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Abstract: Specifying a proper statistical model to represent asymmetric lifetime data with high
kurtosis is an open problem. In this paper, the three-parameter, modified, slashed, generalized
Rayleigh family of distributions is proposed. Its structural properties are studied: stochastic represen-
tation, probability density function, hazard rate function, moments and estimation of parameters via
maximum likelihood methods. As merits of our proposal, we highlight as particular cases a plethora
of lifetime models, such as Rayleigh, Maxwell, half-normal and chi-square, among others, which are
able to accommodate heavy tails. A simulation study and applications to real data sets are included
to illustrate the use of our results.

Keywords: generalized Rayleigh distribution; EM algorithm; kurtosis; maximum likelihood estima-
tion; slashed generalized Rayleigh distribution

1. Introduction

Vodua [1] proposed a two-parameter distribution for the analysis of positive data,
the well-known generalized Rayleigh distribution. This model overcomes the problems
found in practice, which are related to a Rayleigh distribution and pointed out by authors,
such as Siddiqui [2] and Hirano et al. [3]. Recall that a random variable (rv) X follows
a generalized Rayleigh distribution, denoted as X ∼ GR(θ, α), if its probability density
function (pdf) is given by the following:

f (x; θ, α) =
2θα+1

Γ(α + 1)
x2α+1e−θx2

, x > 0, (1)

where θ > 0 is a scale parameter, α > −1 is a shape parameter and Γ(α) =
∫ ∞

0 uα−1e−u du
is the gamma function. The cumulative distribution function (cdf) of the GR distribution
can be expressed as follows:

F(x; θ, α) =
γ(α + 1, θx2)

Γ(α + 1)
= P(α + 1, θx2), x > 0, (2)

Symmetry 2021, 13, 1226. https://doi.org/10.3390/sym13071226 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9064-2597
https://orcid.org/0000-0002-8092-9666
https://orcid.org/0000-0003-3726-5507
https://doi.org/10.3390/sym13071226
https://doi.org/10.3390/sym13071226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13071226
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13071226?type=check_update&version=2


Symmetry 2021, 13, 1226 2 of 18

where γ(α, x) =
∫ x

0 uα−1e−u du is the incomplete gamma function and P(α + 1, θx2) de-
notes the regularized gamma function [4]. The moments of X are easily derived by using
the results in [5] (Section 3.478). In fact, the rth distributional moment is as follows:

µr = E(Xr) =
Γ
( r

2 + α + 1
)

Γ(α + 1)θr/2 , r = 1, 2, 3, ... (3)

Following the approach proposed in [6], lifetime models to accommodate outliers
were proposed in [7]. We focus on the approach proposed in [8], where an extension of the
generalized Rayleigh distribution called the slashed generalized Rayleigh distribution was
introduced. This model has a kurtosis coefficient, which exhibits a wider range of values
than the kurtosis coefficient in the GR distribution; therefore, it is appropriate to fit the data
sets with outliers. Recall that a rv T follows a slashed generalized Rayleigh distribution,
denoted as T ∼ SGR(θ, α, q), if its stochastic representation is given by the following:

T =
X

U1/q , q > 0, (4)

where X ∼ GR(θ, α) and U ∼ U(0, 1) are independent. The associated pdf is given by the
following:

fT(t; θ, α, q) =
qt−(q+1)

Γ(α + 1)θq/2 Γ
(

2α + q + 2
2

)
F
(

θt2,
2α + q + 2

2
, 1
)

, t > 0, (5)

where θ > 0 is a scale parameter, α > −1 is a shape parameter, q > 0 is a kurtosis parameter
and F(x, α, β) =

∫ x
0

βα

Γ(α) tα−1e−βt dt is the cdf of a gamma distribution with shape parameter

α > 0 and rate parameter β > 0. If α = 0 and θ = (2σ)−1, the GR distribution reduces
to the slashed-Rayleigh distribution. If α = −1/2 and θ = (2σ2)−1, the GR distribution
reduces to slashed-half normal distribution [9].
In this work, we propose a modified version of the SGR distribution, given in (4), which
can be used as an alternative model to the GR and SGR distributions.

