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Abstract: In this paper, we introduce new subclasses k− STs(p, β) and k−UKs(p, β) of analytic and
univalent functions in the canonical domain associated with the Srivastava and Attiya operator. The
radius problems of these subclasses regarding symmetrical points are investigated and compared
with previous known results. Certain properties and conditions of these subclasses such as integral
representation are also discussed in this work.
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1. Introduction

Suppose f ∈ A, where A is the set of analytic functions having the form

f (z) = z +
∞

∑
m=2

amzm,

in E = {z : |z| < 1}. Then, in geometric function theory, E is replaced with an arbitrary
domain by Riemann mapping theorem [1].

Let us consider P as the class of the positive real part given by

p(z) = 1 +
∞

∑
m=1

amzm,

such that <(p(z)) > 0.
According to [2], the definition of UCV is∣∣∣∣∣ z f

′′
(z)

f ′(z)

∣∣∣∣∣ < <
(

1 +
z f
′′
(z)

f ′(z)

)
, z ∈ E.

Similarly, any convex function having the property that the image curve of any circular
arc γ given by f (γ) is a convex arc; then, for every circular arc, γ, which belongs to E with
center ξ also in E is called uniformly convex.

According to [2], the definition of UST is∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ < <

(
z f
′
(z)

f (z)

)
, z ∈ E. (1)

We can also define the class of UST by the Alexander relation if z f
′ ∈ UST, then f ∈ UCV.

Goodman [3] introduced these classes, and several other researchers have also worked on
these classes in various repects.
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If any function w with conditions w(0) = 0 and |w(z)| < 1 exists, then it is called a
Schwartz function. We can relate any two functions f and g using the Schwartz function w
such that f (z) = g(w(z)); in this case, it is called “ f is subordinate to g” and can be written
as f ≺ g. Similarly, if g is univalent in E, then in particular f (0) = g(0) and f (E) ⊂ g(E).

The conic region Ωk with k ∈ [0, ∞) is studied by [4]:

Ωk =

[
u + iv : k

√
(u− 1)2 + v2 < u

]
. (2)

For any fixed k, Ωk denotes the set of conic regions successively bounded by the imaginary
axis (k = 0), a parabola v2 = u− 1 (k = 1), and the right branch of a hyperbolic (0 <
k < 1). For k > 1, it represents the interior of the ellipse, where the domain becomes a
bounded domain.

In our condition, we taking k ∈ [0, 1]. Then, using Ωk, our functions are pk(z), where
k belongs to the closed interval [0, 1], which plays the role of extremal functions mapping
in E onto Ωk:

pk(z) =


1+z
1−z , (k = 0)

1 + 2
π2

(
log 1+

√
z

1−
√

z

)2
, (k = 1)

1 + 2
1−k2 sinh2[( 2

π arccos k
)

arctan h
√

z
]
, (0 < k < 1)

. (3)

These functions are in class P and univalent in E. Using the subordination technique, the
class P(pk) was introduced in the following form.

Suppose p(z) ∈ A with the condition p(0) = 1. Then, p(z) belongs to P(pk) iff p ≺ pk
in E. Furthermore, pk(z) is represented by Equation (3).

The generalized conic domain Ωk,β is given by

Ωk,β = (1− β)Ωk + β,

with the extremal function

pk,β(z) = (1− β)pk + β, with (0 ≤ β < 1, k ∈ [0, 1]).

The function p ∈ P(pk,β) if p(z) ≺ pk,β(z) in E.
Similarly, it is known from [5] that P(pk,β) is a convex set. So,

P(pk) ⊂ P
(

k
k + 1

)
⊂ P.

For p ∈ P(pk), we also know that

| arg p(z)| ≤ σ
π

2
,

with

σ =
2
π

arctan
1
k

. (4)

Thus, p(z) = hσ(z), with h ∈ P. Similarly,

P(pk,β) ⊂ P
(

k + β

k + 1

)
⊂ P.

