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Abstract: An implicit finite difference scheme for the numerical solution of a generalized Black–
Scholes equation is presented. The method is based on the nonstandard finite difference technique.
The positivity property is discussed and it is shown that the proposed method is consistent, stable
and also the order of the scheme respect to the space variable is two. As the Black–Scholes model
relies on symmetry of distribution and ignores the skewness of the distribution of the asset, the
proposed method will be more appropriate for solving such symmetric models. In order to illustrate
the efficiency of the new method, we applied it on some test examples. The obtained results confirm
the theoretical behavior regarding the order of convergence. Furthermore, the numerical results
are in good agreement with the exact solution and are more accurate than other existing results in
the literature.

Keywords: generalized Black–Scholes equation; option valuation; nonstandard finite difference;
positivity

1. Introduction

An option is the right, but not the obligation, to buy or sell an underlying asset at a
specific price on or before a certain date at a fixed strike price. European call (put) option
and American call (put) option are two types of known options. European option can be
exercised only on expiration date T. For American option, exercise is permitted at any time
t ≤ T. It was shown in [1] that option pricing can be modeled using a partial differential
equation of second order. The resulting equation is called the Black–Scholes equation. If the
coefficients are constant or independent of the spatial variable, it can be transformed into
the standard heat equation and can be solved exactly. However, in the financial market,
the coefficients can depend on the time and the asset price. In such situation the analytical
solution of the generalized Black–Scholes model is not available. Therefore, numerical
simulations are essential to obtain information about the behavior of the solutions. It
is important to develop numerical methods that reproduce the qualitative properties of
the solution.

Here, we consider the generalized Black–Scholes model as given in [2]:

− ∂C
∂t
− 1

2
x2σ2(x, t)

∂2C
∂x2 − xr(t)

∂C
∂x

+ r(t)C = 0, (x, t) ∈ R+ × (0, T), (1)
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with the following conditions:

C(x, T) = max(x− K, 0), x ∈ R+, (2)

C(0, t) = 0, t ∈ [0, T]. (3)

Equation (1) is a partial differential equation used for pricing options. The function
C(x, t) is the European call option price with asset price x and time t. T is the maturity, K
is the price of strike, r(t) is the risk-free interest rate, and σ(x, t) is the volatility function
of the underlying asset and time. When the coefficients are constant functions, we get the
classical Black–Scholes model. Following [2] we consider the above model on a truncated
domain R = (0, Smax) × (0, T), where Smax > K is a suitably chosen positive number
so that

− ∂C∗

∂t
− 1

2
x2σ2(x, t)

∂2C∗

∂x2 − xr(t)
∂C∗

∂x
+ r(t)C∗ = 0, (x, t) ∈ R (4)

C∗(x, T) = max(x− K, 0), x ∈ [0, Smax], (5)

C∗(0, t) = 0, t ∈ [0, T], (6)

C∗(Smax, t) = Smax − Ke−
∫ T

t r(s)ds, t ∈ [0, T]. (7)

The result about existence and uniqueness of a solution of (4)–(7) when σ(x, t) and
r(t) are constant functions can be found in [3,4]. It is proved in [5] that if C and C∗ are
solutions of (1)–(3) and (4)–(7), respectively, then

|C(x, t)− C∗(x, t)| ≤ K exp

(
−

[
ln

Smax

x

]2

2
[

min
R̄

σ2
]
(T − t)

)
, (x, t) ∈ R. (8)

The terminal condition (5) is not a smooth one. Therefore, to guarantee the convergence
of the numerical solution, we substitute the terminal condition by a four order smooth
function (see in [2]) and obtain the following model:

− ∂u
∂t
− 1

2
x2σ2(x, t)

∂2u
∂x2 − xr(t)

∂u
∂x

+ r(t)u = 0, (x, t) ∈ R, (9)

u(x, T) = ψε(x− K), x ∈ [0, Smax], (10)

u(0, t) = 0, t ∈ [0, T], (11)

u(Smax, t) = Smax − Ke−
∫ T

t r(s)ds, t ∈ [0, T], (12)

where the function ψε is defined as follows:

ψε(y) =


y, y > ε,
c0 + c1y + . . . + c9y9, −ε ≤ y ≤ ε,
0, y < −ε,

(13)

for a sufficiently small ε > 0, ψε(y) satisfying

ψε(−ε) = ψ′ε(−ε) = ψ′′ε (−ε) = ψ′′′ε (−ε) = ψ
(4)
ε (−ε) = 0,

ψε(ε) = ε, ψ′ε(ε) = 1, ψ′′ε (ε) = ψ′′′ε (ε) = ψ
(4)
ε (ε) = 0.

(14)
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By using these conditions one can easily find that

c0 =
35

256
ε, c1 =

1
2

, c2 =
35
64ε

, c4 = − 35
128ε3 ,

c6 =
7

64ε5 , c8 = − 5
256ε7 , c3 = c5 = c7 = c9 = 0.

(15)

The proof of the existence and uniqueness of a solution of (9)–(12) can be found in [3]. A
proof of the following result can also be found there:

Proposition 1. There exists a positive constant P independent of ψε(x− K) such that

|C∗(x, t)− u(x, t)| ≤ P‖ψε(x− K)−max(x− K, 0)‖L∞ (16)

for (x, t) ∈ R̄.

From (8) and (16) we have that we can take the solution of the modified models (9)–(12)
closer to that of the original models (1)–(3) by choosing a sufficiently large value for Smax
and a sufficiently small value for ε.

Traditionally, important requirements for constructing a numerical method are the
investigation of the consistency of the discrete scheme with the original differential equa-
tion and linear stability analysis with smooth solutions [6–10]. These requirements are
important, because they are necessary to ensure the convergence of the discrete solution to
the exact one, but for the explicit numerical methods based on standard finite difference
approaches. However, most of the time, the qualitative properties of the true solution are
not reproduced by the numerical solution. Therefore, this might result in a calamitous
erroneous outcome. One way to overcome this disadvantage is to use nonstandard finite
difference methods (NSFDs). The origin of the NSFD methods began with Mickens in
1989 [11]. A summary of the known results up to 1994 are given in [12]. The simplic-
ity in construction and the possiblity of their extensions allowed researchers to apply
NSFD schemes to solve several complex differential equation models that arise at different
disciplines. A scheme is called nonstandard if at least one of the following conditions
is satisfied:

1. The usual denominator h or h2 of the discrete first or second order derivatives is
replaced by a non-negative function Φ such that

Φ(h) = h + o(h2) or Φ(h) = h2 + o(h3) as 0 < h→ 0. (17)

Some examples of Φ(h) satisfying these conditions are

h, sin h,
1− e−λh

λ
or 4 sin2(

h
2
). (18)

2. The nonlinear terms that appear in the differential equation are approximated in a
non-local way, for instance, the nonlinear terms u2 and u3 can be replaced by (see [13]):

u2 ≈ au2
i + buiui+1, a + b = 1, a, b ∈ R,

u3 ≈ au3
i + (1− a)u2

i ui+1, a ∈ R.
(19)

In addition to the usual properties of consistency, stability and convergence, the NSDF
methods give rise to numerical solutions that also maintain essential qualitative properties
of the solutions [14–21].

In this paper, we introduce a new scheme for the numerical solution of the generalized
Black–Scholes equation. We propose a non-standard finite difference method, where
we use a non-local approximation of the reaction term of the generalized Black–Scholes
equation, combined with an implicit time step technique. The method is conditionally
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stable, positivity preserving and of second-order of convergence with respect to the space
variable. Our proposed method has some advantages: A uniform mesh is used; thus, the
analysis is simple and it has better accuracy and convergence rate.

The rest of the paper is organized as follows. In Section 2, we review the works done
on the generalized Black–Scholes equation and the real options. In Section 3, we propose a
NSFD scheme for such a model and we present the analysis of the method concerning the
positivity preserving property, Stability, and truncation error. Furthermore, the numerical
results obtained from the new method are presented and compared with the results in [2].
The last section describes the features of the new method, the results obtained, and ends
with the presentation of ideas for future works.