We follow the idea proposed by [10], who introduced an extension of the normal
distribution called modified slash (MS) distribution. A rv X follows a modified slash
distribution, denoted as X ∼ MS(q), if it can be written as follows:

X =
Y

W1/q , q > 0,

where Y ∼ N(0, 1) and W ∼ Exp(2) are independent. If q→ ∞, then the MS distribution
converges in law to a normal distribution.

The paper is organized as follows. In Section 2 the stochastic representation, the pdf
and ordinary moments of the proposed model are given. Section 3 is devoted to the family
of distributions belonging to the generalized Rayleigh family of distributions based on the
modified slash model. Among others, we can find here the modified slashed Rayleigh,
half-normal, Maxwell and chi-square distributions. Recall that the unified treatment of
a family of distributions is of interest in statistics; see, for instance, [11–13]. In Section 4,
the estimation of parameters is discussed by considering the moments and maximum
likelihood approaches. Similar to [14], their asymptotic normality is established. In
addition, we carry out a simulation study to illustrate the performance of the estimators.
In Section 5, two applications to real data sets are presented, where we illustrate that the
proposed distribution may provide a better fit than the generalized Rayleigh and slashed
generalized Rayleigh distributions. Finally, the main conclusions of this paper are given.

2. The New Model

In this section, some structural properties of the new model are given. These are the
stochastic representation, pdf, hazard rate function and distributional moments.
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2.1. Stochastic Representation

Definition 1. A random variable T follows a modified slashed generalized Rayleigh distribution,
denoted as T ∼ MSGR(θ, α, q), if it can be expressed as follows:

T =
X(

− 1
2 log(Z)

)1/q , q > 0, (6)

where X ∼ GR(θ, α) and Z ∼ U(0, 1) are independent.

Remark 1.

1. Let T ∼ MSGR(θ, α, q). Then, T can be expressed as T = XY−1/q, where X ∼ GR(θ, α)
and Y ∼ Exp(2) are independent.

2. If q = 1 then T follows a canonic modified slashed generalized Rayleigh (CMSGR) distri-
bution, and we can write T = −2X log−1(Z), where X ∼ GR(θ, α) and Z ∼ U(0, 1) are
independent. This is denoted as T ∼ CMSGR(θ, α).

The stochastic representation given in (6) can be used to generate values of T ∼
MSGR(θ, α, q) by using the following algorithm:

1. Generate X ∼ GR(θ, α).
2. Generate Z ∼ U(0, 1).

3. Compute T = X
(
− 1

2 log(Z)
)−1/q

.

2.2. Probability Density Function

To deal with the pdfs of generalized slash distributions, it is common to use hypergeo-
metric functions as can be seen in [7,15,16]. In this subsection, we first introduce the special
function, which is used in the expression of the pdf for the MSGR distribution, which is
given in Proposition 1.

Definition 2. For γ > 0, a > 0, r > 0 and s > 0, let us consider the following:

I(γ, a, r, s) =
∫ ∞

0
xγ−1e−axr−sx dx (7)

where I(·, ·, ·, ·) is defined as in [17] (Equation 2.3.1.13).

Proposition 1. Let T ∼ MSGR(θ, α, q). Then, the pdf of T is given by the following:

fT(t; θ, α, q) =
2qθ−

q
2

Γ(α + 1)tq+1 I
(

α +
q
2
+ 1,

2

θ
q
2 tq

,
q
2

, 1
)

, t > 0, (8)

where θ > 0 is a scale parameter, α > −1 is a shape parameter and q > 0 is a kurtosis parameter.

