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Abstract: Increasing mobility directly affects traffic frequency and thus increases the possible risk of
traffic accident occurrences. Taking this into account, it is necessary to create models for determining
risk and to act preventively based on these models; this is of great importance both to society and
science. In this paper, six measuring sections of a road network are considered on the basis of eight
geometric-exploitation road parameters, taking into account the data for light goods vehicles. An
original methodology is proposed for identifying risk levels of road sections through their evaluation.
For identifying risk levels, the Dombi Logarithmic Methodology of Additive Weights (D’LMAW)
was used, which was combined with the Measurement Alternatives and Ranking according to the
Compromise Solution (MARCOS) method. Statistical indicators were processed using a hybrid
methodology based on the application of rough numbers and Dombi–Bonferroni functions. The
performance of the presented methodology was verified on a real-world example, processing the
statistical parameters of six two-lane road sections, with the sixth measuring section showing the
best performance, since it had the minimum risk. Research has shown that measuring sections
with increasing longitudinal gradients are safer. The analysis of measuring sections from fall to rise
reduces the deviation of speeds from the speed limit on the roads. The effectiveness, rationality, and
robustness of the solution of the proposed methodology was confirmed through a sensitivity analysis.

Keywords: traffic risk; traffic accidents; light goods vehicles; LMAW; MARCOS; Dombi; Bonferroni

1. Introduction

In a real traffic flow, there are a large number of influential road and traffic indicators of
potential traffic risk. If two-lane roads are analyzed, the traffic indicators that are especially
significant are the AADT (Annual Average Daily Traffic), uneven distribution of traffic by
different directions, vehicle structure, traffic flow density, exploitation speed, exceeding
the speed in relation to the speed limit, and so on. Additionally, road and environmental
conditions have great impacts on potential indicators of increased traffic risk, such as a
longitudinal gradient (ascent/descent), road condition, radii of horizontal curves, number
of accesses per kilometer, and so on. Potential road and traffic indicators often refer to the
speed limit, which is imperative to limiting the speed of real traffic flow. Nevertheless,
speed limit analysis and compliance with the speed limit are integral parts of speed control.

Speed control is an important segment in the traffic flow control system. Any posted
speed limit is not always respected by road users, leading to speeding, and any non-
adjusted speed is often a potential cause of increased traffic risk. In addition, studies have
shown that the greater the difference between the free flow speed and the speed limit, the
higher the percentage of drivers who do not comply with the speed limit for any class
of vehicles [1,2]. It is very important to establish an optimum speed limit, which can

Symmetry 2021, 13, 1271. https://doi.org/10.3390/sym13071271 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7419-8695
https://doi.org/10.3390/sym13071271
https://doi.org/10.3390/sym13071271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13071271
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13071271?type=check_update&version=2


Symmetry 2021, 13, 1271 2 of 19

enable maximum capacity and level of service with minimum costs and risks of traffic
accidents. By analyzing risk on two-lane roads, it is certain that, as a function of different
road characteristics and the influence of traffic indicators, there is a large percentage of
vehicles that exceed the speed limit. Moreover, there are large dispersions of speeds on a
case-by-case basis in a real traffic flow.

In this study, a multi-criteria model for identifying risk on two-lane road sections
was developed. Rough numbers [3] and rough Dombi functions [4] were used to process
statistical data by measuring road sections. The data were obtained over a five-year period.
The rough Dombi Logarithmic Methodology of Additive Weights (D’LMAW) was used to
determine the weight coefficients of criteria, while the rough Measurement Alternatives
and Ranking according to the Compromise Solution (MARCOS) method [5] was used to
determine the level of risk and evaluate the alternatives. The performance of the rough
MARCOS methodology was improved through the implementation of the hybrid rough
Dombi–Bonferroni function, which was used to calculate the sum of the weighted elements
of the normalized matrix. The application of rough Dombi–Bonferroni functions enables a
flexible definition of risk on two-lane road sections and consideration of mutual relations
among attributes that define the level of risk on given measuring road sections.

Further in the paper, Section 2 presents the literature review of scholarly sources.
Section 3 is related to rough numbers [6] and rough Dombi functions [7], with three
definitions given. Subsequently, Section 4 presents the multi-criteria framework of the
proposed methodology for determining the risk for light goods vehicles on the road
sections. Section 5 provides the results obtained and discussion of the research results, with
a general conclusion given in Section 6.

2. Literature Review

The analysis of the impact of geometric road parameters is of great importance in the
adoption of measures to improve traffic safety. Based on the research [8] conducted for
traffic safety assessment, it is necessary to identify environment elements that affect the
functional status of drivers, the functional dependence between the status of drivers, and
the statistical indicators of road safety. The research conducted in two studies [9] on the
Northern Corridor in Kenya concluded that pavement rehabilitation on roads has led to
improvements in the traffic safety level. This study showed that 24% of traffic accidents
were fatal before the road rehabilitation. Improving traffic safety performance through
engineering solutions has also been examined through Empirical Bayes (EB) models [10].
This research highlighted six engineering solutions for improving safety on two-lane roads.
In order to improve safety on two-lane rural roads, significant studies were conducted,
the outcomes of which formed the basis for revising guidelines for design, investment
decision making, and implementation of traffic safety decisions [11–17]. The findings of
these studies are limited by drivers’ behavior, the quality of the infrastructure present, and
the characteristics of the traffic. In practice, risk management is the basis for eliminating a
potential adverse event [18–22].

Speed is extremely important in terms of efficiency (Level of Service (LOS) and
travel time) and safety (occurrence and consequences of traffic accidents) [23]. The size
and frequency of the exceeding of speed limits was given in the report Vehicle Speed
Compliance Statistics, produced in Great Britain in 2018 by the Department for Transport,
which shows that there is frequent speed limit exceeding of 53.00% for light commercial
vehicles in free-flow conditions. Gao et al. [24] investigated the dispersion of traffic flow
speed in relation to speed limits. The research was conducted on an expressway with speed
limits of 80 km/h, 100 km/h, and 120 km/h, and showed that there was an increase in the
speed of traffic flow and speed dispersion with an increase in the speed limit. The impact
of posting an appropriate speed limit on increasing road capacity has also been described
in a study on Indian expressways [25]. This study concluded that when increasing the
speed limit, the compliance with the speed limit by traffic participants increases too. When
a large number of drivers comply with the posted speed limit in the traffic conditions
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prevailing on roads in India, it was found that the travel time is slightly reduced and that
the flow efficiency is improved. Based on a study [2] conducted in the Netherlands with
600 respondents, who were shown photographs of 27 road sections, large differences were
found between the preferred speed of the respondents and the speed limit (80 km/h).
These differences referred to a number of road and environment characteristics, such as
the presence/absence of curves and characteristics related to the driver’s field of vision. In
addition, another study [26] showed large differences among respondents. The influence
of horizontal signalization on the road network leads to the appearance of higher speeds,
regardless of the presence of marked pedestrian paths, residential housing, or speed signs.
To a lesser extent, an increase in speed with an increase in marking (greater demarcation)
on rural two-lane roads was also noted [7].