2. Literature Review

In this section, we review the works done on the generalized Black–Scholes equation.
In addition, at the end of the section, we will mention some of the work done related to
real options. There are several methods for solving the generalized Black–Scholes equation
in the literature. Cen and Le [2] presented an accurate finite difference method, based on
a central difference discretization in the space variable using a piecewise uniform mesh
and an implicit method in the temporal variable. Cen et al. [22] proposed an exponential
scheme in the temporal variable combined with a central difference approach on a spatial
piecewise uniform mesh. Kadalbajoo et al. [23] suggested a cubic B-spline collocation
method for the generalized model with second order accuracy in both space and time.
A fitted finite volume method was used in [24] for the generalized model, showing a
second-order convergence. A Cubic spline method was proposed in [25] for a generalized
Black–Scholes equation. In that work, the implicit Euler method was used in the temporal
discretization, together with a cubic polynomial spline approximation for the spatial
discretization. In [26], Mohammadi achieved third order of accuracy in space considering
a quintic B-spline collocation method and first- and second-order of accuracy in time using
the backward Euler method and the Crank–Nicolson method, respectively. In [27], a high-
order numerical method was obtained. In this method a two-step backward differentiation
formula is used in the temporal discretization while a high-order difference approximation
was used in the spatial discretization. This gives a second order of accuracy in time and
third order of accuracy in space.

In [28], Clevenhaus et al. added a penalty term to the American option problem, by
doing this the problem was reduced to a PDE on a fixed domain. Their presented penalty
term is bounded by an initial guess of the free boundary value and is thus independent of
the solution at the last time step. The novelty and advantage of their approach consist in
introducing a time-dependent penalty function which led to the construction of an efficient
adaptive numerical scheme. In [29] a new method for pricing American options by Boire et
al. is presented. The numerical results show that their method successfully reduces the bias
plaguing the standard importance sampling method across a wide range of moneyness
and maturities, with negligible change to estimator variance.

In [30], considering several uncertainty factors: a renewable energy production
amount, an R and D investment amount, a unit price, a risk-free interest rate, and the R
and D investment in the six types of renewable energy sources: biomass energy, waste
energy, photovoltaic energy, solar thermal energy, marine energy, and wind power energy
are evaluated. They utilize the system dynamics approach using the Black–Scholes model
and conducts sensitivity analyses of the uncertainty factors. Larissa et al. [31] investigate
the contribution of adjusted net savings to sustainable economic growth for 10 Central and
Eastern European and Baltic nations using data corresponding to the period 2005–2016.
Their results indicated that adjusted net savings impacted on the GDP across the 10 coun-
tries analyzed. A bibliometric analysis to examine the features of Carbon capture and
storage (CCS) literature including the research focus and trends as well the real options
uncertainty and models, types of options, and valuation techniques in [32] are presented.
Their results provide energy and environmental policy-makers and CCS project planners
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with valuable insights into various aspects of CCS policy and project design. For real
options in the field of agriculture, we can refer to the article [33] in which the authors
investigated a hydroponic farm considering uncertainty, sustainability, and the system’s
utility in the dominant desert geography.

3. Method and Main Results
3.1. Construction of the New Scheme

In this subsection, by using the strategy of nonstandard discretization methods for
generalized Black–Scholes models (9)–(12), we consider the forward difference for ∂u

∂t , the

centered differences for ∂u
∂x , ∂2u

∂x2 , and ξ(U j
i+1 +U j

i−1)+ ( 1
2 − ξ)(U j+1

i+1 +U j+1
i−1 ) to approximate

the u in the reaction term. Thus, we propose a new discretization scheme for (9) given by

−
U j+1

i −U j
i

∆t
− 1

2
(σ

j
i )

2
xi

2 U j
i−1 − 2U j

i + U j
i+1

h2 − rjxi
U j

i+1 −U j
i−1

2h

+ rj
(

ξ(U j
i+1 + U j

i−1) + (
1
2
− ξ)(U j+1

i+1 + U j+1
i−1 )

)
= 0,

(20)

where U j
i , σ

j
i and rj are approximations of u(x, t), σ(x, t) and r(t), respectively at the grid

point (xi, tj) with xi = ih, tj = j∆t (i = 1, . . . , N − 1; j = 0, . . . , M − 1) and h = Smax
N ,

∆t = T
M .