Proof. From (6), and by applying the change of variable method, the pdf of T is given by
the following:

fT(t; θ, α, q) =
4qθα+1

Γ(α + 1)
t2α+1

∫ ∞

0
w2α+q+1e−θ(tw)2−2wq

dw

=
2qθ−

q
2

Γ(α + 1)tq+1

∫ ∞

0
uα+

q
2 e−u−2

(
u

θt2

) q
2

du .

By considering I(·, ·, ·, ·), the integral introduced in Definition 2, (8) is obtained.
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Corollary 1. Let T ∼ MSGR(θ, α, q). Then, the cdf of T is as follows:

FT(t; θ, α, q) =
2q

Γ(α + 1)θ
q
2

∫ t

0
u−(q+1) I

(
α +

q
2
+ 1,

2
θuq ,

q
2

, 1
)

du

where Γ(·) is the gamma function and I(·, ·, ·, ·) was defined in (7).

As for the shape of the pdf in the MSGR model, we highlight that the pdf can be
unimodal or monotonically decreasing. Plots of the pdf for certain values of the parameters
are given in Figure 1. In Figure 1a,b, we can see that the parameter q is a kurtosis parameter
since it mainly affects the right tail of the distribution. In Figure 1c, we can appreciate
that the parameter θ is a scale-type parameter; the smaller the value of θ, the more spread
out the distribution [18]. Finally, in Figure 1d, we can see that the parameter α is a shape
parameter.
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Figure 1. Plots of the MSGR pdf for certain values of its parameters.

2.3. Reliability Analysis

For non-negative rvs, it is of interest to know the reliability (or survival) function and
the hazard rate function [19,20]. The reliability function, RT(t) = 1− FT(t), of a MSGR
distribution is given by the following:

RT(t; θ, α, q) = 1− 2q

Γ(α + 1)θ
q
2

∫ t

0
u−(q+1) I(u) du, (9)

where I(u) = Iθ,α,q(u) = I
(

α + q
2 + 1, 2

θ
q
2 uq

, q
2 , 1
)

is defined as in (7).

The hazard rate function, defined by hT(t) =
fT(t)
RT(t)

, is given by the following:

hT(t; θ, α, q) =
t−(q+1) I(t)

Γ(α+1)θ
q
2

2q −
∫ t

0
u−(q+1) I(u) du

,

where I(u) is as in (9) and I(t) = I
(

α + q
2 + 1, 2

θ
q
2 tq

, q
2 , 1
)

, defined in (7).

Figure 2 displays some plots of the hazard rate function of the MSGR distribution for
different values of its parameters.
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Figure 2. Plot of the hazard rate function for the MSGR distribution for different values of its
parameters.

Applications of interest in engineering of the Rayleigh models can be seen in [21–24]
among others. In these applications, it can be of interest to apply our proposal.

2.4. Moments

Next, we proceed to obtain the moments of the MGSR distribution. From these
features, important characteristics of the model, such as the mean or expected value,
variance, skewness and kurtosis coefficients are obtained. These results will also be the
basis to apply the method of moments in Section 4.

Proposition 2. Let T ∼ MSGR(θ, α, q). Then, for r = 1, 2, ... and q > r the rth distributional
moment is given by the following:

µr = E(Tr) =
2

r
q Γ
(

q−r
q

)
Γ
( r

2 + α + 1
)

Γ(α + 1)θ
r
2

. (10)

Proof. Using the stochastic representation given in Part 1 of Remark 1 and the independence
of X and Y, it follows that

µr = E(Tr) = E

((
X

Y
1
q

)r)
= E

(
XrY−

r
q
)
= E(Xr)E

(
Y−

r
q
)

,

where E
(

Y−
r
q
)
= 2

r
q Γ
(

q−r
q

)
, q > r and E(Xr) =

Γ( r
2+α+1)

Γ(α+1)θ
r
2

are distributional moments of

the Exp(2) and GR(θ, α) distributions, respectively. �.