3. Rough-Number-Based Bonferroni Operators Based on Dombi Operation Laws
3.1. Some Basic Concepts on Rough Numbers

Rough sets [6] represent an adequate tool for processing inaccuracies in informa-
tion with additional influence of subjectivity when defining boundary intervals [27].
Zhai et al. [28] emphasize that the use of rough sets is quite appropriate for a decision-
making process when there is uncertain and unavailable data. Given the performance of
rough numbers in subjectivity manipulation, a multi-criteria framework based on informa-
tion processing using rough numbers is proposed in this paper.

Rough numbers are essentially based on the concept of rough sets, which are based
on defining the lower limit, the upper limit, and the rough boundary interval of a rough
number. If we assume that Ψ is the universal set of objects divided into b classes that satisfy
the condition ς1 ≤ ς2 ≤, . . . ,≤ ςb, then 1 ≤ i ≤ b. If we assume that Υ is the collection
of (ς1, ς2, , . . . , ςb) and that Π is an arbitrary element of Ψ, then we can define the lower
approximation of class ςi as follows:

Apr(ςi) = ∪{Π ∈ Ψ/Υ(Π) ≤ ςi} (1)

In addition, based on the above, we can define the upper approximation as follows:

Apr(ςi) = ∪{Π ∈ Ψ/Υ(Π) ≥ ςi} (2)

Based on the lower and upper approximations (1) and (2), we can define the lower
and upper limit of ςi as follows:

Lim(ςi) =

 1
N−

N−

∑
i,j=1

ςε1
i

(
N−

∏
j=1

ςε2
j

) 1
N−−1


1

ε1+ε2 ∣∣∣ςε1
i , ςε2

j ∈ Apr(ςi) (3)

Lim(ςi) =

 1
N+

N+

∑
i,j=1

ςε1
il

(
N+

∏
j=1

ςε2
jl

) 1
N+−1


1

ε1+ε2 ∣∣∣ςε1
il , ςε2

jl ∈ Apr(ςi) (4)

where N− and N+ represent the number of elements in Apr(ςi) and Apr(ςi), respectively;
ε1, ε2 ≥ 0 and ε1, ε2 ∈ R, where R represents a set of real numbers.

Based on Equations (1)–(4), we can define a rough number of ςi as follows:

RN(ςi) =
[
Lim(ςi), Lim(ςi)

]
=
[
ς−i , ς+i

]
(5)

The rough boundary interval of ςi is defined as follows:

RNBnd(ςi) = ς+i − ς−i (6)
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The rough boundary interval represents the uncertainty of ςi. Arithmetic operations
between rough numbers are performed as with classical interval numbers and can be seen
in more detail in Djalic et al. [29].

3.2. Dombi Operations

Definition 1. Let τ1 and τ2 be any two real numbers. Then, the Dombi T-norm and T-conorm
between τ1 and τ2 are defined as follows [4]:

TD(τ1, τ2) =
1

1 +
{(

1−τ1
τ1

)α
+
(

1−τ2
τ2

)α}1/α (7)

Tc
D(τ1, τ2) = 1− 1

1 +
{(

τ1
1−τ1

)α
+
(
τ2

1−τ2

)α}1/α (8)

where α > 0 and (τ1, τ2) ∈ [0, 1].

Based on the definition of Dombi T-norm and T-conorm, we can define Dombi opera-
tions with rough numbers.

Definition 2. Assume that τ1 =
[
τ−1 , τ+1

]
and τ2 =

[
τ−2 , τ+2

]
are two rough numbers, α, θ > 0,

and let f (τi) = τi/∑n
i=1 τi be a rough function; then, based on the Dombi T-norm and T-conorm,

we can define some operational laws with rough numbers as follows:

(1) Addition “+”

τ1 + τ2 =



(
τ−1 + τ−2

)
− τ−1 +τ−2

1+

{(
f(τ−1 )

1− f(τ−1 )

)α
+

(
f(τ−2 )

1− f(τ−2 )

)α}1/α ,

(
τ+1 + τ+2

)
− τ+1 +τ+2

1+

{(
f(τ+1 )

1− f(τ+1 )

)α
+

(
f(τ+2 )

1− f(τ+2 )

)α}1/α

 (9)

(2) Multiplication “×”

τ1 × τ2 =

 τ−1 +τ−2

1+

{(
1− f(τ−1 )

f(τ−1 )

)α
+

(
1− f(τ−2 )

f(τ−2 )

)α}1/α , τ+1 +τ+2

1+

{(
1− f(τ+1 )

f(τ+1 )

)α
+

(
1− f(τ+2 )

f(τ+2 )

)α}1/α

 (10)

(3) Scalar multiplication, where θ > 0

θ× τ1 =

τ−1 − τ−1

1 +
{
θ

(
f (τ−1 )

1− f (τ−1 )

)α}1/α , τ+1 −
τ+1

1 +
{
θ

(
f (τ+1 )

1− f (τ+1 )

)α}1/α

 (11)

(4) Power, where γ > 0

τθ1 =

 τ−1

1 +
{
θ

(
1− f (τ−1 )

f (τ−1 )

)α}1/α ,
τ+1

1 +
{
θ

(
1− f (τ+1 )

f (τ+1 )

)α}1/α

 (12)
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3.3. Bonferroni Mean Operators

Definition 3 [30]. Let the set (τ1, τ2, ..., τn) represent the set of rough numbers; let χ1, χ2 ≥ 0;
and let the weight coefficients of rough numbers τi (i = 1, 2, . . . , n) be denoted by wi ∈ [0, 1] (i = 1,
2, . . . , n). If

WBMχ1,χ2(τ1, τ2, . . . , τn) =

(
n

∑
i,j=1

wiwj

1− wi
τ
χ1
i τ

χ2
j

) 1
χ1+χ2

(13)

then WBMχ1,χ2 represents the normalized weighted Bonferroni mean (WBM) operator.

4. A Hybrid Dombi–Bonferroni MARCOS Model Based on Rough Numbers

The multi-criteria model represents the application of the rough Dombi Logarithmic
Methodology of Additive Weights (D’LMAW) for determining the weight coefficients of
criteria and improving the rough Measurement Alternatives and Ranking according to the
Compromise Solution (MARCOS) method [5]. The improvement of the rough MARCOS
methodology is based on the integration of the Dombi T-norm (TN) and T-conorm (TCN)
into the Bonferroni function, which was used to calculate the sum of the weighted elements
of the normalized matrix in the rough Dombi–Bonferroni MARCOS method. The applica-
tion of the hybrid rough Dombi–Bonferroni function enables nonlinear processing of the
rough parameters of the initial matrix. In addition, the integration of the rough Dombi–
Bonferroni function into the MARCOS model improves the flexibility of the traditional
MARCOS method, thus enabling the perception of dynamic environmental conditions and
risks that are an integral part of the real-world application of multi-criteria techniques.
In addition, the rough Dombi–Bonferroni function enables the demonstration of mutual
relations among the elements of the initial matrix, which significantly improves the perfor-
mance of the MARCOS method. In the following section, a multi-criteria framework of the
proposed methodology for determining the risk on road sections is presented.