The above discretization may be written for each j in a matrix form as

AjU j + dj = BjU j+1 + dj+1, (21)

where U j = (U j
1, . . . , U j

N−1)
T

and U j+1 = (U j+1
1 , . . . , U j+1

N−1)
T

are vectors containing ap-
proximations to u at time levels tj and tj+1, respectively. Furthermore, dj and dj+1 are
column vectors that contain the known boundary-values and zeros, and Aj and Bj are
tridiagonal matrices of the form

Aj =

{
− 1

2

(σ
j
i xi

h

)2

+
rjxi
2h

+ ξrj;
1

∆t
+
(σ

j
i xi

h

)2

;−1
2

(σ
j
i xi

h

)2

− rjxi
2h

+ ξrj

}
, (22)

Bj =

{
− (

1
2
− ξ)rj;

1
∆t

;−(1
2
− ξ)rj

}
. (23)

3.2. Characteristics of the New Scheme

This subsection is concerned with the positivity preservation, stability, consistency
and convergence properties of the proposed method. Firstly, we present some definitions
and results that will be needed in the proof of Theorem 3.

Definition 1. A matrix A = (aij) is called essentially positive if A is irreducible and aij ≥ 0,
i 6= j.

Theorem 1 ([34]). A matrix A ∈ Zn×n is a nonsingular M-matrix if and only if A−1 exists and
A−1 ≥ 0.

Definition 2. A matrix A = (aij) is called an L-matrix if aii > 0, ∀i ∈ N and aij ≤ 0, i 6= j.

Theorem 2 ([34]). Let A be an L-matrix which is strongly row or column diagonally dominant,
i.e., Ae > 0 or eT A > 0T . Then, A is a nonsingular M-matrix.
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Theorem 3. If for i = 1, . . . , N − 1; j = 0, . . . , M− 1 it is

1
2
≤ ξ ≤

(
σ

j
i xi
h

)2
− rjxi

h

2rj , (24)

then, the method given in (21) is positivity preserving.

Proof. From (21), we have

U j = (Aj)
−1

BjU j+1 + (Aj)
−1

(dj+1 − dj), (25)

In matrix form, we have

bj
1 cj

1
aj

2 bj
2 cj

2
. . . . . . . . .

aj
N−2 bj

N−2 cj
N−2

aj
N−1 bj

N−1


︸ ︷︷ ︸

Aj


U j

1

...

U j
N−1

+


aj

1U j
0

...

cj
N−1U j

N


︸ ︷︷ ︸

dj

=



ej
1 f j

1
dj

2 ej
2 f j

2
. . . . . . . . .

dj
N−2 ej

N−2 f j
N−2

dj
N−1 ej

N−1


︸ ︷︷ ︸

Bj


U j+1

1

...

U j+1
N−1

+


dj

1U j+1
0

...

f j
N−1U j+1

N


︸ ︷︷ ︸

dj+1

(26)

where

aj
i = −

1
2

(σ
j
i xi

h

)2

+
rjxi
2h

+ ξrj, bj
i =

1
4t

+
(σ

j
i xi

h

)2

cj
i = −

1
2

(σ
j
i xi

h

)2

− rjxi
2h

+ ξrj

dj
i = −(

1
2
− ξ)rj, ej

i =
1
4t

, f j
i = −(1

2
− ξ)rj, i = 1, . . . , N − 1.

