sequence was formed by following the above-described algorithm (Figure 8). The last
bitwise operation was performed with p = 24 between b17...24 and b25...32. Accordingly,
a sequence of 8 bits in length was obtained from each state variable, including 24 bits for
one iteration of the chaotic system.

In the case of using the Runge–Kutta fourth-order method with double-precision
binary floating-point precision, each chaotic system output yields a sequence of 64-bit
lengths in format IEEE 764. The bits from k = 24 to m = 64 are picked up based on the
balance (see Figure 7) for further post-processing. At the next stage, the result of the XOR
operation between bi,24...44 and bi,45...64 forms a sequence of 20 bits. The 60 bit sequence for
one iteration is obtained for the whole system. The Matlab-Simulink software was used in
order to obtain pseudorandom sequences by Runge–Kutta’s fourth-order method.

To generate pseudorandom sequences, the following parameters were used: C = 1 F,
L = 3.0 H, α = 0.6, β = 1.52, and ∆t = 0.01. The NIST tests were performed on a
binary sequence with a length of 109 bits, which was divided into 1000 subsequences (with
1 million bits each).

The results of testing pseudorandom sequences are shown in Table 1.

Table 1. NIST statistical tests results of PRNG.

Euler’s Method,
FPGA Implementation,
32-bits Fixed-Point
Arithmetic

Runge–Kutta Fourth Order
Method, Matlab-Simulink
Implementation, Double-Precision
Floating-Point Arithmetic

Test p-Value/Proportion Status p-Value/Proportion Status

FT 0.504219/0.993 Pass 0.733899/0.986 Pass
BFT 0.922855/0.990 Pass 0.975644/0.987 Pass
CST 0.514124/0.993 Pass 0.305599/0.986 Pass
CST 0.811080/0.992 Pass 0.610070/0.987 Pass
RuT 0.757790/0.988 Pass 0.723804/0.988 Pass
LRuT 0.128132/0.990 Pass 0.969588/0.984 Pass
RaT 0.591409/0.991 Pass 0.713641/0.992 Pass
FFT 0.317565/0.990 Pass 0.494392/0.988 Pass
NOTT All 148 tests passed All 148 tests are passed
OTT 0.589341/0.984 Pass 0.142062/0.989 Pass
UT 0.118812/0.986 Pass 0.524101/0.991 Pass
AET 0.684890/0.986 Pass 0.508172/0.989 Pass
RET All 8 tests passed All 8 tests are passed
REVT All 18 tests passed All 18 tests are passed
ST 0.192724/0.987 Pass 0.686955/0.988 Pass
ST 0.182550/0.984 Pass 0.478839/0.993 Pass
LCT 0.522100/0.988 Pass 0.729870/0.987 Pass

For both types of arithmetic, all tests were successfully passed. This confirms the feasi-
bility of obtaining pseudorandom sequences through the application of the given method.

4. Coupled Memristive Structure-Based Chaotic Circuits for PRNG
4.1. Coupled Chaotic Systems without Synchronization

The enhancement of the CPRNG performance can be realized by combining two or
more simple chaotic systems in a certain way. This results in a system with more complex
behavior, numerous different variables, and control parameters.

There are several approaches to coupling systems; in particular, unidirectional, bidi-
rectional, ring, mixed, and so on [57,58]. All such coupling methods allow the occurrence
of complete synchronization between systems when their outputs become identical. This
situation is unacceptable for “good” CPRNG and should be avoided. We propose to use
the master–slave configuration to increase the number of control parameters and output
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variables, as shown in Figure 11. The connection circuit is needed to ensure a unidirec-
tional influence on the slave system. Several slave systems with different parameters
and/or initial conditions can be used to achieve better performance in terms of the speed
of pseudo-random sequence generation.

Figure 11. Block scheme of unidirectional coupled chaotic system.

To define the absence or presence of complete synchronization, we use the theory of
the conditional Lyapunov exponent as the test for stability [57,59]. The negative value of
the largest conditional Lyapunov exponents is the required condition for the asymptotically
stable behavior of the slave system.

Let us consider two chaotic memristive systems that are unidirectionally coupled
through a voltage buffer and resistor Rc, as shown in Figure 12. The slave system does not
affect the master system. The influence level of the master system on the slave system is
determined by the resistor Rc (R-coupling) and, depending on its value, the two systems
can be synchronized. Using the Kirchhoff laws and Equation (1), we obtain the system of
six differential equations: 

du1
dt = i1

C1
di1
dt = − u1+v1

L1
dz1
dt = i1(1− z1)− α1z1

du2
dt = i2+iin

C2
di2
dt = − u2+v2

L2
dz2
dt = (i2 + iin)(1− z2)− α2z2

(6)

where u1,2, i1,2, z1,2 are the state variables, C1,2 = 1 F, L1,2 = 3 H, α1,2 = 0.6, β1,2 = 1.52 are
the system parameters, v1 = β1(z2

1 − 1)i1, v2 = β2(z2
2 − 1)(i2 + iin), and iin = u1+v1−u2−v2

Rc
.