4.1. Rough Dombi Logarithmic Methodology of Additive Weights

In the following section, a new approach is presented for determining weight coeffi-
cients, which is based on the application of the rough Dombi Logarithmic Methodology of
Additive Weights (D’LMAW). The Rough D’LMAW methodology is implemented through
the six steps presented below:

Step 1. Assume that b experts E = {E1, E2, . . . , Eb} participate in the research. Each
expert defines a priority vector Θt =

(
γt

C1,γt
C2, . . . ,γt

Cn
)
, 1 ≤ t ≤ b on the basis of a

predefined scale. Thus, we get b priority vectors Θ1, Θ2, . . . , Θt, . . . , Θb. By applying
Equations (1)–(4), the sequences of priority vectors γ1

j , γ2
j , . . . , γb

j are transformed into

interval rough sequences γ1
j =

[
γ1−

j ,γ1+
j

]
, γ2

j =
[
γ2−

j ,γ2+
j

]
, . . . , γt

j =
[
γt−

j ,γt+
j

]
, . . . ,

γb
j =

[
γb−

j ,γb+
j

]
.

By applying the Dombi function, Equation (14), we obtain an aggregated rough
priority vector Θ = (γC1,γC2, . . . ,γCn), γj =

[
γ−j ,γ+j

]
.

γj =


∑b

j=1 γ
−
j

1 +

{
b
∑

j=1

1
b

(
1− f

(
γ−j

)
f
(
γ−j

)
)α}1/α ,

∑b
j=1 γ

+
j

1 +

{
b
∑

j=1

1
b

(
1− f

(
γ+

j

)
f
(
γ+

j

)
)α}1/α

 (14)

where f
(
γj

)
= γj/

b
∑

j=1
γj represents a rough priority function, while b represents the total

number of experts.
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Step 2. Defining a rough vector of relations Ψ. Using Equation (15), the relations
among the elements of the priority vector and the absolute anti-ideal point (βAIP) are
defined as follows:

RN(ρCn) =
RN(γCn)

RN(βAIP)
(15)

where RN(ρCn) represents an element of the rough vector of relations Ψ = (RN(ρC1),
RN(ρC2), . . . , RN(ρCn)), 1 ≤ t ≤ b, while the absolute anti-ideal point is determined on
the basis of condition RN(βAIP) < min

(
γt

C1,γt
C2, . . . ,γt

Cn
)
.

Step 3. Determination of weight coefficient vector. Using Equation (16), we determine
the weight coefficients of the criteria:

RN
(
wj
)
=

ln
(

RN
(
ρj

))
ln
(

RN
(
νj
)) (16)

where RN
(
ρj

)
represents the elements of the rough vector of relations Ψ = (RN(ρC1),

RN(ρC2), . . . , RN(ρCn)), while the value of RN(ν) is obtained by applying Equation (17)

RN
(
νj
)
=


∑n

j=1 ρ
−
j

1 +

{
n
∑

j=1

1
n

(
1− f

(
ρ−j

)
f
(
ρ−j

)
)α}1/α ,

∑n
j=1 ρ

+
j

1 +

{
n
∑

j=1

1
n

(
1− f

(
ρ+j

)
f
(
ρ+j

)
)α}1/α

 (17)

where RN
(
ρj

)
=
[
ρ−j , ρ+j

]
represents the elements of the rough vector of relations.

4.2. Rough Dombi Bonferroni MARCOS Model

Based on the definitions of rough numbers, Dombi norms, and Bonferroni functions, the
following section presents a hybrid rough Dombi–Bonferroni MARCOS model. The Rough
Dombi–Bonferroni MARCOS model is based on the application of hybrid Dombi–Bonferroni
functions and rough numbers to process inaccuracies in a multi-criteria framework.

Step 1. Assume that in the multi-criteria model, there are m alternatives and n criteria
used to evaluate the alternatives. In addition, assume that the data obtained in the initial
decision matrix (IDM) Ω =

[
ψij

]
m×n

were obtained by recording the traffic data over

x recording periods. Based on the collected data, x IDMs can be formed, which we can
denote by Ωv =

[
ψv

ij

]
m×n

(1 ≤ v ≤ x). Based on Ωv =
[
ψv

ij

]
m×n

(1 ≤ v ≤ x), we can form

a matrix Ωr that contains sequences from the matrices (1 ≤ v ≤ x).

Ωr =


ψ1

11,ψ2
11, . . . ,ψx

11 ψ1
12,ψ2

12, . . . ,ψx
12 , . . . , ψ1

1n,ψ2
1n, . . . ,ψx

1n
ψ1

21,ψ2
21, . . . ,ψx

1 ψ1
22,ψ2

22, . . . ,ψx
22 , . . . , ψ1

2n,ψ2
2n, . . . ,ψx

2n
. . . . . . , . . . , . . .

ψ1
m1,ψ2

m1, . . . ,ψx
m1 ψ1

m2,ψ2
m2, . . . ,ψx

m2 , . . . , ψ1
mn,ψ2

mn, . . . ,ψx
mn

 (18)

where ψv
ij =

{
ψ1

11,ψ2
11, . . . ,ψx

11

}
, (1 ≤ v ≤ x) represents sequences that demonstrate the

relative importance of alternative i in relation to criterion j. By applying Equations (1)–(4),
the sequences ψv

ij (1 ≤ v ≤ x) are transformed into interval rough sequences. By averaging
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interval rough sequences, we obtain an aggregated rough sequence RN
(
ψij

)
=
[
ψ−ij ,ψ+

ij

]
,

which represents an element of an aggregated initial matrix Ω =
[

RN
(
ψij

)]
m×n

:

Ω =

C1 C2 . . . Cn

A1
A2
. . .
Am


RN(ψ11) RN(ψ12) . . . RN(ψ1n)
RN(ψ21) RN(ψ22) . . . RN(ψ2n)

· · · · · · . . . · · ·
RN(ψm1) RN(ψm2) . . . RN(ψmn)


m×n

(19)

Step 2. Using Equation (20), the ideal alternative (IA) and the anti-ideal alternative
(AIA) are defined as follows:

IA = max
1≤i≤m

RN
(
ψij

)
i f j ∈ B and min

1≤i≤m
RN
(
ψij

)
i f j ∈ C

AIA = min
1≤i≤m

RN
(
ψij

)
i f j ∈ B and max

1≤i≤m
RN
(
ψij

)
i f j ∈ C

(20)

where B represents a benefit group of criteria, while C represents a non-benefit group
of criteria.

