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Abstract: Highly functionalized spirocyclic ketals were synthesized through asymmetric oxidative spiro-
cyclization via carbanion-induced ring transformation of 2H-pyran-2-ones with 1,4-cyclohexandione
monoethyleneketal under alkaline conditions. Further acidic-hydrolysis of obtained spirocyclic
ketals yields highly substituted 2-tetralone in good yield. Computational analysis based on the DFT
calculations and MD simulations has been performed in order to predict and understand global and
local reactivity properties of newly synthesized derivatives. DFT calculations covered fundamental
reactivity descriptors such as molecular electrostatic potential and average local ionization energies.
Nitrogen atom and benzene rings have been recognized as the most important molecular sites from
these aspects. Additionally, to predict whether studied compounds are stable towards the autoxi-
dation mechanism, we have also studied the bond dissociation energies for hydrogen abstraction
and identified the derivative which might form potentially genotoxic impurities. Interactions with
water, including both global and local aspects, have been covered thanks to the MD simulations
and calculations of interaction energies with water, counting of formed hydrogen interactions, and
radial distribution functions. MD simulations were also used to identify which excipient could
be used together with these compounds, and it has been established that the polyvinylpyrroli-
done polymer could be highly compatible with these compounds, from the aspect of calculated
solubility parameters.
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1. Introduction

A well-known aromatic bicyclic ketone derived from tetralin, 2-Tetralone, has been
identified as an essential intermediate for the synthesis of natural products and biologically
valuable compounds [1–4]. Moreover, tetralone-derived polyaromatic compounds with
donor and acceptor groups exhibit amazing absorption and emission properties [5,6]. Fur-
ther phenanthridine based fluorescent chemosensors have been designed for the detection
of heavy metal ions such as Hg2+ and Ru+3 using β-tetralone as key precursor [7,8]. Addi-
tionally, dihydrophenanthrenes synthesized via ring transformation of 2H-pyran-2-ones
with 2-tetralone under basic condition have been successfully utilized in fabricating blue,
sky-blue, and green color light-emitting devices [9]. Apart from this, 2-tetralones are poten-
tial precursors for the construction of tetrahydronaphthalene-based naturally occurring
and pharmacologically active molecules. Tetrahydronaphthalene-cored compounds are
well known for their interesting anti-tumor [10], antimicrobial [11], antidepressant [12],
and anti-inflammatory activities [13]. Idarubicine, an antileukemic glycoside [14], and
(±) daunomycinone [15], a potent antibiotic with anticancer activity, are tetralin-cored
drug molecules derived from 2-tetralones. Another interesting drug molecule, Nepinalone,
synthesized by reacting 1-methyl-2-tetralone with 1-N-(2-chloroethyl)piperidine, is a com-
pound exhibiting antitussive activity [16]. Furthermore, rotigotine is as a dopamine agonist
used in the treatment of Parkinson’s disease [17] while treprostinil is used to treat pul-
monary hypertension [18]. Thus, compounds of this type are potential candidates for
the development of drug molecules for the treatment of different diseases related to the
central nervous system (CNS). In view of the above important facts, a number of organic
chemists are actively engaged in the asymmetric synthesis of spirocyclic skeletons having
cyclohexane, cyclohexene, and cyclohexanone motifs.

In this work, a set of first principles and classical calculations have been performed in
order to understand global and local reactivity properties of the as-synthesized molecules.
Computational modelling of organic molecules with pharmaceutical potential has been
recognized as one of the most important steps in the development of novel pharmaceutical
products, due to its ability to predict important physical and chemical properties and, in this
way, to accelerate the drug design process [19]. As evidenced by numerous publications, the
combination of DFT calculations and MD simulations have been proven to be particularly
useful for these purposes [20–24], which was a clear motivation for the application of these
methods in this study as well.