(27)

As the final condition is positive, if (Aj)
−1

> 0, Bj ≥ 0, and(dj+1− dj) > 0, then using
backward recursion we get that U j is positive for every j. The condition (Aj)

−1
> 0 holds

if Aj is an M-matrix.
To be Aj an M-matrix it should happen that

−1
2

(σ
j
i xi

h

)2

+
rjxi
2h

+ ξrj ≤ 0, (28)

−1
2

(σ
j
i xi

h

)2

− rjxi
2h

+ ξrj ≤ 0. (29)

From (28), we should have

ξ ≤

(
σ

j
i xi
h

)2
− rjxi

h

2rj , (30)
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and from (29), we should have

ξ ≤

(
σ

j
i xi
h

)2
+ rjxi

h

2rj . (31)

On the other hand, for the non-negativity of Bj, it is sufficient to have

−(1
2
− ξ)rj ≥ 0 =⇒ ξ ≥ 1

2
. (32)

Then, from (30)–(32), if we choose ξ so that

1
2
≤ ξ ≤

(
σ

j
i xi
h

)2
− rjxi

h

2rj , i = 1, . . . , N − 1, (33)

then (Aj)
−1

> 0 and Bj ≥ 0. Now, we show that (dj+1 − dj) is positive:

dj+1 − dj =


dj

1U j+1
0

...

f j
N−1U j+1

N

−


aj
1U j

0

...

cj
N−1U j

N

 (34)

The first boundary is zero, therefore it is to show that f j
N−1 > 0 and cj

N−1 < 0. As

ξ ≥ 1
2 , then f j

N−1 ≥ 0. On the other hand, according to (33), cj
N−1 is negative, and thus the

theorem is proved.

Theorem 4. The proposed method is conditionally stable and convergent. Furthermore, the local
truncation error is an O(h2, ∆t).

Proof. Under condition (24), Aj = [Aj
ir] is similar to a symmetric tridiagonal matrix, so the

eigenvalues of Aj, λi(Aj), i = 1, . . . , N, are real [34]. Furthermore, Aj is row diagonally
dominant with

δi = |A
j
ii| −∑

r 6=i
|Aj

ir| =
1

∆t
+ 2ξrj, i = 1, . . . , N − 1, (35)

which yields ‖(Aj)
−1‖∞ ≤ max 1

δi
(see in [34], Proposition 1.3). Therefore, we have

‖(Aj)
−1‖∞ ≤

1
1

∆t + 2ξrj
, (36)

and by combining with ‖Bj‖∞ = 1
∆t + 2ξrj − rj, we obtain

ρ((Aj)
−1

Bj) ≤ ‖(Aj)
−1

Bj‖∞ ≤ ‖(Aj)
−1‖∞‖Bj‖∞ ≤

1
∆t + 2ξrj − rj

1
∆t + 2ξrj

< 1, (37)
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where ρ((Aj)
−1Bj) is the spectral radius of (Aj)

−1Bj. Therefore, the method is stable
(see [35], p. 54) and then, via the Lax-theorem, convergent. The local truncation error is
given by

T j
i =−

u(xi, tj+1)− u(xi, tj)

∆t
−

(σ
j
i )

2x2
i

2

(u(xi−1, tj)− 2u(xi, tj) + u(xi+1, tj)

h2

)
− rjxi

u(xi+1, tj)− u(xi−1, tj)

2h

+ rj
(

ξ(u(xi+1, tj) + u(xi−1, tj)) + (
1
2
− ξ)(u(xi+1, tj+1) + u(xi−1, tj+1))

)
.

(38)

By Taylor’s expansion, we have

u(xi, tj+1) =uj
i + ∆t

(∂u
∂t

)j

i
+

∆t2

2!

(∂2u
∂t2

)j

i
+ . . . ,

u(xi+1, tj) =uj
i + h

(∂u
∂x

)j

i
+

h2

2!

(∂2u
∂x2

)j

i
+

h3

3!

(∂3u
∂x3

)j

i
+

h4

4!

(∂4u
∂x4

)j

i
+ . . . ,

u(xi−1, tj) =uj
i − h

(∂u
∂x

)j

i
+

h2

2!