Step 3. Normalization of the elements of matrix Ω =
[

RN
(
ψij

)]
m×n

is performed

by applying Equation (21). The elements of normalized matrix ΩN =
[

RN
(
ψ̂ij

)]
m×n

are

determined as follows:

RN
(
ψ̂ij

)
=


[
ψ−ij
ψ+

j
,
ψ+

ij

ψ+
j

]
i f j ∈ Benefit[

ψ−j
ψ+

ij
,
ψ−j
ψ−ij

]
i f j ∈ Non-benefit

(21)

where ψ̂+
j = max

1≤i≤m

{
RN
(
ψij

)}
and ψ̂−j = min

1≤i≤m

{
RN
(
ψij

)}
.

Step 4: Calculation of the utility degree of alternatives (Λi). Using Equations (22) and
(23), the utility degrees of the alternative in relation to IA and AIA are calculated:

Λi
− =

RN(θi)

RN
(
θAAIA

i

) (22)

Λi
+ =

RN(θi)

RN
(
θIA

i

) (23)

where RN(θi) (i = 1, 2, . . . , m) represents the Dombi–Bonferroni weighted function that is
used to calculate the sum of the weighted elements of the matrix ΩN =

[
RN
(
ψ̂ij

)]
m×n

.

Theorem 1. Let
{

RN
(
ψ̂1
)

1, RN
(
ψ̂2
)
, . . . , RN

(
ψ̂n
)}

be a set of normalized elements of matrix

ΩN =
[

RN
(
ψ̂ij

)]
m×n

and let χ1, χ2, α ≥ 0, and let RN
(
wj
)
=
[
w−j , w+

j

]
(j = 1, 2, . . . , n)
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represent rough weight coefficients; then, we can express the Dombi–Bonferroni weighted function
(θχ1,χ2,α

j ) as follows:

θ
χ1,χ2,α
j =



n
∑

j=1
ψ̂
−
j

1+


1

w−i w−j (χ1+χ2)

1−w−i
n
∑

i, j = 1
i 6= j

1

µ1

 1− f
(
ψ̂
−
j

)
f
(
ψ̂
−
j

) α+µ2

 1− f
(
ψ̂
−
j

)
f
(
ψ̂
−
j

) α



1/α

n
∑

j=1
ψ̂
−
j

1+


1

w+
i w+

j (χ1+χ2)

1−w+
i

n
∑

i, j = 1
i 6= j

1

µ1

 1− f
(
ψ̂
+
j

)
f
(
ψ̂
+
j

) α+µ2

 1− f
(
ψ̂
+
j

)
f
(
ψ̂
+
j

) α



1/α



(24)

where χ1 and χ2 represent the stabilization parameters of the Bonferroni function, and α represents
the parameter of the Dombi norm, while f

(
ψ̂
−
j

)
= ψ̂

−
j /∑n

j=1 ψ̂
−
j and f

(
ψ̂
+
j

)
= ψ̂

+
j /∑n

j=1 ψ̂
+
j .

Then, θχ1,χ2,α
j represents the rough Dombi–Bonferroni weighted function. The proof for Theorem 1

is presented in Appendix A.

Step 5. The compromise of the alternative in relation to IA and AIA is defined by the
rough utility function f (Λi), Equation (25)

f (Λi) =
RN
(
Λ+

i
)
+ RN

(
Λ−i
)

1 +
1− f (Λ+

i )
f (Λ+

i )
+

1− f (Λ−i )
f (Λ−i )

; (25)

where f
(
Λ−i
)
= RN

(
Λ+

i
)
/
(

RN
(
Λ+

i
)
+ RN

(
Λ−i
))

represents the rough utility function
in relation to AIA, while f

(
Λ+

i
)
= RN

(
Λ−i
)
/
(

RN
(
Λ+

i
)
+ RN

(
Λ−i
))

represents the utility
function in relation to IA.

Step 6. Ranking of alternatives is performed on the basis of the values of utility
functions ( f (Λi)). It is desirable that the alternative has the lowest possible risk value, that
is, f (Λi).

5. Results and Discussion

The research was conducted on six measuring sections of two-lane roads (main roads
of category I) in the territory of Bosnia and Herzegovina, with a total length of the road
network of 60.918 km, which were analyzed as a function of longitudinal gradient. The
Vrhovi-Šešlije (M-I-103) road section was analyzed for the longitudinal fall of −5.00% and
−1.92%, so that a total of six measuring road sections (D1–D6) were considered in the
case study. Moreover, at each measuring section, the value of the speed limit was visually
identified, and the case study synthesized the obtained data on exceeding the speed limit
at each of the measuring sections. The obtained data on the deviation of the real speed
from the speed limit were synthesized and presented on the basis of the arithmetic mean
of a representative sample of the obtained values for light goods vehicles, which is given in
Table 1.
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Table 1. Technical and exploitation characteristics of measuring sections with values of speeding.

Measuring Sections for Exceeding
the Speed Limit by LGV Section Mark Section Length (m) Ascent/Descent

at 1000 m in %
Speed Limit

(km/h)

Deviation of Speeds
from the Speed

Limit (km/h)

D1 Vrhovi-Šešlije M-I-103 14.073 −5.00% 80 11.741

D2 Vrhovi-Šešlije M-I-103 14.073 −1.92% 80 8.615

D3 Rudanka-Doboj M-I-105 7.405 −0.017% 60 5.200

D4 Šepak-Karakaj 3 M-I-115 20.95 +1.00% 80 2.000

D5 Donje Caparde-Karakaj 1 M-I-110 15.35 +3.00% 80 0.000

D6 Border (RS/FBIH)-Donje
Caparede M-I-110 3.14 +7.00% 80 2.000

Further in the paper, eight criteria (C1–C8) are analyzed. The data for determining
the level of risk of road sections are systematized in Table 1. The determination of the
criteria included the criterion of optimality through: C1—length of the section (m); C2—
ascent/descent at 1000 m in %; C3—credible deviation of the arithmetic mean of the real
speed from the speed limit for light goods vehicles (km/h); C4—AADT (Annual Average
Daily Traffic) (vehicles/day); C5–C8—number of accidents with fatalities, with severely
injured persons, with slightly injured persons, and with material damage, respectively.

5.1. Determining Criteria Weights by Rough D’LMAW Methodology

In the previous section, eight criteria used to determine the level of risk on five road
sections (six measuring sections) have been defined. The criteria are marked with codes
C1–C8, as follows: C1—length of the section (m); C2—ascent/descent at 1000 m in %;
C3—speed deviation from the limit speed; C4—AADT (Annual Average Daily Traffic)
(vehicles/day); C5—number of traffic accidents with fatalities; C6—number of traffic
accidents with severely injured persons; C7—number of traffic accidents with slightly
injured persons; and C8—number of traffic accidents with material damage. The following
section explains the application of the rough D’LMAW methodology for determining the
weight coefficients of the criteria.