2. Materials and Methods
2.1. General Procedure for the Synthesis of Functionalized Spirocyclic Ketals 7

To a 25 mL round bottom flask, containing 2H-pyran-2-one 5 (1.0 mmol, 1.0 equiv) and
1,4-cyclohexanedione monoethylene ketal 6 (1.2 mmol, 1.2 equiv), was added powdered
KOH (1.2 mmol) in dry DMSO (3.0 mL) and the resulting reaction mixture was placed
in in an ultrasonic bath for 26 to 37 min for irradiation at room temperature. The course
of the reaction completion was monitored by TLC and the spots were visualized under
UV light. The reaction was quenched by the addition of ice-cold H2O (10 mL) and the
mixture was neutralized with dilute HCl, followed by extraction with EtOAc (3 × 10 mL)
and the combined organic layer was dried over Na2SO4, filtered, and evaporated under
vacuum. The crude product obtained was then purified using column chromatographic
technique using EtOAc/hexane (1:4) as the eluent. Finally, the desired products, ketals 7,
were characterized by spectroscopic analysis.

2.2. General Procedure for the Synthesis of Functionalized 2-Tetralone 11

A solution of spirocyclic ketal 7 (0.25 mmol) in 4% ethanolic-HCl (5 mL) was refluxed
for 1 h. The progress of above reaction was checked by TLC. Upon completion, the
reaction mixture was brought down to room temperature and solvent was evaporated
under vacuum. The residue obtained was diluted with water (5 mL) and extracted in
dichloromethane (3 × 5 mL). The combined organic layers were dried on Na2SO4, filtered,
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and concentrated under reduced pressure. The crude product was then purified through
silica-gel chromatography using EtOAc:hexane (1:4) as an eluent to give functionalized
2-tetralone 11.

2.3. Computational Details

In order to study the title compounds, quantum mechanical calculations and molecular
dynamics simulations have been performed by employing the programs from Schrödinger
Materials Science Suite 2020-3 (SMSS). Quantum mechanical calculations were based on
the DFT approach, and for these purposes, Jaguar [25–27] program was used for all DFT
calculations. MD simulations were based on the OPLS3e force field [28–31], and for these
purposes, the Desmond [32,33] program was used.

DFT calculations were done with combination of B3LYP [34–37] and CAM-B3LYP [38]
exchange-correlation functionals, together with 6-31G(d,p), 6-311G(d,p) and 6-311++G(d,p)
basis sets. B3LYP functional and 6-31G(d,p) basis set was used for geometrical optimiza-
tions of all molecules, followed by the vibrational analysis to check that the true ground
states had been reached. In all cases, the vibrational analysis yielded only positive fre-
quencies. Properties such as molecular electrostatic potential (MEP) and average local
ionization energy (ALIE) have been calculated at the same level of theory by single-point
energy calculations. Improved accuracy for self-consistent field procedure and grids was
used. B3LYP/6-311G(d,p) level of theory was used for calculations of bond dissociation
energy for hydrogen abstraction (H-BDE), while the simulation of UV spectra and analysis
of excitations have been performed thanks to a time-dependent DFT (TD-DFT) approach at
CAM-B3LYP/6-311++G(d,p) level of theory. To identify the molecular sites responsible for
light absorption, natural transition orbital (NTO) formalism has been used [39].

For MD simulations, simulation time was set to 10 ns, while other parameters in-
cluded a temperature of 300 K, normal pressure, and cut-off radius equal to 10 Å. In these
simulations, the solvent was treated by a simple point charge (SPC) model [40]. After the
MD simulations were performed, a simulation quality analysis was performed in order to
assure that the selected MD parameters yielded reliable results.

3. Results and Discussions

It has been found that 2H-pyran-2-ones are interesting scaffolds for the synthesis
of functionally diverse aromatic and heteroaromatic systems with amazing photophys-
ical and biological properties [41–49]. They are highly stable and prepared from eas-
ily accessible starting materials in excellent yields. The synthetic route towards the
preparation of 2H-pyran-2-ones 3 involves KOH-mediated reaction of ethyl 2-cyano-
3,3-dimethylsulfanylacrylate1 with aromatic ketones 2 in DMSO [50,51]. Furthermore,
methylsulfanyl groups containing 2-pyranones 3 were transformed into 6-aryl-2-oxo-4-
amino-2H-pyran-3-carbonitriles 5 by treating with different secondary amines 4 under
refluxing conditions (Scheme 1) [50,51]. The starting material 1 was easily obtained by
reacting ethyl cyanoacetate with carbon disulphide and dimethyl sulphate in presence of
freshly prepared sodium methoxide in absolute methanol [50,51].
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Using 2H-pyran-2-ones 5 as synthons, we recently reported synthesis of highly func-
tionalized spirocyclic ketals 7 through carbanion-induced ring transformation of 2H-pyran-
2-ones 5 with 1,4-cyclohexanedione monoethylene ketone under ultrasound irradiation
condition [52]. Furthermore, hydrolysis of ketals 7 with 4% ethanolic-HCl under refluxing
condition produced 2-tetralones 11 in high yields (Table 1).