Corollary 2. Let T ∼ MSGR(θ, α, q). Then, the mean and variance are, respectively, the following:

E(T) =
21/qΓ

(
q−1

q

)
Γ(α + 3/2)

Γ(α + 1)θ1/2 , q > 1,

and

Var(T) =
22/q

Γ2(α + 1)θ

[
Γ(α + 1)Γ(α + 2)Γ

(
q− 2

q

)
− Γ2(α + 3/2)Γ2

(
q− 1

q

)]
, q > 2.
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Corollary 3. Let T ∼ MSGR(σ, q). Then, the asymmetry (β1) and kurtosis (β2) coefficients are
the following:

β1 =
1

A3/2(α, q)

[
Γ2(α + 1)Γ(α + 5/2)Γ

(
q− 3

q

)
− 3Γ(α + 3/2)Γ(α + 2)Γ(α + 1)

×Γ
(

q− 1
q

)
Γ
(

q− 2
q

)
+ 2Γ3(α + 3/2)Γ3

(
q− 1

q

)]
, q > 3,

and

β2 =
1

A2(α, q)

[
Γ3(α + 1)Γ(α + 3)Γ

(
q− 4

q

)
− 4Γ(α + 3/2)Γ(α + 5/2)

× Γ2(α + 1)Γ
(

q− 1
q

)
Γ
(

q− 3
q

)
+ 6Γ2(α + 3/2)Γ(α + 1)Γ(α + 2)

×Γ2
(

q− 1
q

)
Γ
(

q− 2
q

)
− 3Γ4(α + 3/2)Γ4

(
q− 1

q

)]
, q > 4,

where A(α, q) = Γ(α + 1)Γ(α + 2)Γ( q−2
q )− Γ2(α + 3

2 )Γ
2( q−1

q ).

Remark 2. Notice that β1 and β2 do not depend on θ because it is a scale parameter. Furthermore,
as q→ ∞ the β1 and β2 coefficients tend, respectively, to the following:

β1GR =
1

A3/2(α)

[
Γ2(α + 1)Γ(α + 5/2)− 3Γ(α + 3/2)Γ(α + 2)Γ(α + 1) + 2Γ3(α + 3/2)

]
and

β2GR =
1

A2(α)

[
Γ3(α + 1)Γ(α + 3)− 4Γ(α + 3/2)Γ(α + 5/2)Γ2(α + 1)

+6Γ2(α + 3/2)Γ(α + 1)Γ(α + 2)− 3Γ4(α + 3/2)
]
,

where A(α) = Γ(α+ 1)Γ(α+ 2)− Γ2(α+ 3/2), which are the asymmetry and kurtosis coefficients
of the GR distribution. Figure 3 depicts plots for the asymmetry and kurtosis coefficients of the
MSGR model. In the figure, we observe that the highest values of asymmetry and kurtosis are
associated with small values of parameter q and large values of parameter α. In addition, when
comparing the asymmetry and kurtosis coefficients of the GR and MSGR distributions, we observe
that q has a great impact on the increase in kurtosis, which is why we refer to q as a kurtosis
parameter. This point is clearly observed in Figure 4.
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Figure 3. Plots of the asymmetry and kurtosis coefficients for the MSGR model.
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3. The MSGR Family of Distributions

In this section, we see that well-known models are associated with the MSGR family
of distributions. Some of these results follow directly from (8) under certain reparameteri-
zations, while other ones follow taking the limit when q→ ∞. Similar to the techniques
used in [25], the limit distribution of (1) when q→ ∞ is obtained.

Lemma 1. Let Tq ∼ MSGR(θ, α, q). Then, Tq converges in distribution to X ∼ GR(θ, α) when
q→ ∞.