Step 1. Expert assessment consisting of a survey, the assessment of concordance of
expert preferences, and the results obtained were used in the analysis. Methods of de-
termining the weights of the criteria to describe risk management are considered to be
subjective if they are evaluated by respondents or experts. The estimate of one highly
qualified expert may be more important than the estimates made by a number of inex-
perienced specialists. The research involved four experts (two traffic engineers and two
civil engineers, road experts) represented by a set. Eight experts were interviewed, and
the result of the interviews for four experts were accepted. Based on experts’ estimates,
priority vectors for each expert were defined, as shown in Table 2. The experts’ estimates
of criteria in the priority vector were defined on the basis of a seven-point scale: very low
(VL)—1; low (L)—2; medium low (ML)—3; medium (M)—4; medium high (MH)—5; high
(H)—6; very high (VH)—7.

Table 2. Priority vectors of criteria.

Criteria Expert 1 Expert 2 Expert 3 Expert 4

C1 L ML L ML
C2 ML L VL L
C3 M M ML MH
C4 M MH H M
C5 H VH VH VH
C6 H H VH MH
C7 MH H H H
C8 MH MH M MH
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Using Equations (1)–(4), the sequences of the priority vectors from Table 2 are trans-
formed into the rough sequences shown in Table 3.

Table 3. Rough priority vectors of criteria.

Criteria Expert 1 Expert 2 Expert 3 Expert 4

C1 [2.00,2.46] [2.46,3.00] [2.00,2.46] [2.10,3.00]
C2 [1.00,1.89] [1.41,2.29] [1.60,2.45] [1.89,3.00]
C3 [3.00,3.95] [3.46,4.31] [3.64,4.47] [3.95,5.00]
C4 [4.00,4.70] [4.00,4.94] [4.31,5.48] [4.70,6.00]
C5 [6.00,6.74] [6.48,7.00] [6.65,7.00] [6.74,7.00]
C6 [5.00,5.97] [5.48,6.32] [5.65,6.48] [5.97,7.00]
C7 [5.00,5.74] [5.48,6.00] [5.65,6.00] [5.74,6.00]
C8 [4.00,4.73] [4.47,5.00] [4.64,5.00] [4.73,5.00]

An example of the transformation of experts’ estimates from Table 3 for criterion C1 is
presented in the following section. The experts’ estimates for criterion C1 in the priority
vector (Table 2) yielded the following values: γ1

1 = γ3
1 = 2 and γ2

1 = γ4
1 = 3. Using

Equations (1)–(4), and provided that ε1 = ε2 = 1, we can define the lower and upper limit
of rough numbers according to the following:

Lower limits:
Lim(γ1

1) = Lim(γ3
1) = 2;

Lim(γ2
1) = Lim(γ4

1)

=
(

1
4

{
2 · (2 · 3 · 3)1/3 + 2 · (2 · 3 · 3)1/3 + 3 · (2 · 2 · 3)1/3 + 3 · (2 · 2 · 3)1/3

}) 1
2
= 2.461

Upper limits:

Lim(γ1
1) = Lim(γ3

1)

=
(

1
4

{
2 · (2 · 3 · 3)1/3 + 2 · (2 · 3 · 3)1/3 + 3 · (2 · 2 · 3)1/3 + 3 · (2 · 2 · 3)1/3

}) 1
2
= 2.461

Lim(γ2
1) = Lim(γ4

1) = 3;

Based on the defined limit values, we can define a rough number, Equation (5):

RN(γ1
1) = RN(γ3

1) = [2, 2.46];

RN(γ2
1) = RN(γ4

1) = [2.46, 3]

The aggregated rough priority vector is obtained by applying Equation (14):

γj =


γ−j = 2+2+2.46+2.46

1+
{

1
4 (

1−0.224
0.224 )

1
+ 1

4 (
1−0.224

0.224 )
1
+ 1

4 (
1−0.276

0.276 )
1
+ 1

4 (
1−0.276

0.276 )
1}1/1 = 2.21

γ+j = 2.46+2.46+3+3

1+
{

1
4 (

1−0.225
0.225 )

1
+ 1

4 (
1−0.225

0.225 )
1
+ 1

4 (
1−0.276

0.276 )
1
+ 1

4 (
1−0.276

0.276 )
1}1/1 = 2.70

= [2.21, 2.70]

Based on the aggregated rough values, we obtain an aggregated priority vector:

RN(γ1) = [2.21, 2.70];
RN(γ2) = [1.40, 2.34];
RN(γ3) = [3.48, 4.40];
RN(γ4) = [4.23, 5.23];
RN(γ5) = [6.45, 6.93];
RN(γ6) = [5.50, 6.42];
RN(γ7) = [5.45, 5.93];
RN(γ8) = [4.44, 4.93].
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Step 2. By applying the condition that βAIP < min
(
γt

C1,γt
C2, . . . ,γt

Cn
)
, the absolute

anti-ideal point βAIP = [0.4,0.6] is defined. The vector of relations is obtained by applying
Equation (15), as follows:

RN(ρ1) = [3.68, 6.76]
RN(ρ2) = [2.33, 5.86];

RN(ρ3) = [5.80, 11.01];
RN(ρ4) = [7.06, 13.08];
RN(ρ5) = [10.76, 17.33];
RN(ρ6) = [9.17, 16.05];
RN(ρ7) = [9.08, 14.83];
RN(ρ8) = [7.41, 12.33].

Step 3. By applying Equation (16), we obtain a vector of weight coefficients:

RN(w1) = [0.552, 1.125]
RN(w2) = [0.358, 1.041];
RN(w3) = [0.744, 1.411];
RN(w4) = [0.827, 1.513];
RN(w5) = [1.006, 1.679];
RN(w6) = [0.938, 1.634];
RN(w7) = [0.934, 1.587];
RN(w8) = [0.848, 1.478].

The weight coefficient for criterion C1 is obtained by applying Equation (16) as follows:

RN(w1) =

[
ln(3.68)

ln(10.60)
,

ln(6.76)
ln(5.47)

]
= [0.552, 1.125]

The values of the remaining weight coefficients of the criteria are obtained in a similar way.

5.2. Determination of Risk on Road Sections Using Rough Dombi–Bonferroni
MARCOS Methodology

The application of rough Dombi–Bonferroni MARCOS methodology is presented
through a multi-criteria model for determining the risk on the measuring road sections.
The applied multi-criteria framework is presented through the steps given below.

Step 1: In the case study, six measuring sections of the given road sections are consid-
ered, which are marked with the following codes: D1—Vrhovi-Šešlije I; D2—Vrhovi-Šešlije
II; D3—Rudanka-Doboj; D4—Šepak-Karakaj 3; D5—Donje Caparde-Karakaj 1; D6—Border
(RS/FBIH)-Donje Caparede. The data shown in Table 4 are used to determine the level
of risk.

Table 4. Data for determining the level of risk of road sections.