(∂2u
∂x2

)j

i
− h3

3!

(∂3u
∂x3

)j

i
+

h4

4!

(∂4u
∂x4

)j

i
+ . . . ,

u(xi+1, tj+1) =uj
i + h

(∂u
∂x

)j

i
+ ∆t

(∂u
∂t

)j

i
+

h2

2!

(∂2u
∂x2

)j

i
+

∆t2

2!

(∂2u
∂t2

)j

i

+ h∆t
( ∂2u

∂x∂t

)j

i
+ . . . ,

u(xi−1, tj+1) =uj
i − h

(∂u
∂x

)j

i
+ ∆t

(∂u
∂t

)j

i
+

h2

2!

(∂2u
∂x2

)j

i
+

∆t2

2!

(∂2u
∂t2

)j

i

− h∆t
( ∂2u

∂x∂t

)j

i
+ . . . ,

(39)

and by substituting these expressions in (38), we obtain

T j
i =

(
− ∂u

∂t
− 1

2
x2σ2(x, t)

∂2u
∂x2 − xr(t)

∂u
∂x

+ r(t)u

)j

i

+ rj∆t
(∂u

∂t

)j

i
+

rj

2
h2
(∂2u

∂x2

)j

i
− 1

2
∆t
(∂2u

∂t2

)j

i
+

rj

2
∆t2
(∂2u

∂t2

)j

i
.

(40)

As u is the solution of Equation (9), then(
− ∂u

∂t
− 1

2
x2σ2(x, t)

∂2u
∂x2 − xr(t)

∂u
∂x

+ r(t)u

)j

i

= 0. (41)

Therefore, the principle term of the local truncation error is

rj∆t
(∂u

∂t

)j

i
+

rj

2
h2
(∂2u

∂x2

)j

i
− 1

2
∆t
(∂2u

∂t2

)j

i
+

rj

2
∆t2
(∂2u

∂t2

)j

i
, (42)

which completes the proof.

3.3. Numerical Results

In this subsection, we give some numerical examples to confirm the theoretical re-
sults. In the last two examples, the results of our method are compared with the results
obtained in [2]. The values of volatility and interest rate parameters have been taken
from the works in [2,22,23,25,27]. These values are given in Table 1 with references. The
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other parameters for calculating the option price of the (9)–(12) model to all examples are
equal T = 1, K = 25, Smax = 100 and ε = 10−4. As in [2], we have used the approximate
solution obtained for N = 211 and M = 210 as a reference solution on the mesh points. We
compute the maximum error as follows:

EN,M = max
i,j
|UN,M

ij − Ū(xi, tj)|, (43)

where Ū(x, t) is a linear interpolation of the approximate solution U211,210
to get solu-

tions at other points. Furthermore, we have used the following formula to compute the
convergence rate:

R̄N,M =

log
( EN,M

E2N,M

)
log 2

. (44)

Table 1. Values of the volatility and interest rate parameters.

σ r

Example 1 0.2 + 0.2(1− t)
[
(

x
25
− 1.2)

2
/((

x
25

)
2
+ 1.44)

]
[22] 0.04 [27]

Example 2 0.2
[
1 + 0.1(1− t)(

x
1 + x

)
]

[22] 0.04 [27]

Example 3 0.4(2 + (T − t) sin(x)) [27] 0.06 [2]

Example 4 0.4(2 + t sin(x)) [23] 0.06 [2]

Example 5 0.4(1 + te−x) [23] 0.1 + 0.02 sin(10Tt) [24]

Example 6 0.2(1 + te−x) [2] 0.06 [2]

Example 7 0.4(2 + sin x) [2] 0.06 [2]

The error estimates along with the convergence rates, obtained with the proposed
NSFD method, are listed in Tables 2–8. From Tables 2–8, we see that the convergence order
in space is almost 2, which confirms the estimate given in Theorem 4.

Table 2. Errors and rates of convergence obtained by NSFD method for Example 1.

