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Abstract: A continuous measure of symmetry and the Voronoi entropy of 2D patterns representing
Voronoi diagrams emerging from the Penrose tiling were calculated. A given Penrose tiling gives rise
to a diversity of the Voronoi diagrams when the centers, vertices, and the centers of the edges of the
Penrose rhombs are taken as the seed points (or nuclei). Voronoi diagrams keep the initial symmetry
group of the Penrose tiling. We demonstrate that the continuous symmetry measure and the Voronoi
entropy of the studied sets of points, generated by the Penrose tiling, do not necessarily correlate.
Voronoi diagrams emerging from the centers of the edges of the Penrose rhombs, considered nuclei,
deny the hypothesis that the continuous measure of symmetry and the Voronoi entropy are always
correlated. The Voronoi entropy of this kind of tiling built of asymmetric convex quadrangles equals
zero, whereas the continuous measure of symmetry of this pattern is high. Voronoi diagrams generate
new types of Penrose tiling, which are different from the classical Penrose tessellation.

Keywords: symmetry; Penrose tiling; Voronoi entropy; continuous symmetry measure; ordering

1. Introduction

The notion of ordering is one of the most fundamental and, at the same time, contro-
versial notions in physics. The Cambridge dictionary, for example, defines ordering as
“the process of putting something in a particular order”. Thus, “ordering” is defined via
“order”, which is at least problematic from the logical point of view. An ordered field in
mathematics is defined as a field together with the total ordering of its elements, which is
compatible with the field operations. The field of real numbers is a basic example of an
ordered field, and every Dedekind-complete ordered field is isomorphic to the reals [1].
However, even in mathematics, the notion of ordering is ambiguous, and lays on the
crossroad of mathematics and psychology [2]. In physics, the situation is much more
complicated. an excellent review of the problem is found in Ref. [3], discussing the relation
between ordering, complexity, and information. In our paper, we address ordering in 2D
patterns. Consider a set of N points located in the same plane. How can the orderliness
of this pattern be quantified? There exist various pathways of quantifying an order in 2D
patterns, including calculation of the Voronoi entropy [4–13], and use of the Minkowski
functionals [14,15] and correlation functions [16]. The Voronoi tessellation was already
known to Rene Descartes in the 17th century [5]. Descartes proved that the distribution of
matter in the Universe is characterized by vortices that are centered at fixed stars, using
these tessellations [5,13]. The idea was developed by Georgy Voronoi in 1908 [4], and it
was broadly implemented for quantifying the ordering inherent for 2D patterns [6–12].

We put forward the hypothesis that actual ordering in physical systems may be identi-
fied with symmetrizing of the system. That is, presenting elements of symmetry into an
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initially disordered physical system will necessarily order the system and consequently
decrease its entropy [17,18]. It was demonstrated that imposing symmetry restrictions
on an initially disordered system of elementary magnets diminishes its entropy [17,18].
The reasonable question is formulated as follows: how can symmetrizing of the system
be quantified? Avnir, Zabrodsky and other co-workers [19–23] recently presented a con-
tinuous measure of a pattern (seen as a 2D set of points), which is a fundamentally new
approach to quantifying symmetry. According to their measure, the symmetry can be
quantified by the sum of minimum squared distances that are required to move the points
of an original shape in order to obtain a symmetrical shape. The suggested measure is
applicable in any dimensions and to various types of symmetry [19–24]. This continuous
measure broke the binary “yes-no” paradigm traditionally used for the analysis of sym-
metry of patterns [19–24]. This approach was successfully exploited for quantification of
the symmetry of nano-clusters [25], protein oligomers [26], transition metal oxide octa-
hedral molecules [27], electronic wave functions [28], droplet clusters [29] and biological
objects [30].

We propose to compare the quantifying of the ordering of 2D patterns attained with the
Voronoi entropy with that estimated with the continuous measure of symmetry, introduced
and developed in Refs. [19–24]. As an example, we take the P3-type Penrose tiling [31]. A
Penrose tiling, depicted in Figure 1, is an aperiodic tiling that has a five-fold symmetry.
Translational symmetry is absent in Penrose tiling; on the other hand, the Penrose tiling
has reflection symmetry as well as five-fold rotational symmetry [31–33]. Penrose tiling
is crucial for understanding the physical structure of quasicrystals [32–34]. We analyze
ordering in Penrose tiling in parallel with the Voronoi entropy and the continuous measure
of symmetry (as shown in Figure 2 and discussed in detail below).