Proof. Let us consider the stochastic representation for Tq given in Remark 1:

Tq =
X

Y1/q

where X ∼ GR(θ, α) and Y ∼ Exp(2).
First, we prove the convergence in probability of Y1/q to a constant as q→ ∞. Since

Y ∼ Exp(2) and q > 0, we have the following:

E[Y1/q] =
Γ
(

1 + 1
q

)
21/q ,

Var[Y1/q] =
Γ
(

1 + 2
q

)
− Γ2

(
1 + 2

q

)
22/q .
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By applying the Tchebychev inequality, we have the following:

P
[∣∣∣Y1/q − E[Y1/q]

∣∣∣ > ε
]
≤ Var[Y1/q]

ε2 ∀ε > 0, (11)

and since Var[Y1/q]→ 0 as q→ ∞ then

{Y1/q − E[Y1/q]} P−→ 0.

Similarly, the sequence of real numbers behaves as follows:

E[Y1/q] =
Γ
(

1 + 1
q

)
21/q −→ 1, q→ ∞.

Therefore,

Y1/q = Y1/q − E[Y1/q] + E[Y1/q]
P−→ 1 as q→ ∞.

By applying Slutsky’s theorem ([26] Corollary 2.3.2), we have the following:

Tq =
X

Y1/q
d−→ X as q→ ∞

that is, Tq converges in distribution to X ∼ GR(θ, α) distribution.

Next, we see that well-known models are particular cases of the MSGR(θ, α, q) family
of distributions. Specifically, for α = 0 and θ = (2σ)−1, the MSGR model is reduced to
the modified slashed Rayleigh distribution [27]. If α = −1/2 and θ = (2σ2)−1, then the
MSGR reduces to the modified slashed half-normal distribution [28]. For α = 1/2 and
θ = σ/2, we get the modified slashed Maxwell distribution. If α = σ/2− 1 and θ = 1/2,
we obtain the modified slashed chi-square distribution. Taking the limit as q → ∞ in
previous models, the Rayleigh, half-normal [29], Maxwell [30] and chi-square distribution
are obtained [31]. Details about these related models are given in the next corollaries. The
relationships among these models are summarized in Figure 5.

Corollary 4 (Modified slashed Rayleigh model). Let T ∼ MSGR(1/(2σ), 0, q). Then, T
follows a modified slashed Rayleigh distribution, MSR(σ, q), whose density function is given by the
following:

fT(t, σ, q) =
2

q+2
2 qσ

q
2

tq+1 I

(
q
2
+ 1,

2
q+2

2 σ
q
2

tq ,
q
2

, 1

)
, t > 0,

σ > 0 is a scale parameter, q > 0 is a kurtosis parameter [27].
As q → ∞ then T converges in distribution to a Rayleigh distribution whose pdf is the

following:

fT(t) =
t
σ

e−
t2
2σ , t > 0.

Corollary 5 (Modified slashed half-normal model). Let T ∼ MSGR(1/2σ2, 1/2, q). Then,
T follows a modified slashed half-normal distribution, MSHN(σ, q), whose pdf is given by the
following:

fT(t; σ, q) =
2

q+2
2 qσq

√
π tq+1 I

(
q + 1

2
,

2
q+2

2 σq

tq ,
q
2

, 1

)
, t > 0,

where σ > 0 is a scale parameter and q > 0 is a kurtosis parameter [28].
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As q→ ∞, T converges in distribution to a half-normal distribution whose pdf is the following:

fT(t) =
2
σ

φ

(
t
σ

)
, t > 0,

where φ(·) denotes the pdf of a N(0, 1) distribution.

Corollary 6 (Modified slashed Maxwell model). Let T ∼ MSGR(σ/2, 1/2, q). Then, T
follows a modified slashed Maxwell distribution, MSM(σ, q), whose pdf is given by the following:

fT(t; σ, q) =
(

2
σ

) q
2 4q√

π tq+1 I

(
q + 3

2
,

2
q
2+1

σ
q
2 tq

,
q
2

, 1

)
, t > 0,

where σ > 0 is a scale parameter and q > 0 is a kurtosis parameter.
As q→ ∞, T converges in distribution to a Maxwell distribution whose pdf is the following:

fT(t) =

√
2
π

σ3/2t2e−
σ
2 t2

, t > 0.