The starlike functions w.r.t. symmetrical points S∗s was introduced by Sakaguchi [6].
A necessary and sufficient condition of this class was studied in [6] and is represented as(

2z f ′(z)
f (z)− f (−z)

)
∈ P, z ∈ E.
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The convex functions w.r.t. symmetrical points Cs was introduced by Das and
Singh [7]. A necessary and sufficient condition of this class was studied in [7] and is
represented as

2(z f ′(z))
′

( f (z)− f (−z))′
∈ P, z ∈ E,

and we know that f ∈ Cs ⇔ z f
′ ∈ S∗s [7].

According to [8], suppose that f ∈ A. Then f may be in the class k− STs(β) iff,

2z f ′(z)
f (z)− f (−z)

∈ P(pk,β), z ∈ E.

Moreover, an integral operator =c,a, defined by [9], is

=c,a f (z) = z +
∞

∑
k=2

(
1 + a
k + a

)c
bkzk, z ∈ E.

2. Definitions

In this section, we introduce the following new subclasses of univalent function
k− STs(p, β) and k−UKs(p, β).

Definition 1. Consider f ∈ A. Then f belongs to class of k− STc(p, β) iff

(2 + c)z(=c,a f )′(z)
=c,a( f )(z)−=c,a( f )(−z)

− c
2
∈ P(pk,β),

where z belongs to E.

Definition 2. Suppose a function f belongs from the class of analytic functions A. Then f is in
the class k−UCVc(p, β) iff z f ′ belongs to k− STc(p, β).

Definition 3. Let f be an analytic function of class A. Then f belongs to k−UKc(p, β) iff there
exists g which is in class k− STc(p, β). Thus,

(2 + c)z(=c,a f )′(z)
=c,ag(z)−=c,ag(−z)

− c
2
∈ P(pk,β),

where z is in E.

3. Preliminary Results

Our main results depend on the following lemmas:

Lemma 1. [10] Consider any two functions. Let q(z) and p(z) be convex and analytic functions,
respectively, in E with q(0) = 1 = p(0), and function h∗ : E→ C for <( f h∗(z)) > 0, whenever

(h∗(z)zp′(z) + p(z)) ≺ q(z), z ∈ E.

Then, p(z) ≺ q(z), where z ∈ E.

Lemma 2. [8] Consider two analytic functions N(z), D(z) in E such that N(0) = 0 = D(0).
Suppose that D is in the class of starlike functions, that is, S∗ for z ∈ E, then N∗(z)

D∗(z) ∈ P(pk,β)

implies that N(z)
D(z) ∈ P(pk,β) for z ∈ E.

Lemma 3. [4] For any two complex numbers γ2, δ2 with γ2 6= 0 and <
(

γ2k
k+1

)
+ δ2 > β, the

analytic function h∗(z) ∈ E, we have
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(
h∗(z) +

zh′∗(z)
γ2h∗(z) + δ2

)
≺ pk,β(z). (5)

If qk,β is the analytic solution of equation

pk,β(z) =

(
zq′k,β(z)

γ2qk,β(z) + δ2
qk,β(z)

)
,

then qk,β is a univalent function whenever

h∗ ≺ qk,β ≺ pk,β.

Hence, qk,β(z) is said to be the best dominant of Equation (5).

4. Main Results

In this section, we study certain properties of our newly defined subclasses of univa-
lent function k− STs(p, β) and k−UKs(p, β). The desired results are also compared with
existing results.

Theorem 1. If

Ψ(z) =
1
2
[−=c,a f (−z) +=c,a f (z)] (6)

is an odd S∗ function of order β1 = k+β
k+1 in E, where =c,a f (z) is in the class of k-starlike related

with symmetrical points of (p, β), then Ψ(z) ∈ k− ST(p, β).

Proof. Let,

Ψ(z) =
1
2
[−=c,a f (−z) +=c,a f (z)].

Then, after simplification

zΨ′(z)
Ψ(z)

=
1

2 + c
[p2(z) + p1(z)] +

c
2 + c

∈ P(pk,β).

Here, zΨ′(z)
Ψ(z) ∈ P(pk,β) because P(pk,β) is a convex set. Therefore,

Ψ(z) ∈ k− ST(β).