Figure 1. (a) Penrose tiling is depicted. The translation symmetry is absent in the pattern; however, the pattern demonstrates
the five-fold rotational symmetry. (b) Fragment of the Penrose tiling is shown.

2. Materials and Methods

The continuous measure of symmetry of the studied patterns was calculated, using
MATLAB. The Voronoi diagrams were constructed by the special moduli developed at
the Department of Physics and Astronomy at the University of California (Department of
Physics and Astronomy University of California, Irvine, CA, USA) (https://www.physics.
uci.edu/~foams/do_all.html (accessed on 1 June 2021)).

3. Results and Discussion
3.1. Voronoi Entropy and the Continuous Symmetry Measure of the Set of Points

Partitioning of an infinite plane into regions based on the distance to a specified dis-
crete set of points (called seeds or nuclei and shown with red points in Figure 3) constructs
the Voronoi tessellation. There is a corresponding region for each seed, consisting of all
points closer to that seed point (also called generators) than to any other point [6,7,13].

https://www.physics.uci.edu/~foams/do_all.html
https://www.physics.uci.edu/~foams/do_all.html
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The Voronoi diagram of the addressed Penrose tiling was composed of N polygons. The
continuous symmetry measure (abbreviated below CSM) was calculated for each polygon,
normalized and averaged, as discussed below. For any given set of points corresponding
to the Voronoi tessellation or diagram, the Voronoi entropy quantifies the ordering of this
set [6,7,13]. The Voronoi entropy (abbreviated VE) of a given set of points located in a plane
is given by the following:

Svor = −∑
i

PilnPi, (1)

where Pi is the portion of the polygons possessing n edges in a given Voronoi diagram (also
called the coordination number of the polygon) and i is the total number of polygon types
with different number of edges [4–13]. The summation in Equation (1) is performed from
i = 3 (the smallest possible polygon—a triangle) to the largest coordination number of the
polygon, e.g., for a hexagon, the largest value of i is 6.

Now, let us acquaint the continuous symmetry measure, as it was introduced in
Refs. [19–24]. Consider a non-symmetrical shape consisting of nk points Mi, (i = 1, 2 . . . nk)
and a given symmetry group G. The continuous symmetry measure abbreviated CSM and
denoted S(G) is determined by the minimal average square displacement of the points Mi
that the shape has to undergo in order to acquire the prescribed G-symmetry. Assume that
the G-symmetrical shape, emerges from the set of points M̂i. Since the set M̂i is established,
a CSM is defined as follows:

S(G) =
1

np

np

∑
i=1

∣∣Mi − M̂i
∣∣2 (2)

(the square values in Equation (2) provide a function that is isotropic, continuous, and differ-
entiable). At the first step, the points of the nearest shape possessing the G-symmetry must
be identified. An algorithm that identifies the set of points M̂i that constitute this symmetri-
cal shape was introduced in Refs. [19–23]. Figure 2 depicts equilateral triangle M01M02M03,
representing the symmetric shape that corresponds to the given non-symmetric triangle
M1M2M3.

Figure 2. Given non-symmetric triangle M1 M2 M3 (a). The equilateral triangle M01 M02 M03 represents the symmetrical
shape (namely equilateral triangle) corresponding to the non-symmetric triangle M1 M2 M3 (b). Calculation of the CSM
where point O is the common centroid is shown (c).

The transformation of the non-symmetric triangle M1M2M3 to the symmetric equilat-
eral triangle M01M02M03 is performed as follows: vertex Mi is rotated counterclockwise
around the common centroid O of triangle M1M2M3 by 2π(i−1)

3 radians (one vertex of
triangle M1M2M3 remains fixed); thus, triangle M1M′

2M′
3 emerges. Next, the location of

the centroid O′ of the intermediate triangle M1M′2M′3 is determined. Centroid O′ is then
rotated clockwise around the centroid O by − 2π(i−1)

3 radians (for the details see ref. [29]).
Therefore, the equilateral triangle M01M02M03 shown in Figure 2, represents the

closest symmetrical shape to the pristine non-symmetrical triangle M1M2M3 [19–23]. Since
the set M̂i is established, the CSM is calculated with Equation (2). Notice that the CSM of



Symmetry 2021, 13, 1659 4 of 12

the Voronoi diagram of the Penrose tiling is calculated and not of the tiling itself. The point
group of symmetry of the polygonal Voronoi cells coincides with the group of symmetry of
the given Penrose tiling.