Corollary 7 (Modified slashed chi-square model). Let T ∼ MSGR(1/2, σ/2− 1, q). Then, T
follows a modified slashed chi-square distribution, MSχ2

σ,q, whose pdf is given by the following:

fT(t; σ, q) =
2

q
2+1q

Γ
(

σ
2
)
tq+1 I

(
σ + q

2
,

2
q
2+1

tq ,
q
2

, 1

)
, t > 0,

where σ > 0 is a scale parameter and q > 0 is a kurtosis parameter.
As q→ ∞, T converges in distribution to a gamma distribution with shape parameter σ/2

and rate parameter 1/2 as follows:

fT(t) =
1

2σ/2Γ(σ/2)
tσ/2−1e−

t
2 , t > 0.

If σ is a positive integer, then we have a chi-square distribution.

MSGR(θ, α, q)

θ=1/2;α=σ/2−1

��

q=1

��

α=0

�� α=1/2;θ=1/2σ2

��

α=1/2;θ=σ/2

��

q→∞

��

CMSCR(θ, α, 1)

α=1

**

MSR(θ, q)

q=1

uu

q→∞;θ=(2λ2)−1

��

MSHN(σ, q)

q→∞

33

MSM(σ, q)

q→∞

��

GR(θ, α)

α=ν/2−1;θ=1/2

��

α=−1/2;θ=(2λ2)−1

}}

α=1/2;θ=(2λ2)−1

��

α=1/2;θ=(2λ2)−1

__

MSχσ,q

q→∞

��

CMSR(θ, 1)

Rayleigh(λ) Maxwell(λ) Half-normal(λ) χ2

Figure 5. Relationships among distributions in the MSGR family.
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4. Parameter Estimation

In this section, we discuss moments and the maximum likelihood estimation for
parameters θ, α and q when sampling from the MSGR distribution. First, the moment
method is introduced.

4.1. Method of Moments Estimators

Proposition 3. Let T1, . . . , Tn be a random sample of size n from the T ∼ MSGR(θ, α, q) distri-
bution. Then, the method of moments estimates of (θ, α, q) for q > 3 are given by the following:

θ̂ =
22/q̂Γ2

(
q̂−1

q̂

)
Γ2(α̂ + 3

2
)

Γ2(α̂ + 1)T2 , (12)

α̂ =
3
2 d2 − d1

d1 − d2
, (13)

T2

T2
=

Γ2
(

q̂−1
q̂

)
Γ2
(

3
2 d2−d1
d1−d2

+ 3
2

)
Γ
(

q̂−2
q̂

)
Γ
(

3
2 d2−d1
d1−d2

+ 2
)

Γ
(

3
2 d2−d1
d1−d2

+ 1
) , (14)

with d1 = T2

T2
Γ( q−1

q )Γ( q−2
q ), d2 = T3

T3
Γ( q−3

q ) and Tk = (1/n)∑n
i=1 Tk

i , k = 1, 2, 3.

Proof. First, from Proposition 2 and taking into account the first three equations in the
moments method, we have the following:

T =
21/qΓ( q−1

q )Γ(α+3/2)

Γ(α+1)θ1/2 , T2 =
22/qΓ( q−2

q )Γ(α+2)
Γ(α+1)θ , T3 =

23/qΓ( q−3
q )Γ(α+5/2)

Γ(α+1)θ3/2 . (15)

Now, consider the above equations for the following:

1. Solving for θ, the second of the above equations, the result in (12) is obtained.
2. Solving for θ, the first two of the above equations, and matching the resulting expres-

sions, we obtain the following:

Γ2( q−1
q )Γ2(α + 3/2)

Γ(α + 1)
=

T2

T2
Γ(

q− 2
q

)Γ(α + 2), (16)

and solving the first and third of the equations in (15), we have the following:

Γ2( q−1
q )Γ2(α + 3/2)

Γ(α + 1)
=

T3

T3
Γ−1(

q− 1
q

)Γ(
q− 3

q
)(α + 3/2)Γ(α + 1) (17)

Equating (16) and (17), and considering an appropriate algebraic manipulation, the
result in (13) is obtained.