D1 D2 D3 D4 D5 D6

C1 14.07 14.07 7.41 20.95 15.35 3.14
C2 5.00 1.92 0.02 1.00 3.00 7.00
C3 11.74 8.62 5.20 2.00 0.00 2.00

C4

2012 4542.33 4542.33 12,825.33 5619.67 3113.00 3568.67
2013 4880.00 4880.00 13,444.50 6107.00 3407.00 3901.00
2014 4611.50 4611.50 13,231.00 6097.50 3433.00 3927.00
2015 4416.00 4416.00 13,044.33 6022.00 3411.67 3942.67
2016 4587.50 4587.50 13,670.00 6340.00 3642.00 4221.00

C5

2015 2.00 2.00 2.00 2.00 3.00 0.00
2016 0.00 0.00 2.00 1.00 0.00 0.00
2017 2.00 2.00 1.00 1.00 1.00 0.00
2018 0.00 0.00 1.00 2.00 0.00 0.00
2019 0.00 0.00 1.00 1.00 0.00 0.00



Symmetry 2021, 13, 1271 12 of 19

Table 4. Cont.

D1 D2 D3 D4 D5 D6

C6

2015 5.00 5.00 5.00 3.00 2.00 1.00
2016 3.00 3.00 3.00 6.00 5.00 1.00
2017 3.00 3.00 10.00 9.00 3.00 0.00
2018 1.00 1.00 2.00 3.00 3.00 0.00
2019 1.00 1.00 5.00 8.00 3.00 0.00

C7

2015 3.00 3.00 7.00 19.00 5.00 3.00
2016 3.00 3.00 12.00 23.00 11.00 0.00
2017 4.00 4.00 17.00 18.00 7.00 0.00
2018 7.00 7.00 17.00 19.00 6.00 1.00
2019 2.00 2.00 20.00 18.00 3.00 1.00

C8

2015 11.00 11.00 47.00 43.00 17.00 1.00
2016 11.00 11.00 43.00 65.00 20.00 3.00
2017 6.00 6.00 55.00 48.00 22.00 1.00
2018 14.00 14.00 58.00 65.00 18.00 2.00
2019 6.00 6.00 46.00 46.00 29.00 3.00

Based on the data presented in Table 4, we can see that the data for criteria C4–C8 are
given for a five-year period. The values C1–C3 are obtained by empirical research, and the
values C4–C8 are taken from AADT (Annual Average Daily Traffic) and accident databases.
Therefore, the values for criteria C4–C8 are transformed into rough numbers, while the
values of criteria C1–C3 are shown as crisp values. Using Equations (1)–(4), the sequences
of criteria C4, C5, C6, C7, and C8 are transformed into interval rough sequences. The rough
sequences are averaged using the rough Bonferroni operator [3,31–34], and an aggregated
rough initial matrix is obtained, as shown in Table 5.

Table 5. Aggregated initial decision matrix.

Crit. D1 D2 D3 D4 D5 D6

C1 [14.07,14.07] [14.07,14.07] [7.41,7.41] [20.95,20.95] [15.35,15.35] [3.14,3.14]
C2 [5,5] [1.92,1.92] [0.02,0.02] [1,1] [3,3] [7,7]
C3 [11.74,11.74] [8.62,8.62] [5.2,5.2] [2,2] [0,0] [2,2]
C4 [4487,4742.03] [4487,4742.03] [12,981.6,13,504.84] [5825.93,6220.79] [3253.79,3535.94] [3731.52,4080.96]
C5 [0,0.02] [0,0.02] [1.05,1.6] [1.05,1.6] [0,0.02] [0,0]
C6 [1.3,3.07] [1.3,3.07] [2.76,5.79] [3.59,6.87] [2.44,3.49] [0,0.01]
C7 [2.49,4.32] [2.49,4.32] [9.97,16.63] [18.21,20.04] [4.09,7.37] [0,0.65]
C8 [6.88,10.9] [6.88,10.9] [45.08,52.66] [45.75,58.08] [17.99,22.89] [1.21,2.39]

Step 2: Using Equation (20), the ideal alternative (IA) and the anti-ideal alternative
(AIA) are defined for each criterion j. Since all criteria are of benefit type (B), the first part
of Equation (20) is used to determine IA and AIA. IA and AIA are shown below:

IAC1 = [20.95, 20.95],
IAC2 = [7, 7],

IAC3 = [11.74, 11.74],
IAC4 = [12981.6, 13504.84],

IAC5 = [1.05, 1.6],
IAC6 = [3.59, 6.87],

IAC7 = [18.21, 20.04],
IAC8 = [45.75, 58.08].

AIAC1 = [3.14, 3.14],
AIAC2 = [0.02, 0.02],

AIAC3 = [0, 0],
AIAC4 = [3253.79, 3535.94],

AIAC5 = [0, 0],
AIAC6 = [0, 0.01],
AIAC7 = [0, 0.65],

AIAC8 = [1.21, 2.39].

Step 3: Normalization of initial matrix elements (Table 5) is performed using Equa-
tion (21). The normalized rough matrix is shown in Table 6.
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Table 6. Normalized rough matrix.

Alter. AIA D1 D2 D3 D4 D5 D6 IA

C1 [0.15,0.15] [0.67,0.67] [0.67,0.67] [0.35,0.35] [1.00,1.00] [0.73,0.73] [0.15,0.15] [1.00,1.00]
C2 [0.00,0.00] [0.71,0.71] [0.27,0.27] [0.00,0.00] [0.14,0.14] [0.43,0.43] [1.00,1.00] [1.00,1.00]
C3 [0.00,0.00] [1.00,1.00] [0.73,0.73] [0.44,0.44] [0.17,0.17] [0.00,0.00] [0.17,0.17] [1.00,1.00]
C4 [0.24,0.27] [0.33,0.37] [0.33,0.37] [0.96,1.04] [0.43,0.48] [0.24,0.27] [0.28,0.31] [0.96,1.04]
C5 [0.00,0.00] [0.00,0.02] [0.00,0.02] [0.66,1.52] [0.66,1.52] [0.00,0.02] [0.00,0.00] [0.66,1.52]
C6 [0.00,0.00] [0.19,0.86] [0.19,0.86] [0.40,1.61] [0.52,1.91] [0.36,0.97] [0.00,0.00] [0.52,1.91]
C7 [0.00,0.04] [0.12,0.24] [0.12,0.24] [0.50,0.91] [0.91,1.10] [0.20,0.41] [0.00,0.04] [0.91,1.10]
C8 [0.02,0.05] [0.12,0.24] [0.12,0.24] [0.78,1.15] [0.79,1.27] [0.31,0.50] [0.02,0.05] [0.79,1.27]

The normalization of the element at position C5–D4 in Table 6 is obtained by applying
Equation (21) as follows:

RN
(
ψ̂45
)
=

[
ψ−45
ψ+

5
,
ψ+

45
ψ+

5

]
=

[
1.05
1.60

,
1.60
1.05

]
= [0.66, 1.52]

The remaining elements from Table 6 are obtained in a similar way.
Step 4: Using Equations (22) and (23), the utility degrees of alternatives in relation to

IA and AIA are calculated. The utility levels of the alternatives are shown below:

Λi
− =



[6.757, 9.605]
[5.300, 7.464]
[9.422, 12.633]
[10.657, 14.143]
[4.965, 6.924]
[2.227, 4.487]

; Λi
+ =



[0.318, 0.346]
[0.249, 0.269]
[0.443, 0.455]
[0.501, 0.509]
[0.234, 0.249]
[0.105, 0.162]


The calculation of the utility degree of alternative D1 is explained below:

(1) By applying Equation (24), we obtain the sum of the weighted elements of the nor-
malized matrix:

RN(θ)i =

AIA
D1
D2
D3
D4
D5
D6
IA



[0.333, 0.438]
[2.962, 3.202]
[2.323, 2.488]
[4.131, 4.211]
[4.672, 4.715]
[2.177, 2.308]
[0.976, 1.496]
[9.261, 9.318]


The sum calculation of the weighted elements of the normalized matrix for alternative

D1 is obtained as follows:
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RN(θ)1
χ1=χ2=α=1 =



RN(θ)1
− = 0.67+0.71+1.00+0.33+0.00+0.19+0.12+0.12

1+


1

1+1



0.552·0.358
1−0.552

1
1·( 1−0.21

0.21 )
1
+1·( 1−0.23

0.23 )
1 +

0.552·0.744
1−0.744

1
1·( 1−0.21

0.21 )
1
+1·( 1−0.32

0.32 )
1 +

0.552·0.827
1−0.827

1
1·( 1−0.21

0.21 )
1
+1·( 1−0.11

0.11 )
1 + . . .+

0.848·0.934
1−0.848

1
1·( 1−0.04

0.04 )
1
+1·( 1−0.04

0.04 )
1



−1


1/1 = 2.962

RN(θ)1
+ = 0.67+0.71+1.00+0.33+0.00+0.19+0.12+0.12

1+


1

1+1



1.125·1.041
1−1.125

1
1·( 1−0.21

0.21 )
1
+1·( 1−0.23

0.23 )
1 +

1.125·1.411
1−1.125

1
1·( 1−0.21

0.21 )
1
+1·( 1−0.32

0.32 )
1 +

1.125·1.513
1−1.513

1
1·( 1−0.21

0.21 )
1
+1·( 1−0.11

0.11 )
1 + . . .+

1.478·1.587
1−1.478

1
1·( 1−0.038

0.038 )
1
+1·( 1−0.04

0.04 )
1



−1


1/1 = 3.202

= [2.962, 3.202]

(2) Then, by applying Equations (22) and (23), we obtain the utility degrees of alternative
D1 in relation to IA and AIA:

Λ1
− =

RN(θ1)

RN
(
θAIA

) =

[
2.962
0.438

,
3.202
0.333

]
= [6.757, 9.605]

Λ1
+ =

RN(θ1)

RN
(
θIA
) =

[
2.962
9.318

,
3.202
9.261

]
= [0.318, 0.346]

Steps 5 and 6: Ranking of alternatives is performed on the basis of the values of the util-
ity function f (Λi), Equation (25). The utility functions of alternatives are presented below:

f (Λi) Rank

[0.673, 0.935]
[0.402, 0.559]
[1.273, 1.781]
[1.638, 2.296]
[0.347, 0.483]
[0.099, 0.135]





4
3
5
6
2
1


It is desirable that the road section has the lowest possible value of risk, so the

following rank is obtained: D6 > D5 > D2 > D1 > D3 > D4. Further in the paper, the
stability of the solution is tested in the case of a change in the stabilization parameters of
the Dombi–Bonferroni hybrid function Equation (24), which has been used to calculate the
utility degree of the alternatives. The Dombi–Bonferroni function has three stabilization
parameters, χ1, χ2, and α. During the risk calculation of the considered road sections, the
values of the parameter χ1 = χ2 = α = 1 are obtained. Further, the application of parameters
χ1, χ2, and α are simulated through 100 scenarios (1 ≤ χ1, χ2, α ≤ 100). Figure 1 shows
the dependence of the Dombi–Bonferroni function on the change of parameters χ1, χ2,
and α; for alternative D1 (Figure 1a), for alternative D2 (Figure 1b), for alternative D3
(Figure 1c), for alternative D4 (Figure 1d), for alternative D5 (Figure 1e) and for alternative
D6 (Figure 1f).

The results from Figure 1 indicate that an increase in the values of parameters 1 ≤ α ≤ 100
causes a decrease in the value of the Dombi–Bonferroni function of all alternatives. How-
ever, the question arises as to whether these changes affect the change in the ranks of
alternatives. In order to consider the influence of the mentioned parameters on the road
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section ranks, Figure 2 provides a comparative overview of the changes in the utility
functions of alternatives f (Λi) depending on the changes in parameters χ1, χ2, and α.
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The increase in the value of the considered parameters leads to a change in the utility
functions; however, these changes are not sufficient to lead to the change of the ranks of
alternatives. From the presented analysis, we can conclude that the initial rank D6 > D5 >
D2 > D1 > D3 > D4 has been confirmed, and that the road section D6 has the lowest value
of risk, and therefore represents the best solution from the considered set.

6. Conclusions

By applying rough Dombi–Bonferroni MARCOS methodology on six measuring
sections of the given road sections, the assessment of risk was performed using a multi-
criteria evaluation of eight significant criteria, on the basis of which the measuring sections
were ranked from the least to the most risky. Additionally, using experts’ assessment, it
was transformed into rough sequences, and after that, into a risk assessment of measuring
sections for light goods vehicles using rough Dombi–Bonferroni MARCOS methodology in
six steps. In addition, stability testing of the solution in case of a change in the stabilization
parameters of the Dombi–Bonferroni hybrid function was used to calculate the utility
degree of alternatives. The research was conducted with an assumption that the sections
have the lowest possible level of risk of potential accidents for light goods vehicles. The
results obtained by analyzing the existing criteria and alternatives show the most (D4)
and the least risky (D6) road sections on the given measuring two-lane road sections. The
conducted research showed that the road section D6, Border (RS-BIH)-Donje Caparde
(M-I-110), with the smallest road section length (3.14 km) and the largest ascent (7.00%),
shows the lowest level of risk. In this section, the speed deviation for light goods vehicles
from the limit value is 2 km/h. According to the analysis, the measuring section with an
extremely high level of risk is D4, Šepak-Karakaj (M-I-115); for this section, the length
is 20.95 km, and the deviation of speeds for light goods vehicles from the limit value is
2 km/h. Both sections, D4 and D6, have the same level of speed deviation for light goods
vehicles, which is 2 km/h. In addition, the functional dependence of the changes was
identified in the value of the Dombi–Bonferroni function on the change of the parameters
χ1, χ2, and α. An increase in the value of the considered parameters leads to a change in
utility functions, but these changes are not sufficient to lead to a change in the ranks of the
alternatives. This research can be conducted to select a risky section in local conditions.
However, the research needs to be conducted on a larger sample of measuring sections.