M = 1024 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

EN,M 1.54× 10−1 7.43× 10−2 3.54× 10−2 1.53× 10−2 5.76× 10−3 1.36× 10−3

RN,M 1.056 1.068 1.207 1.415 2.083 -

Table 3. Errors and rates of convergence obtained by NSFD method for Example 2.

M = 1024 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

EN,M 1.54× 10−1 7.43× 10−2 3.54× 10−2 1.53× 10−2 5.76× 10−3 1.36× 10−3

RN,M 1.056 1.068 1.207 1.415 2.083 -

Table 4. Errors and rates of convergence obtained by NSFD method for Example 3.

M = 1024 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

EN,M 4.39× 10−1 5.75× 10−2 2.27× 10−2 7.61× 10−3 1.76× 10−3 3.51× 10−4

RN,M 2.935 1.338 1.579 2.107 2.332 -
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Table 5. Errors and rates of convergence obtained by NSFD method for Example 4.

M = 1024 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

EN,M 4.75× 10−1 8.48× 10−2 3.29× 10−2 9.65× 10−3 2.67× 10−3 5.38× 10−4

RN,M 2.485 1.366 1.770 1.850 2.314 -

Table 6. Errors and rates of convergence obtained by NSFD method for Example 5.

M = 1024 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

EN,M 1.90× 10−1 9.26× 10−2 4.23× 10−2 1.73× 10−2 5.15× 10−3 1.10× 10−3

RN,M 1.042 1.131 1.289 1.749 2.227 -

Table 7. Comparison of errors and rates of convergence obtained by NSFD method and the method
by Cen and Le [2] for Example 6.

M = 1024 N = 128 N = 256 N = 512 N = 1024

Results for NSFD method EN,M 3.33× 10−2 1.44× 10−2 5.30× 10−3 1.25× 10−3

RN,M 1.204 1.449 2.082 -

Results for Cen and Le [2] EN,M 6.80× 10−2 3.12× 10−2 1.25× 10−2 3.41× 10−3

RN,M 1.122 1.312 1.880 -

Table 8. Comparison of errors and rates of convergence obtained by NSFD method and the method
by Cen and Le [2] for Example 7.

M = 1024 N = 128 N = 256 N = 512 N = 1024

Results NSFD method EN,M 3.53× 10−2 1.03× 10−2 2.71× 10−3 5.38× 10−4

RN,M 1.773 1.933 2.331 -

Results for Cen and Le [2] EN,M 5.71× 10−2 1.94× 10−2 5.15× 10−3 1.05× 10−3

RN,M 1.551 1.919 2.284 -

It can be seen from Tables 6 and 7 the good performance of the proposed method,
concerning accuracy and convergence rates. Figures 1 and 2 show some computed solutions
for N = M = 64 and ε = 10−4, showing the positivity preserving behavior.
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Figure 1. Computed values of U(x, t) for Example 6 with N = M = 64 and ε = 10−4.
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Figure 2. Computed values of U(x, t) for Example 7 with N = M = 64 and ε = 10−4.

4. Conclusions

In this paper, the generalized Black–Scholes equation for European option pricing is
studied. To numerically solve this equation, a non-standard finite difference method has
been used. In the proposed method, a non-local expression to approximate the reaction
sentence of the generalized Black–Scholes and an implicit time step technique is used.

The theory results show that the proposed scheme is positivity preserving, stable and
the order of the scheme with respect to the space variable is two. To confirm the theory
results and good performance of the new method the option price for different values of
volatility and interest rates is calculated. The numerical results confirm the theoretical
behavior regarding the order of convergence for Theorem 4 (see Tables 2–8). For the last
two examples, the option price values are plotted for all time levels, which shows that
the new method is positive and non-oscillation (see Figures 1 and 2). Furthermore, the
obtained results are more accurate than other existing results in literature.

The results obtained indicate that non-standard difference schemes may be promising
for solving problems which may have an impact on the stock price such as nonlinear
Black–Scholes equations. In our subsequent investigation, we intend to address these
problems using non-standard methods.
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