M1

−

+

v1

C1

− +
u1

L1

i1

−

+

Rc iin

L2

i2

C2

+ −
u2

M2

+

−

v2

Figure 12. The scheme of two unidirectionally coupled systems.

In Equation (6), the first three equations describe the master system and the last
three describe the slave system. The relation between the dynamics of the master and the
slave systems is illustrated in Figure 13. When Rc = 40 Ohm, the conditional Lyapunov
exponents of the slave system are λ1 = 0.035, λ2 = −0.017, and λ3 = −0.581; the largest
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one is greater than zero, confirming the preservation of the chaotic behavior of coupled
systems. The chaotic systems are not synchronized; their outputs differ from each other
and can be applied to form PRNG.

It is worthwhile to notice that the second Lyapunov exponent of the driven system
λ2 = −0.017 is less than zero, which is non-conventional for a chaotic system. However,
this can be explained as follows. The driven system is modified due to the presence of the
connection circuit. This means that it is not identical to the drive system [60]. The resistor
Rc impacts on the dynamics of the driven system even when the input signal is absent. If a
chaotic system exhibits chaotic behavior, the input signal can lead to the changing of Lyapunov
exponents, as is shown in [60–62].

If Rc = 3 Ohm, all of the conditional Lyapunov exponents are negative (λ1 = −0.018,
λ2 = −0.228, λ3 = −0.745), proving the possibility of synchronization. The dependence of
u1(u2) after the transient process is a straight line, and the output time series are the same
and statistically compromised.
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Figure 13. Desynchronization when (a) R = 40 Ohm and (b) synchronization when R = 3 Ohm.

To avoid complete synchronization at an arbitrary value of Rc, it is possible to modify
the coupling as shown in Figure 14, where unequal points of the schemes are coupled.
Then, at a nonzero value of the resistance Rc, the state variables of the master and the slave
system will be different. Consequently, it is possible to obtain more output state variables
and increase the efficiency of the PRNG by combining several systems.

L1

i1

C1

+ −
u1

M1

+

−

v1

−

+

Rc iin

L2

i2

C2

+ −
u2

M2

+

−

v2

Figure 14. Schematic of systems with modified coupling.

The mathematical model describing the two coupled systems in Figure 14 is identical
to (6) except that iin = v1−u2−v2

Rc
. When R = 3 Ohm, the values of the conditional Lyapunov

exponents are λ1 = −0.114, λ2 = −0.199, λ3 = −0.564. Although the largest conditional
exponent is negative, the complete synchronization cannot be established due to the
special connection.
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Another way to avoid complete synchronization is to use electric filters to connect the
systems. In the simplest case, those are reactive elements (inductor or capacitor) instead
of a dissipative connection through a resistor. The reactive element causes frequency-
dependent distortions of the input signal of the slave system, and full synchronization
cannot be possible. When two systems (2) are connected via an inductor (Figure 15),
the coupled systems model is as shown in (7).

M1

−

+

v1

C1

− +
u1

L1

i1

−

+

Lc iin

L2

i2

C2

+ −
u2

i

M2

+

−

v2

Figure 15. Schematic of systems coupled through inductance.

du1
dt = i1

C1
di1
dt = − u1+v1

L1
dz1
dt = i1(1− z1)− α1z1

du2
dt = i2+iin

C2
di2
dt = − u2+v2

L2
dz2
dt = (i2 + iin)(1− z2)− α2z2

diin
dt = u1+v1−u2−v2

Lc

(7)

where u1,2, i1,2, z1,2, iin are state variables; C1,2 = 1 F, L1,2 = 3 H, α1,2 = 0.6 and β1,2 = 1.52
are the system parameters, v1 = β(z2

1 − 1)i1, v2 = β(z2
2 − 1)(i2 + iin).

The last equation in (7) describes the connection via the inductor Lc (L-coupling).
The slave system is described by the last four equations in (7) and has four conditional Lya-
punov exponents that are equal—λ1 = 0, λ2 = −0.014, λ3 = −0.622, and λ4 = −1.4786—
when Lc = 3 H. The largest exponent is zero, which indicates a limit cycle that represents
the dynamics of the slave system.