Theorem 2. Let =c,a f (z) ∈ k− STs(p, β). Then, with z = eiθ , 0 ≤ θ1 < θ2 ≤ 2π, 1 > β > 0
and 1 ≥ k ≥ 0, we can say

∫ θ2

θ1

<
[
(z(=c,a f )′(z))′

(=c,a f )′(z)

]
dθ > −σπ + 2cos−1

[
2(1− β)

1− (1− 2β)r2

]
+ β1(θ2 − θ1),

where σ = π
2 arctan( 1

k ) and β1 = k+β
k+1 .

Proof. Suppose,

[=c,a f ]′

Ψ′
∈ P(pβ,k),

Ψ(z) =
1
2
(−=c,a f (−z) +=c,a f (z)),
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where Ψ ∈ k−UCV(p, β) and C(β, p) ⊃ k−UCV(β, p).
Therefore,

[=c,a f ]′ = (Ψ′)(−β1+1)hσ(z),

with

h ∈ P(p, β), Ψ1 ∈ C, z = eiθ , 0 ≤ θ1 < θ2 ≤ 2π and 0 ≤ r < 1,

takes the form

∫ θ2

θ1

<
[
(z(=c,a f )′(z))′

(=c,a f )′(z)

]
dθ = (1− β1)

∫ θ2

θ1

<
[
(zΨ′(z))′

Ψ′(z)

]
dθ

+σ
∫ θ2

θ1

<
[

2h′(z)
h(z)

]
dθ + β1(θ2 − θ1).

Let us consider, for h ∈ P(p, β),

∂

∂θ
arg h(reiθ) =

∂

∂θ
<
(
−i ln(reiθ)

)
,

∂

∂θ
arg h(reiθ) = <

(
reiθ h′reiθ

hreiθ

)
.

Therefore,

∫ θ2

θ1

<
[

reiθh′reiθ

hreiθ

]
dθ = arg h(reiθ2)− arg h(reiθ1),

and

max
h∈P(p,β)

∣∣∣∣∫ θ2

θ1

<
[

reiθh′reiθ

hreiθ

]
dθ

∣∣∣∣ = max
h∈P(p,β)

∣∣∣arg h(reiθ2)− arg h(reiθ1)
∣∣∣.

So, from above equations

p(z) =
1

−β + 1
(−β + h(z)), as p ∈ P(pk,β).

With known results |z| = r < 1 and∣∣∣∣p(z)− 1 + r2

1− r2

∣∣∣∣ ≤ 2r
1− r2 ,

we can write

2(1− β)r
1− r2 ≥

∣∣∣∣h(z)− 1 + (1− 2β)r2

1− r2

∣∣∣∣.
An Apollonius circle encloses all the values of h. Its diameter is a line-segment

which is the combination of points from
1 + (−2β + 1)r

1 + r
to

1 + (1− 2β)r
1− r

, and its radius is

2(1− β)r
1− r2 . Therefore, | arg h(z)| approaches its max. value wherever a ray passing through

the origin is tangent to the circle, i.e.,

arg h(z) = ±sin−1
[

2(−β + 1)r
1− (−2β + 1)r2

]
. (7)

We can observe from Equation (7) that
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max
h∈P(β,p)

∣∣∣∣∫ θ2

θ1

<
[

reiθh′reiθ

hreiθ

]
dθ

∣∣∣∣ ≤ 2sin−1(
2(1− β)r

1− (1− 2β)r2 ),

max
h∈P(p,β)

∣∣∣∣∫ θ2

θ1

<
[

reiθh′reiθ

hreiθ

]
dθ

∣∣∣∣ = π − 2cos−1(
2(1− β)r

1− (1− 2β)r2 ), (8)

and for Ψ1 ∈ C,

∫ θ2

θ1

<
[

1 + reiθ Ψ′′1 (reiθ)

Ψ′1(reiθ)

]
dθ ≥ 0. (9)

Using Equations (7)–(9), we obtain

∫ θ2

θ1

<
[
(z(=c,a f )′(z))′

(=c,a f )′(z)

]
dθ > −σπ + 2cos−1

[
2(1− β)

1− (1− 2β)r2

]
+ β1(θ2 − θ1).