In future research endeavors, it will be necessary to take a systematic approach to
the assessment of ranks and alternatives on a much larger number of sections and to
analyze, through extensive research, a significantly larger number of input parameters for
risk assessment for light goods vehicles. This kind of approach needs to include constant
monitoring of speed deviations from speed limits, the number of accidents, the volume of
traffic, and so on, of the measuring sections.
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the manuscript.
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Appendix A

The proof for Theorem 1 is presented below.

Proof. Equation (13) is decomposed into segments in order to gradually derive Equation (24).
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From Equation (7), we obtain the following:

RN
(
ψ̂
χ1
i

)
=


ψ̂
−
i

1 +

{
χ1

(
1− f

(
ψ̂
−
i

)
f
(
ψ̂
−
i

)
)α}1/α ,

ψ̂
+
i

1 +

{
χ1

(
1− f

(
ψ̂

+
i

)
f
(
ψ̂

+
i

)
)α}1/α

 and

RN
(
ψ̂
χ2
j

)
=


ψ̂
−
j

1 +

{
χ2

(
1− f

(
ψ̂
−
j

)
f
(
ψ̂
−
j

)
)α}1/α ,

ψ̂
+
j

1 +

{
χ1

(
1− f

(
ψ̂

+
j

)
f
(
ψ̂

+
j

)
)α}1/α


Then, we obtain that

RN
(
ψ̂
χ1
i

)
· RN

(
ψ̂
χ2
i

)

=

 ψ̂
−
i +ψ̂

−
j

1+

{
χ1

(
1− f(ψ̂−i )

f(ψ̂−i )

)α
+χ2

(
1− f

(
ψ̂
−
j

)
f
(
ψ̂
−
j

)
)α}1/α ,

ψ̂
+
i +ψ̂

+
j

1+

{
χ1

(
1− f(ψ̂+

i )
f(ψ̂−i )

)α
+χ2

(
1− f

(
ψ̂
+
j

)
f
(
ψ̂
+
j

)
)α}1/α


After that, we obtain that

n
∑

i, j = 1
i 6= j

RN
(
ψ̂
χ1
i

)
RN
(
ψ̂
χ2
i

)

=



n
∑

j=1
ψ̂
−
j −

n
∑

j=1
ψ̂
−
j

1+


n
∑

i, j = 1
i 6= j

1

χ1

 1− f(ψ̂−i )
f(ψ̂−i )

α+χ2

 1− f
(
ψ̂
−
j

)
f
(
ψ̂
−
j

) α



1/α ,

n
∑

j=1
ψ̂
+
j −

n
∑

j=1
ψ̂

+
j

1+


n
∑

i, j = 1
i 6= j

1

χ1

 1− f(ψ̂+
i )

f(ψ̂+
i )

α+χ2

 1− f
(
ψ̂
+
j

)
f
(
ψ̂
+
j

) α



1/α


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Further, we obtain that

RN(wi)RN(wj)
1−RN(wi)

n
∑

i, j = 1
i 6= j

RN
(
ψ̂
χ1
i

)
RN
(
ψ̂
χ2
i

)

=



n
∑

j=1
ψ̂
−
j −

n
∑

j=1
ψ̂
−
j

1+


w−i w−j
1−w−i

n
∑

i, j = 1
i 6= j

1

χ1

 1− f(ψ̂−i )
f(ψ̂−i )

α+χ2

 1− f
(
ψ̂
−
j

)
f
(
ψ̂
−
j

) α



1/α ,

n
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j=1
ψ̂
+
j −

n
∑

j=1
ψ̂

+
j

1+


w+

i w+
j

1−w+
i

n
∑

i, j = 1
i 6= j

1

χ1

 1− f(ψ̂+
i )

f(ψ̂+
i )

α+χ2

 1− f
(
ψ̂
+
j

)
f
(
ψ̂
+
j

) α



1/α


Finally, we obtain the Dombi–Bonferroni weighted function (θχ1,χ2,α

j )

θ
χ1,χ2,α
j =


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1/α
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31. Pamučar, D.; Bozanic, D.; Lukovac, V.; Komazec, N. Normalized weighted geometric bonferroni mean operator of interval rough

numbers—application in interval rough dematel-copras. Facta Univ. Ser. Mech. Eng. 2018, 16, 171–191. [CrossRef]
32. Pamucar, D. Normalized weighted Geometric Dombi Bonferoni Mean Operator with interval grey numbers: Application in

multicriteria decision making. Rep. Mech. Eng. 2020, 1, 44–52. [CrossRef]
33. Ali, Z.; Mahmood, T.; Ullah, K.; Khan, Q. Einstein Geometric Aggregation Operators using a Novel Complex Interval-valued

Pythagorean Fuzzy Setting with Application in Green Supplier Chain Management. Rep. Mech. Eng. 2021, 2, 105–134. [CrossRef]
34. Pamucar, D.S.; Savin, L.M. Multiple-criteria model for optimal off-road vehicle selection for passenger transportation: BWM-

COPRAS model. Mil. Tech. Cour. 2020, 68, 28–64. [CrossRef]

http://doi.org/10.1016/j.iatssr.2016.05.002
http://doi.org/10.1155/2015/762379
http://doi.org/10.1016/j.trf.2012.02.002
http://doi.org/10.1016/j.trf.2013.07.003
http://doi.org/10.1177/0361198106196100102
http://doi.org/10.3141/2262-05
http://doi.org/10.1016/j.trf.2010.07.003
http://doi.org/10.1016/j.ress.2017.11.024
http://doi.org/10.1109/ACCESS.2021.3077284
http://doi.org/10.1016/b978-0-12-803763-8.00007-8
http://doi.org/10.3390/designs5010012
http://doi.org/10.1109/ACCESS.2021.3088586
http://doi.org/10.3390/axioms10020092
http://doi.org/10.3390/su11133594
http://doi.org/10.1016/j.sbspro.2013.11.139
http://doi.org/10.1016/j.aap.2010.06.006
http://doi.org/10.31181/oresta2003049p
http://doi.org/10.1016/j.eswa.2010.06.007
http://doi.org/10.31181/dmame2003114d
http://doi.org/10.22190/FUME180503018P
http://doi.org/10.31181/rme200101044p
http://doi.org/10.31181/rme2001020105t
http://doi.org/10.5937/vojtehg68-22916

	Introduction 
	Literature Review 
	Rough-Number-Based Bonferroni Operators Based on Dombi Operation Laws 
	Some Basic Concepts on Rough Numbers 
	Dombi Operations 
	Bonferroni Mean Operators 

	A Hybrid Dombi–Bonferroni MARCOS Model Based on Rough Numbers 
	Rough Dombi Logarithmic Methodology of Additive Weights 
	Rough Dombi Bonferroni MARCOS Model 

	Results and Discussion 
	Determining Criteria Weights by Rough D’LMAW Methodology 
	Determination of Risk on Road Sections Using Rough Dombi–Bonferroni MARCOS Methodology 

	Conclusions 
	
	References