The use of reactive elements for the coupling leads to the further complication of the
system. Note that a dissipative coupling of non-equivalent points, or an inertial coupling,
ensures the absence of only complete synchronization. A more complex type of chaotic
synchronization, such as generalized synchronization, can be established between systems,
and their states will be bound by a complex nonlinear dependence [58].

4.2. Testing of CPRNG Based on Coupled System

In order to demonstrate the effectivity of the models of coupled systems, two ap-
proaches were performed, including the coupling of non-equivalent points for R = 1 Ohm
(Figure 14) and the inertial coupling via an inductive element for Lc = 3 H (Figure 15).
Euler’s method with a fixed point of 32 bits was utilized for the models of differential
equations corresponding to the algorithm shown in Figure 8.

The bits from 17 to 32 were picked up from all of the output sequences of chaotic
numbers for the post-processing. The sequences with a length of 109 were obtained for the
testing, which was carried out using NIST. The testing results are shown in Table 2. One
can see that all statistical tests were successfully passed for both cases.

Finally, the described approach of CPRNG modeling can be applicable for other
continuous chaotic systems, but it is necessary to perform extra investigations.
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Table 2. NIST statistical tests results of PRNG.

Euler’s Method,
FPGA 32-bits Fixed-
Point Arithmetic
Implementation, Systems
with Modified Coupling (14)

Euler’s Method,
FPGA 32-bits Fixed-
Point Arithmetic
Implementation,
Systems Coupled
through Inductance (15)

Test p-Value/Proportion Status p-Value/Proportion Status

FT 0.385543/0.991 Pass 0.946308/0.987 Pass
BFT 0.846338/0.990 Pass 0.016037/0.995 Pass
CST 0.473064/0.993 Pass 0.377007/0.989 Pass
CST 0.136499/0.991 Pass 0.904708/0.988 Pass
RuT 0.522100/0.986 Pass 0.244236/0.990 Pass
LRuT 0.014961/0.994 Pass 0.538182/0.990 Pass
RaT 0.141256/0.989 Pass 0.044508/0.989 Pass
FFT 0.486588/0.994 Pass 0.603841/0.987 Pass
NOTT All 148 tests are passed All 148 tests passed
OTT 0.146982/0.984 Pass 0.820143/0.990 Pass
UT 0.266235/0.986 Pass 0.257004/0.985 Pass
AET 0.662091/0.991 Pass 0.729870/0.985 Pass
RET All 8 tests passed All 8 tests are passed
REVT All 18 tests passed All 18 tests are passed
ST 0.028244/0.998 Pass 0.943242/0.993 Pass
ST 0.358641/0.990 Pass 0.607993/0.989 Pass
LCT 0.422638/0.992 Pass 0.834308/0.997 Pass

5. Application
5.1. Image Encryption

The proposed method of generating pseudorandom sequences can be used to encrypt
any information that is transformable to a bitstream such as digital audio and video, text,
image, etc. Here, we show the application of CPRNG to image encryption. The typical way
to encrypt information by a symmetric stream cipher is shown in Figure 16. When PRNG
is based only on one chaotic system, the process of generating a keystream starts with a
secret key, which is the initial condition, and parameters for (2). Diffusion will continue a
typical classical scheme by adding a modulo 2 binary keystream and information stream.

Figure 16. Block scheme of the example of image encryption.

To obtain the pseudorandom sequence for image encryption, we used the following
parameters: C = 1 F, L = 3.0 H, β = 1.5, α = 0.5, and a double-precision floating-point
format performed according to the procedure described in Section 3.2 with k = 24, m = 64,
and p = 44. The size of test image Lena is 512× 512 pixels (see Figure 17a).
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(a) (b)

(c) (d)

Figure 17. Image encryption: (a) original image, (b) encrypted image, (c) decrypted image, (d) de-
crypted image by changing the sub key x0 on 2−35.

In Figure 17b, the encrypted test image is shown. The comparison of histograms of
the original and encrypted image (see Figures 18 and 19) shows the transformation from
nonuniform to nearly uniform distributions. Figure 19 confirms that the histogram analysis
cannot provide any clue to break the algorithm by statistical attacks on the encrypted image
as all the statistical information of the original image is lost after the encryption.

The correlation between components of color for the test image and encrypted image
is 0.0030 for component R, −0.0011 for G, and 0.0018 for B. The average pixel color value of
the original image is equal to 94.6445, and it changes to 127.5359 for the encrypted image,
which confirms an even distribution of colors. Moreover, there are no observed color image
contours as diffusion applies independently for each pixel, as shown in Figure 17b.
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Figure 18. Histogram of original image of (a) red, (b) green, and (c) blue components.
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Figure 19. Histogram of encrypted image of (a) red, (b) green, and (c) blue components.