Theorem 3. Let =c,a f (z) ∈ k− STs(p, β); then its integral representation is

(=c,a f (z))′ =
1

2 + c
p(z) exp

∫ z

0

1
t(2 + c)

(−p(−t) + p(t)− (2 + c))dt,

where z ∈ E and p ∈ P(pk,β).

Proof. Let =c,a f be taken from k− STs(p, β); then

p(z) =
(2 + c)z(=c,a f (z))′

=c,a f (z)−=c,a f (−z)
− c

2
, p ∈ P(p, β).

[=c,a f (z)−=c,a f (−z)]′

−=c,a f (−z) +=c,a f (z)
− 1

z
=

1
(2 + c)z

[p(z)− p(−z)− (2 + c)].

After simplification, we can get

(2 + c)(=c,a f (z))′
1

p(z)
= exp

∫ z

0

1
(2 + c)t

[p(t)− p(−t)− (2 + c)]dt.

By putting F′(z) = (=c,a f (z))′, we obtain

F′(z) =
p(z)
2 + s

exp
∫ z

0

1
(2 + c)t

[p(t)− p(−t)− (2 + c)]dt.

Special case:
If c = 0, one can get the result in the form

p(z)
2

exp
∫ z

0

1
2t
[p(t)− p(−t)− 2]dt = f ′(z),

proved by K. I. Noor [8].

Theorem 4. Let =c,ag(z) ∈ k− STs(p, β) and m = 1, 2, 3, 4, . . . , G, where

G(z) =
m + c + 1
2z(m+c)

∫ z

0
t(m+c−1)[=c,ag(t)−=c,ag(−t)]dt. (10)

Then G(z) ∈ k− ST(p, β).
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Proof. Let

J(z) =
∫ z

0
t(m+c−1)

[
1
2
[=c,ag(t)−=c,ag(−t)]

]
dt.

since =c,ag(z) ∈ k− STs(p, β), 1
2 [=c,ag(t)−=c,ag(−t)] ∈ k− ST(p, β) ⊂ S∗(β1) ⊂ S∗ and

β1 = k+β
k+1 . Therefore, using [8], we can say that J(z) is a function and (1 + m)-valently

starlike (S∗) in E. So Equation (10) can be written as,

z(m+c)G(z) = (m + c + 1)
∫ z

0
t(m+c−1)

[
1
2
[=c,ag(t)−=c,ag(−t)]

]
dt,

or
z(m+c)G(z) = (m + c + 1)J(z).

After simplification,

z
G′(z)
G(z)

=
N(z)
D(z)

=
zJ′(z)− (m + c)J(z)

J(z)
. (11)

As D(0) = 0 and N(0) = 0. Furthermore, D(z) is (1 + m)-valently S∗. Let N(z)
D(z) = h(z),

then

h′(z)D(z) + h(z)D′(z) = N′(z).

Therefore,

h(z) +
zhz

h◦(z)
=

N′(z)
D′(z)

.

Let, h◦(z) =
zD′(z)
D(z) ∈ P(pk,β) and H◦(z) = 1

h◦(z)
∈ P(pk,β). Then,

N′(z)
D′(z)

= h(z) + H◦(z)(zhz).

From Equation (11), we have

N(z)
D(z)

=
zJ′(z)− (m + s)J(z)

J(z)
.

This implies

N′(z)
D′(z)

=

[
(zJ′)′

J′(z)
− (m + c)

]
∈ P(pk,β).

Using Lemma 2, we can say

N(z)
D(z)

=
zG(z)
G(z)

∈ P(pp,β), z ∈ E.

Therefore, G ∈ k− ST(p, β) in E.