As suggested in Refs. [19–24], the CSM introduced by Equation (2) estimates the
“minimal effort” required for transforming an original shape into the symmetric one. This
concept of “minimal effort” is analogous to the Gauss principle of least constraint, which is
equivalent to Hamilton’s principle in classical mechanics [35]. Minimization of CSM and
the Gauss principle of least constraint represents the least squares principles [19–24,35].
Minimization of CSM using the aforementioned procedure still requires a rigorous math-
ematical proof. However, following the procedure introduced in Refs. [19–23] in our
treatment of symmetry of “droplet clusters” yielded the quantitative treatment of the
problem of ordering [29]. The same approach was also successfully employed for the
quantification of symmetry of organic molecules [27,36–38].

The CSM of the non-symmetric triangle M1M2M3 corresponds to the sum S(G) given
by Equation (2) as illustrated in Figure 2. Obviously, the CSM in this case is given as follows:

CSM =
1
3
(|M1M01|2 + |M2M02|2 + |M3M03|2) (3)

The algorithm that enables the calculation of CSM is provided in Refs. [19–24]. We
applied this approach for the calculation of the CSM for the Penrose tilings, such as that
depicted in Figure 1, with one essential difference: the CSM was normalized to the distance
between the pristine and eventual centroids. This distance was denoted as r and shown
as the line segment OM01 in Figure 2 (r = |OM01|) actually equals the distance from the
center of mass of an ideal polygon (triangle in our case) to one of its vertices. Considering
the suggested normalization procedure, Equations (2) and (3) are re-shaped as follows:

C̃SM =
1

3r2 (|M1M01|2 + |M2M02|2 + |M3M03|2) (4)

S̃(G) =
1

np

np

∑
i=1

(∣∣Mi − M̂i
∣∣

r

)2

=
1

npr2

np

∑
i=1

∣∣Mi − M̂i
∣∣2 (5)

where C̃SM and S̃(G) are the normalized, dimensionless continuous symmetry measures
re-defined for the arbitrary triangle and polygon, respectively. It is convenient and reason-
able to quantify the symmetry of the shape with the square root taken from Equation (5),
namely, the following:

Λ(G) =

√√√√ 1
np

np

∑
i=1

(∣∣Mi − M̂i
∣∣

r

)2

× 100% =
1
r

√√√√ 1
np

np

∑
i=1

∣∣Mi − M̂i
∣∣2 × 100% (6)

3.2. Voronoi Entropy and the Continuous Symmetry Measure of the Penrose Tiling

We calculated the CSM (S̃(G) and Λ(G)) and the VE (Svor) for the Voronoi diagrams
emerging from Penrose tiling, depicted in Figure 1a. Consider that a given Penrose tiling
gives rise to a number of the Voronoi diagrams, shown in Figure 3a–g (depicted in the left
column of Figure 3).
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Figure 3. Cont.
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Figure 3. The Voronoi tessellations (right) and Penrose tiling (left). (a) a-type Voronoi tessellation; (b)
b-type; (c) c-type; (d) ab-type (a and b-types combined); (e) ac-type; (f) bc-type; (g) abc-type (a, b, and
c-types combined). Color mapping: magenta polygons are triangles, green are tetragons, yellow are
pentagons, grey are hexagons, blue are heptagons.

We distinguish three main types of the Voronoi diagrams, generated by the Penrose
tiling, namely, the following:

a-type Voronoi diagrams (abbreviated a-diagrams), where the centers of the Penrose
rhombs are taken as the seeds, shown in Figure 3a;

b-type Voronoi diagrams (abbreviated b-diagrams), where the vertices of the rhombs
constituting the Penrose tiling, are taken as the seeds, depicted in Figure 3b;

c-type Voronoi diagrams (abbreviated c-diagrams), where the centers of the edges of
Penrose rhombs are taken as the seeds, shown in Figure 3c.

In addition, combinations of the a, b and c diagrams were addressed, denoted as ab,
ac, bc and abc, correspondingly. These Voronoi diagrams are shown in Figure 3d–g. For
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example, ab—diagram (depicted in Figure 3d) is the Voronoi diagram arising from the
merging of the seed points appearing in a- and b-diagrams. Note that a-, b-, c-, ab-, ac-,
bc- and abc-type Voronoi diagrams possess the same groups of symmetry, reflecting the
groups of symmetry of the seed points. In particular, all of the diagrams are characterized
by the five-fold rotational symmetry as well as the mirror plane symmetry, which can be
recognized from Figure 3. Translational symmetry is absent at the Voronoi diagrams as
well as in the original Penrose tiling.