Sensitivity to the initial condition suggests that any key from the keyspace is equal
and valid. The smallest change of the key (initial condition and parameters) should make
correct encryption impossible. Figures 17d and 20 show the failure of encryption when
there is a difference in the x(0) equal to 2−35. The correlation between components of color
in the original image (Figure 17a) and decrypted image in Figure 17d are equal to 0.0169
for red, −0.0007 for green, and −0.0005 for blue components. The average pixel color value
of the encrypted image is 127.5897, and this confirms that the proposed method is sensitive
to initial conditions.
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Figure 20. Histogram of encrypted image by changing sub key x(0) on 2−35 of (a) red, (b) green, and
(c) blue components.

5.2. Security Analysis

The security of the suggested encryption algorithm is guaranteed by the security
of a generator due to the stream method being utilized. The inefficiency of the static
approach to non-authorized decryption is approved by the successfully passed NIST STS
tests. The analysis of the histograms and pixel correlation is an extra confirmation of the
security of the image encryption.

Key space estimation. When only one chaotic system is used, the encryption key
consists of five sub keys: three initial conditions—(x(0), y(0), z(0))—and four parameters—
L, C, α, and β—of the chaotic system (2). The size of the keyspace is defined by a number
of valid different values of these sub-keys. The values of the initial conditions are restricted
with regard to the sensitivity of the encryption algorithm to their changeability and is
(235)n, where n = 3, for a three-dimensional system. The system’s parameter values impact
its dynamics for each iteration, providing, in this case, minimal sensitivity to the parameter
changes. The computational precision following the IEEE 754 binary floating-point format
includes 52 explicitly stored bits [63]. Henceforth, there are (252)4 different values for
four parameters. For a three-dimensional memristive structure-based chaotic system, the
number of secret keys is (235)3(252)4 = 2313.

In the case of a few chaotic systems being used, as shown in Figure 11, which are
connected by one of the methods proposed in Section 4, the number of sub-keys increases
because of the connection parameter Rc or Lc and state variable iin for an inductive cou-
pling. For the connection via a resistor, the five parameters L2, C2, α2, β2, and Rc and three
initial conditions (u2(0), i2(0), z2(0)) are the additional sub-keys; for the connection via an
inductor, the five parameters L2, C2, α2, β2, and Lc and four initial (u2(0), i2(0), z2(0), iin(0))
conditions are the additional factors. Thus, the connection scheme of a one drive-one driven
system provides the keyspace 2313(235)3(252)5 = 23132365 = 2678 for a six-dimensional
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R-coupled system and 2313(235)4(252)5 = 23132400 = 2713 for a seven-dimensional L-
coupled system.

For k additional slave systems and R-coupling, the keyspace is increased to 2313(2365)k.
In case of L-coupling, the number of keys is equal to 2313(2400)k. This result shows a larger
keyspace than that obtained for the fractional-order hyperchaotic system (FOHS) [41]. A
FOHS supports the key space of (252)7+n, where n is the dimension of the system. In the
proposed method, the number of keys of FOHS is (252)7+6 = 2676 for n = 6, which means
k = 1. This is less than provided within our method for the six-dimensional system. It
can be seen that the difference becomes more significant with the increase of the system
dimension. Such a larger keyspace enhances protection against brute-force attacks.

In addition, it is evident from histogram analysis that the distribution of colors in the
encrypted image is closer to uniform than in [41,42].

6. Conclusions

In the paper, the model of a memristive structure-based chaotic system is used to
create CPRNG. Two methods of numerical simulation—Euler’s and Runge–Kutta’s—were
applied and investigated to transform the model of differential equations into a discrete
system. This transformation was conducted to find a timestep that does not lead to the
collapsing of chaotic time series.

The bit balance criterion for separating random and non-random parts of the binary
representation of chaotic time series was suggested. After applying bit balance to chaotic
time series, the simple post-processing technique based on two XOR operations allows all
the NIST SP 800-22 statistical tests to be passed. Nevertheless, we admit the possibility of
using more complex post-processing algorithms.

The special connections of simple chaotic systems to arrays that exclude the complete
synchronization are proposed in order to improve the quality of CPRNG and make it
scalable taking into account the available resources. This is the practical methodology to
design a high-dimensional chaotic system for CPRNG.

The keyspace of CPRNG with one memristive structure-based system is equal to
2313. Increasing the dimension of the chaotic system by the special connections of k slave
subsystems enlarges the number of keys up to 2313(2365)k for R-coupling and 2313(2400)k

for L-coupling.
The FPGA implementation of the proposed method for the creation of pseudo-random

sequences confirmed the possibility of using it in real-time applications. The symmetric
image encryption is presented as an illustrative example of the practical use of the proposed
method of generating pseudorandom sequences.
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