Theorem 5. Let =c,a f ,=c,ag ∈ k− STs(p, β), and =c,aF(z) be defined as

=c,aF(z) =
(

γ + s +
1
δ

)
z(1−c− 1

δ )
∫ z

0
t(

1
δ +c−2)

[
=c,a f (t)−=c,a f (−t)

2

] 1
1+γ

[
=c,ag(t)−=c,ag(−t)

2

]
dt,

(12)
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where z ∈ E, 0 < δ, c ≥ 0, γ = 0 and k(1+γ)
k+1 + (c + 1

δ − 1) > β. Then =c,aF(z) ∈ k− starlike
with (p, β) where z ∈ E. If z = =c,ag(z) and γ = c = 0, then we can get the Bernardi operator
in its generalized form [11]. For =c,ag(z) = z, γ = 0, δ = 1

2 and c = 0, we can get an integral
operator introduced by Libra that preserves geometric properties of close-to-convexity, convexity,
and starlikeness [12,13].

Proof. Let,
=c,a f (z)−=c,a f (−z)

2
= Ψ1(z) and

=c,ag(z)−=c,ag(−z)
2

= Ψ2(z). Then,

Ψ1, Ψ2 ∈ k− ST(p, β) in E, and we can write Equation (12) as

F1 = =c,aF(z) =
(

γ + c +
1
δ

)
z(1−c− 1

δ )
∫ z

0
t(

1
δ +c−2)[Ψ1(t)]

1
1+γ [Ψ2(t)]dt. (13)

If p(z) = zF′1(z)
F1(z)

, then after simplification, we have

γ

1 + γ

zΨ′1
Ψ1(z)

+
1

1 + γ

zΨ′2
Ψ2(z)

= p(z) +
zp′(z)

(1 + γ)p(z) + (c + 1
δ − 1)

. (14)

Since Ψ1 and Ψ2 ∈ k − ST(p, β), which implies that
zΨ′1
Ψ1

and
zΨ′2
Ψ2
∈ P(pk,β) in E, and

P(pk,β) also belongs to convex set. It follows that(
γ

1 + γ

zΨ′1
Ψ1(z)

+
1

1 + γ

zΨ′2
Ψ2(z)

)
∈ P(pk,β), z ∈ E. (15)

Similarly, Equations (14) and (15) give(
p(z) +

zp′(z)
(1 + γ)p(z) + (c + 1

δ − 1)

)
≺ pk,β(z).

Using Lemma 3, we can also say

p(z) ≺ qk,β(z) ≺ pk,β(z).

Hence, F1 ∈ k− ST(p, β).

5. The Class k − UKs(p, β)

In this work, we study certain properties of k−UKs(p, β), which consists of k−UK
functions with symmetrical points of order β [14].

Theorem 6. Let =c,a f ∈ k−UKs(k, β) and F1(z) = =c,aF be defined by

F1(z) =
m + c + 1
2z(m+c)

∫ z

0
t(m+c−1)[=c,a f (t)−=c,a f (−t)]dt. (16)

Then F1(z) belongs to the class k−UKs(p, β) in E.

Proof. Since =c,a f ∈ k−UKs(k, β), we have

2z=c,a f ′(z)
=c,ag(z)−=c,ag(−z)

∈ P(pk,β),

and
=c,ag ∈ k− STs(k, β) ⊂ S∗s (kβ1).

Let G1 =
=c,ag1(z)−=c,ag1(−z)

2
be defined by Theorem 4, also g1 ∈ k − ST(p, β) and

G1 ∈ k− STs(p, β) ⊂ S∗s (p, β1). Similarly, G = zG′1, then

G′ =
1
2
[zg1(z)− (−z)g(−z)]′,
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G ∈ k−UCVs(p, β),

g = z=c,ag′1,

and
g ∈ Cs(p, β1).

From Equation (16), we have

2
m + c + 1

[
(m + c)z(m+c−1)F1 + z(m+c)F′1

]
= z(m+c−1)[=c,a f (z)−=c,a f (−z)],

which implies that

2F′1
G′1

=
N(z)
D(z)

.