The values of the continuous symmetry measure (S̃(G) and Λ(G)) and the Voronoi
entropy (Svor) were calculated with MATLAB software. The results of the calculations for
seven investigated Penrose tiling are summarized in Table 1. The number of polygons npol
constituting the studied patterns is supplied in Table 1. We established that the quantitative
characteristics of patterns are only slightly dependent on the number of polygons npol ;

for example, for the abc patterns Svor

(
npol = 221

)
= 0.5026; Λ

(
npol = 221

)
= 22.7% and,

correspondingly, Svor

(
npol = 631

)
= 0.498; Λ

(
npol = 631

)
= 22.9%. Thus, we found

it possible and valid to compare patterns built of various, despite the “large” number
of polygons.

Table 1. Voronoi entropy (VE) and continuous measure of symmetry (CSM) calculated for the Voronoi
diagrams generated by the Penrose tiling (see Figure 3).

Diagram
Type

Polygons
Number,

npol

Polygon
Types

Number

Voronoi
Entropy,

Svor

S̃(G) Λ(G) %

a 140 4 1.1364 0.1138 33.74
b 141 3 1.0847 0.0367 19.15
c 290 1 0 0.1099 33.15

ab 375 5 1.122 0.0619 24.87
ac 205 4 1.1026 0.0931 30.52
bc 161 4 1.0371 0.0912 30.2
abc 221 3 0.5026 0.0515 22.7

Distribution of polygons in the studied tessellations is shown in Figure 4. The CSM of
Voronoi tessellations was calculated for each polygon separately with Equations (5) and (6),
as discussed in Section 3.1, and averaged across the given diagram (the arithmetic mean
was calculated). It is noteworthy that the problem of averaging is far from being trivial,
and it should be addressed in the next parts of our investigation.

Figure 4. Cont.
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Figure 4. Distribution of polygons in different types (a, b, c, or combinations) of Voronoi diagram
arising from the Penrose tiling (Figure 3), is depicted. Number of edges is put at the abscissa axis,
percentage of polygons is put at the y-axis (a) a-type Voronoi tessellation; (b) b-type; (c) c-type;
(d) ab-type (a and b-types combined); (e) ac-type; (f) bc-type; (g) abc-type (a, b, and c-types combined).

It seems from the comparison of the quantification of ordering inherent for the a-type
and b-type diagrams, represented in Table 1, that VE and CSM necessarily correlate. Indeed,
both VE and CSM of the sets of points comprising centers of rhombs (a-type) are much
higher than those calculated for sets of points built of vertices of the Penrose rhombs
(b-type). So, from the first glance, it seems that VE and CSM are correlated, and “symmetry”
correlates with “ordering”, quantified in the terms of the Voronoi entropy.

This idea is strengthened by quantitative analysis of the a- and abc-diagrams. Both
values of CSM and VE calculated from the a-type diagrams are relatively high. This
means that a-type diagrams are less symmetrical and disordered when compared to other
Voronoi diagrams emerging from the Penrose tiling. The abc diagrams, contrastingly, are
characterized by the low values of CSM and VE; in other words, the abc diagrams are
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relatively simultaneously ordered and symmetrical. Moreover, for the tessellations ab, ac
and bc, both the Voronoi entropy and continuous measure of symmetry are relatively high
(see Table 1).

However, the closest inspection of the problem demonstrates a much more perplexed
situation arising from the detailed analysis of the correlation of VE and CSM. The striking
contra-example demonstrating the fallacy of the aforementioned suggestion is supplied by
the paradoxical c-type Voronoi diagram, in which the centers of the edges of the Penrose
rhombs are taken as the seeds (nuclei), as illustrated by Figure 3c. This tessellation is built
from the convex quadrangles only. Thus, it is immediately recognized from Equation (1)
that the Voronoi entropy of this tiling equals zero. On the other hand, the CSM of this tiling
is relatively high, namely: S̃(G) = 0.1099; Λ(G) = 33.15%. This surprising finding is easily
explained. Indeed, the c-type tiling comprises shapes, which are not symmetrical (more
correctly speaking: some of the quadrangles have no elements of symmetry). Moreover, no
one of the quadrangles appearing in Figure 3c is a rhomb, which is typical for the classical
Penrose tiling. Thus, we conclude the following:

(i) Voronoi diagrams generate new types of the Penrose tiling, which are different from
the classical ones as shown in Figure 1.

(ii) The Voronoi entropy is not necessarily an exact measure of symmetry of the given
tiling on all spatial scales. It is possible that the Voronoi entropy of the entire pattern
equals zero; however, it contains non-symmetrical elements.