Table 1. Synthesis of spirocyclic ketals 7 and 2-tetralones 11.
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Table 1. Cont.

Entry Structure 7/11 Time (min) Yield (%)
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3.1. Local Reactivity Properties–MEP and ALIE Surfaces

Fundamental parameters related to the reactivity, such as MEP and ALIE, have proven
to be amongst the most important quantum molecular descriptors. They are fundamental
since they are tightly connected to the electron density, a fundamental quantity within the
DFT approach. Thanks to these descriptors, one can predict and analyze the local reactivity
properties, i.e., to identify the most reactive molecular sites.
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If the polarization and the nuclear rearrangement effects as a consequence of presence
of a unit test charge at distance r are neglected, the equation for calculation of MEP (V(r))
can be written in the following form:

V
(→

r
)
= ∑

ZA∣∣∣RA −
→
r
∣∣∣ −

∫ ρ

(→
r′
)

∣∣∣∣→r′ −→r ∣∣∣∣d
→
r (1)

In Equation (1), summation is performed over all nuclei. ρ(r′) denotes the electron
density of a molecule, while V(r) denotes the potential exerted at coordinate r.

According to Murray et al., ALIE is defined as a sum of orbital energies weighted
by the orbital densities. With this being stated, ALIE can be calculated according to the
following equation:

I(r) = ∑
i

ρi

(→
r
)
|εi|

ρ
(→

r
) (2)

In Equation (2) electronic density of the i-th orbital at the point
→
r is denoted as ρi

(→
r
)

,

while the εi and ρi

(→
r
)

denote the orbital energy and total electronic density respectively.
From the aspect of visualization, these descriptors are most frequently presented by

mapping their values on the electron density surface, which has been done in this work
as well, taking into account the isosurface value of 0.001. MEP and ALIE surfaces of all
studied molecules in this work have been presented in Figure 1.

While MEP quantity resembles the charge distribution with the studied molecules,
ALIE quantity shows molecular sites where electrons are least tightly bonded. This means
that the MEP surface indicates the molecular sites that are abundant or deficient with
electrons, showing where the molecule is susceptible to electrostatic interactions with other
molecules. On the other side, ALIE indicates where it is the easiest to remove an electron,
therefore revealing the molecular sites that are sensitive towards electrophilic attacks.

In terms of charge distribution, MEP surfaces presented in Figure 1 indicate that the
lowest MEP value is practically the same for all but one of the derivatives investigated in
this work. Namely, the lowest MEP value of the RS-6 derivative is characterized by the
value which is 5 kcal/mol lower than the other lowest MEP values, designating it as a
derivative that is the least susceptible to interactions with electron-deficient molecular sites.
On the other side, the same derivative has the highest value of MEP quantity, designating
it as a derivative that could be the most sensitive towards the electron abundant molecular
sites of other molecules. In general, the distribution of maximal and minimal MEP values is
practically the same for all derivatives. The minimal MEP value has been always calculated
for nitrogen atom; however, besides this molecular site, locations above benzene rings in
all cases were also characterized by the lowest ALIE values. Therefore, these molecular
sites are designated as being sensitive towards electrophilic attacks. The lowest ALIE value
of 184.26 kcal/mol has been calculated for the RS-4 derivative, which is 7 kcal/mol lower
than in the case of RS-2 derivative. In general, RS-1 and RS-2 are grouped around the
value of 192 kcal/mol, while derivatives RS-3 to RS-6 are grouped around the value of
185 kcal/mol.
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3.2. Sensitivity towards Autoxidation