We can conclude that D(0) = N(0) = 0, also g ∈ Cs(p, β1),

(zD′(z))′

D′(z)
= (m + c) +

[z=c,ag1(z)−=c,ag1(−z)′]′

[=c,ag1(z)−=c,ag1(−z)]′
,

and
(zD′(z))′

D′(z)
= (m + c) + h1, h1 ∈ P(p, β1).

Since P(p, β1) belongs to the convex set, where D ∈ Cs(p, β1) ⊂ S∗(p, β1) in E [8]. Therefore,

N(z)
D(z)

=
2F′1
G′1
∈ P(pk,β), f or z ∈ E.

Hence, F1(z) ∈ k−UKs(p, β) in E.

Theorem 7. Let us consider,(
(2 + c)z=c,a f ′(z)
=c,ag(z)−=c,ag(−z)

− c
2

)
≺ pk,β(z)

in E, and

F1(z) =
1

1 + m
z(1−m)[zm=c,a f (z)]′, (17)

where m = 1, 2, 3, 4, . . .. Thus, F1 ∈ Ks(p, β1) for |z| < r1, with

r1 =
1 + m− c

2

(2− β) +
√
(2− β)2 − (1 + m− c

2 )(−m− 2β1 + 1 + c
2 )

, (18)

where
β1 =

k + β

k + 1
.

Proof. For p ∈ P(p, α) with 1 > α ≥ 0, we require the following results [15]:

1 + (1− 2α)r
1− r

≥ |p(z)| ≥ 1− (1− 2α)r
1 + r

, (19)

with
2[<(p(z))− α]r

1− r2 ≥ |p′(z)|. (20)

Since =c,a f ∈ k−UKs(p, β), ∃ =c,ag ∈ S∗s (p, β1), such that, for z ∈ E
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[
(2 + c)z=c,a f ′(z)
=c,ag(z)−=c,ag(−z)

− c
2

]
= p(z),

where
p ∈ Pk,β ⊂ P(α), and α =

k
k + 1

.

From Equation (17), we have

F1(z) =
1

m + 1
z(1−m)

[
mz(m−1)=c,a f (z) + zm=c,a f ′(z)

]
.

After simplification, we can write

(2 + c)zF′1(z)
=c,ag(z)−=c,ag(−z)

− c
2
=

1
1 + m

[
mp(z) + zp′(z) +

(
p(z) +

c
2

)
h(z)− c

2

]
,

with

h(z) =
zΨ′(z)
Ψ(z)

∈ P(p, β1), and Ψ(z) = =c,ag(z)−=c,ag(−z).

By the use of Equations (19) and (20), we have

<
[

(2 + c)zF′1
=c,ag(z)−=c,ag(−z)

− c
2

]
≥ <[p(z)− α]

1 + m[
2m(1− r2)− 4r + 2(1− (1− 2β1r))(1− r)

2(1− r2)
− c(1− r2)

2(1− r2)

]
, (21)

where
T(r) = 2m(1− r2)− 4r + 2(1− (1− 2β1r))(1− r)− c(1− r2),

or
T(r) = (−2m− 4β1 + c + 2)r2 − 4(2− β1)r + (2m− c + 2).

So,

r1 =
1 + m− c

2

(2− β) +
√
(2− β)2 − (1 + m− c

2 )(−m− 2β1 + 1 + c
2 )

.

Therefore, F1 ∈ Ks(p, β1) for |z1| < r1.

Special cases:

1. For c = 0, we have the result obtained by [8].
2. For β = k = 0, f ∈ Ks and c = 0. Then, F1 ∈ Ks for r◦ = 1+m

2+
√

3+m2 > |z|, defined by
Equation (17).

3. When β1 = 0 (β = 0 = k), c = 0 and m = 1; then F1(z) =
[z f (z)]′

2 is in the class for
|z| < 1

2 , which is proved by Livingston [16] for S∗ and C functions.

6. Conclusions

New subclasses k− STs(p, β) and k−UKs(p, β) of analytic and univalent functions
have been defined in canonical domain associated with the Srivastava and Attiya operator.
Furthermore, several results including integral representation and radius problems of these
subclasses have been derived and compared with different known results in this work.
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