What do we learn from the c-type diagrams? We conclude that the entire pattern
may be highly symmetrical (it demonstrates the five-fold rotational symmetry in our case);
however, the continuous measure of symmetry of the pattern may be high, due to the
fact that it is built from irregular, non-symmetrical polygons. The generalization of the
suggested analysis for the weighted Voronoi diagrams is foreseen [39,40].

The “opposite” to the c-type diagrams case is supplied by the “b”-type tessellations,
where the vertices of the rhombs constituting the Penrose tiling are taken as seeds, as
depicted in Figure 3b. This kind of Voronoi diagram (built from three kinds of polygons) is
characterized by the relatively high value of the Voronoi entropy (Svor = 1.0847), which
is close to the maximal possible value of the Voronoi entropy inherent for the tessellation,
built of three different kinds of polygons, namely Smax

vor = 1.0986. At the same time, the
continuous measure of symmetry of this tessellation is low, namely, S̃(G) = 0.0367; Λ(G) =
19.15%. This result is intuitively well understood if we consider that three kinds of polygons,
shown in Figure 3b, are symmetrical or close to being symmetrical.

The main conclusion that arises from the data displayed in Table 1 is formulated as
follows: the continuous symmetry measure and the Voronoi entropy of the studied sets
of points, generated by the Penrose tiling, do not necessarily correlate. This conclusion
supports the results reported in Ref. [29], in which VE and CSM of levitating droplet
clusters were established, and it was demonstrated that the maxima and minima of the VE
and CSM are not always well correlated. Furthermore, in some cases, the maxima of the
CSM may correspond to the minima of the VE.

Obviously, for the ideal patterns, such as those shown in Figure 5, Svor = 0; S̃(G) = 0;
Λ(G) = 0. However, this trivial case does not enable a general conclusion; the contra-
example supplied by the c-type Voronoi diagrams refutes the idea that VE and CSM are
always correlated.
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Figure 5. Ideal Voronoi diagram (a) emerging from the hexagonal pattern of points (b).

4. Conclusions

The notion of “ordering” is not exactly defined in physics and mathematics. Various
quantitative measures were introduced in order to quantify “order” in physical systems in
mathematical objects. One of the most popular (but not the only) of measures of ordering
in 2D sets of points are the Voronoi entropy [4–13,39–41] and the recently introduced and
developed continuous measure of symmetry, breaking the binary (YES/NO) approach
to symmetry [19–29]. We posed the following question: are the Voronoi entropy and
continuous measure of symmetry (which both quantify “ordering” in 2D sets of points)
necessarily correlated? We restricted ourselves by the analysis of the Voronoi entropy
and continuous measure of symmetry of the aperiodic Penrose tiling, demonstrating the
five-fold rotational symmetry. A Penrose tiling, depicted in Figure 1, is an aperiodic tiling
that has a five-fold symmetry. Translational symmetry is absent in Penrose tessellation; on
the other hand, the Penrose tiling, presenting the mathematical tool, emerging from the
analysis of quasicrystals, may have both the reflection symmetry and the five-fold rotational
symmetry [31–33]. We calculated the Voronoi entropy and, in parallel, the continuous
measure of symmetry for Voronoi diagrams emerging from the Penrose tiling. It should be
emphasized that a given Penrose tiling gives rise to a number of Voronoi diagrams when
the centers, vertices and the centers of the edges of the Penrose rhombs are taken as the
seed points (or nuclei). The main conclusion, which arises from our research, is formulated
as follows: the continuous symmetry measure and the Voronoi entropy of the studied sets
of points, generated by the Penrose tiling, do not necessarily correlate. Voronoi diagrams
emerging from the centers of the edges of the Penrose rhombs, considered seeds, refute
the idea that the Voronoi entropy and the continuous measure of symmetry are always
correlated. The Voronoi entropy of this kind of tiling equals exactly zero; on the other hand,
the continuous measure of symmetry of this pattern is relatively high. We conclude that
the Voronoi entropy is not necessarily an exact measure of symmetry of the given tiling
on all of the scales. It is possible that the Voronoi entropy of the entire pattern equals zero;
however, the tiling is built from the non-symmetrical elements. It also should be noted that
Voronoi diagrams generate new types of Penrose tiling, as shown in Figure 3c, which are
different from the classical Penrose tessellation, presented in Figure 1. Voronoi diagrams
generated by the Penrose tiling keep the original group of symmetry of the tiling. In our
future research, we plan to study the evolution of the Voronoi entropy and continuous
measure of symmetry under deformation of patterns generated by the Penrose tiling. We
also plan to introduce and calculate the informational measure of symmetry of the patterns
emerging from the Penrose tiling.
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