The stability of active components in the pharmaceutical formulations is one of the
main concerns during the development of novel drugs. This type of stability is greatly
influenced by the autoxidation mechanism, which might lead to the generation of genotoxic
impurities [53,54], which do not just limit the overall applicability but also threaten the
health. In terms of experimental activities, the identification of molecules prone to the
autoxidation mechanism is tedious and time-consuming processes. Fortunately, it has
been concluded that the sensitivity towards autoxidation is closely related to the H-BDe
parameter, which allows scientists to predict sensitivity towards this important mechanism
employing computational analysis. If some bonds are characterized by the H-BDE values
in the range between 70 kcal/mol and 85 kcal/mol [55,56], then such molecular site is most
probably susceptible to the autoxidation mechanism. The most important H-BDE values of
all studied molecules have been summarized in Figure 2.
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Figure 2 contains only H-BDE values that are close to the border threshold. All other
H-BDE values are much higher than the defined threshold and are therefore not significant
for further discussion. Results presented in Figure 2 indicate that only one derivative
violates the criteria for autoxidation, with respect to the upper border value of H-BDE.
This derivative is denoted as RS-6 and is characterized by one H-BDE value equal to
~83 kcal/mol. This is certainly below the upper border level of 85 kcal/mol, meaning that
it could be susceptible to autoxidation and produce genotoxic impurities during the shelf
storage. On the other side, all other molecules are characterized by the H-BDE values higher
than the upper threshold, indicating that they should be stable during the storage. Gathered
results regarding H-BDE values indicate that all but one of the derivatives (RS-6) have
suitable values of H-BDE, indicating stability with respect to the autoxidation mechanism.

3.3. Interactions with Water

In this work, MD simulations were used to investigate the reactivity of title compounds
with water molecules, which is one of the most important aspects of the pharmaceutical
potential of the mentioned molecules. For these purposes, MD simulations are important
because they allow one to explicitly involve water molecules and investigate rather large
systems that would be impossible to treat with quantum-mechanical calculations.

In our MD simulations, for each studied molecule, we have run a separate MD
simulation on a simulation box that consists of that molecule surrounded by approximately
2500 water molecules. For these purposes, a System Builder tool SMSS was used. The
number of added water molecules was controlled by variating the dimensions of a cubic
simulation box. Other MD details were as described in the Computational Details section.
Simulation boxes were cubic.

Interactions with water were studied both globally, through calculations of interaction
energy and an average number of the hydrogen bonds between selected molecule and
water (Table 2), and locally through calculations of radial distribution functions (RDF)
which indicate the atoms of molecules with the pronounced interactions with water (Figure 3).

For each MD frame, interaction energy has been calculated by subtracting the total
energies of selected molecule and solvent, from the total energy of the molecule + solvent
system. Then, the interaction energy was averaged over all frames. According to the
interaction energies with water, presented in Table 2, it can be seen that there is a significant
difference between studied molecules in the extent to which they interact with water. The
magnitude of this parameter took values in the range between 63 kcal/mol to almost
77 kcal/mol. The lowest interaction energies with water have been calculated for RS-1, RS-
2, and RS-6 molecules, while RS-3 and RS-4 molecules were characterized by the strongest
interactions with water. RS-5 molecule was somewhere between, with the magnitude
of interaction energy equal to ~70 kcal/mol. It was interesting also to note that all but
one derivative on average formed ~3 hydrogen bonds with water molecules. The only
exclusion was the RS-4 molecule, which formed more than 4 hydrogen bonds with water
molecules on average, which explains why this molecule had the highest interaction
energies with water. In order to investigate the local reactivity of studied molecules
with water, we have calculated the RDFs. The most representative RDFs are presented
in Figure 3.

Results presented in Figure 3 indicate the absence of atoms that have significant
interactions with water molecules, since all g(r) curves are characterized by the low g(r)
values whose maximal values are located at high distances, well above the 2 Å. Additionally,
although the studied molecules are relatively large, it has been observed that all of them
have only 2–4 atoms with RDFs worth of mentioning when the size and profile of g(r)
curves are taken into account. In all cases, nitrogen and oxygen were identified as the ones
with relatively important RDFs, with the small exception of the chlorine atom in the case of
the RS6 molecule. It is also worthy of mentioning that the RS4 molecule, characterized by
the highest interaction energy with water is characterized by the three relatively decent
RDFs, belonging to two oxygen and one nitrogen atoms.
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Table 2. Interaction energies between studied molecules and water, with the average number of the
formed hydrogen bonds with water.

Molecules Interaction Energy
[kcal/mol]

Average Number of
Hydrogen Bonds

RS-1 −65.175 3.020

RS-2 −63.523 3.024

RS-3 −75.854 3.019

RS-4 −76.809 4.057

RS-5 −70.066 3.127

RS-6 −66.056 2.925
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3.4. Identification of Suitable Excipients

Improvement of stabilization, solubility, delivery, and other properties is another
important challenge during the development of novel pharmaceutical formulations, once
the suitable active components are identified. To achieve this, it is necessary to combine
active components with compounds, called excipients that have suitable properties. Since
there is no universal excipient, it is necessary to select one.

The selection of suitable excipient might be a tedious and time-consuming process;
however, thanks to the MD simulations, the selection of adequate excipient can be signifi-
cantly narrowed. The key goal in the identification of suitable excipient is to identify the
one which is compatible with the active component in terms of solubility parameters. If
they have similar values of the solubility parameter, then they are compatible and can be
combined in a novel pharmaceutical formulation [57–59].

For these purposes, the solubility parameter can be calculated by using the MD
simulations and by applying the following Equation (3):

δ =

√
∆HV − RT

Vm
(3)

where ∆HV denotes heat of vaporization and Vm denotes the molar volume. In order to
calculate the solubility parameter for all studied compounds, for each compound separate
MD simulation was performed, on the cubic box containing 32 such molecules. All other
parameters were the same as mentioned in the Computational Details section. Additionally,
the solubility parameters were calculated for the frequently used excipients, to be able
to compare the solubility parameters of studied compounds and identify which type of
excipient could be potentially suitable. Frequently used excipients studied in this work
were polyvinylpyrrolidone polymer (PVP), maltose, and sorbitol. Solubility parameters of
RS1-6 molecules and frequently used excipients are summarized in Table 3.

Table 3. Values of solubility parameters δ [MPa1/2] for studied compounds and frequently
used excipients.

Molecules δ [MPa1/2]

RS1 18.825

RS2 18.663

RS3 19.397

RS4 19.264

RS5 19.021

RS6 19.513

PVP 18.515

Maltose 28.564

Sorbitol 32.425

Results presented in Table 3 indicate that all studied molecules in this work have rather
similar values, ranging between 18.6 and 19.5, indicating that modifications do not cause
significant changes in this parameter. Additionally, by comparing the solubility parameters
of frequently used excipients, it is evident that the PVP excipient is the most compatible
with studied compounds. Namely, the solubility parameters of studied compounds are very
similar to that of PVP, indicating that this compound could be potentially practically applied
for the development of novel pharmaceutical formulations based on studied derivatives.
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4. Conclusions

In summary, the DFT calculations were used to identify the molecular sites prone
to electrostatic interactions with other molecules by MEP surfaces, while ALIE surfaces
were used to identify the molecular sites sensitive to the electrophilic attacks. It has
been shown by our calculations that the nitrogen atom is crucial for the characteristic
MEP surface, while the lowest ALIE values have been identified above benzene rings
as well. H-BDE values indicated that one of the studied compounds, namely the RS6
molecule, dangerously violates the upper border threshold of 85 kcal/mol, meaning that
potentially genotoxic impurities could be formed in case of the formulation based on this
derivative. All other derivatives seem to be stable towards the autoxidation mechanism.
Furthermore, MD simulations indicated that, of all studied molecules, RS4 is characterized
by the highest interaction energies with water, and at the same time, this molecule is
characterized by the highest number of hydrogen bonds formed between the observed
molecule and water molecules. RDFs did not indicate that any of the atoms of studied
compounds have particularly strong interactions with water molecules since there were
no g(r) curves characterized by the highest g(r) values at distances of around 2 Å. MD
simulations also helped in identifying which frequently used excipient could be used in
the case of title compounds. Namely, the calculations of solubility parameters indicated
that the studied compounds could be highly compatible with the PVP excipient, as their
solubility parameters are very similar.
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