3. Finally, substituting (13) in (16), by a straightforward calculation, the result in (14) is
obtained.

4.2. Maximum Likelihood Estimation

Now, the maximum likelihood (ML) estimates of parameters in the MSGR distribution,
based on a random sample of size n, are obtained. Given an observed sample t1, . . . , tn
from the MSGR(θ, α, q) distribution, the log-likelihood function for the parameters θ, α and
q, given t = (t1, . . . , tn), can be written as the following:

log L(ϑ; ti) = c(θ, α, q)− (q + 1)
n

∑
i=1

log(ti) +
n

∑
i=1

log I

(
α +

q
2
+ 1,

2

θ
q
2 tq

i

,
q
2

, 1

)
, (18)
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where c(θ, α, q) = n log(2) + n log(q)− nq
2 log(θ)− n log Γ(α + 1) and ϑ = (θ, α, q). The

maximum likelihood equations are given by the following:

−nq
2θ

+
n

∑
i=1

I1(ti)

I(ti)
= 0, (19)

−nΨ(α + 1) +
n

∑
i=1

I2(ti)

I(ti)
= 0, (20)

n
q
− n

2
log(θ)−

n

∑
i=1

log(ti) +
n

∑
i=1

I3(ti)

I(ti)
= 0, (21)

where Ψ(·) is the digamma function,

I(ti) = I

(
α + q

2 + 1, 2

θ
q
2 tq

i

, q
2 , 1

)
, I1(ti) =

∂
∂θ I

(
α + q

2 + 1, 2

θ
q
2 tq

i

, q
2 , 1

)
,

I2(ti) =
∂

∂α I

(
α + q

2 + 1, 2

θ
q
2 tq

i

, q
2 , 1

)
and I3(ti) =

∂
∂q I

(
α + q

2 + 1, 2

θ
q
2 tq

i

, q
2 , 1

)
.

Solutions for Equations (19)–(21) can be obtained by using numerical procedures, such
as the Newton–Raphson procedure. The observed information matrix for the parameters θ,
α and q is given by the following:

In(θ, α, q) =


nq
2θ2 + Gθ,1(ti) Gα,1(ti) − n

2θ + Gq,1(ti)

Gθ,2(ti) −nΨ1(α + 1) + Gα,2(ti) Gq,2(ti)

− n
2θ + Gθ,3(ti) Gα,3(ti) − n

q2 + Gq,3(ti)


where Gν,k(ti) = ∑n

i=1
d

dν
Ik(ti)
I(ti)

, ν = θ, α, q, and Ψ1 is the trigamma function, with Ik(ti),
k = 1, 2, 3, given in Equations (19)–(21), respectively.

Asymptotic confidence intervals and hypothesis tests for a given parameter in the
model can be obtained by using the observed information matrix In(γ), with γ = (θ, α, q).
They can be deduced by assuming that the maximum likelihood estimator has approxi-
mately a N3(γ, K−1

γ ) distribution, where Kγ = limn→∞ n−1In(γ). In practice, the matrix
In(γ), evaluated at γ̂ is used since there is no closed-form expression for the expected
information matrix Kγ for γ.

4.3. Maximum Likelihood Estimation via the EM Algorithm

The EM algorithm (Dempster et al. [32]) is a useful method for ML estimation in
the presence of latent variables. To carry out the estimation process, we introduce latent
variables W1, ..., Wn through the following hierarchical representation of the MSGR model:

Ti|Wi = wi ∼ GR(w2
i θ, α)

Wi ∼Wei(q, 1/2)

where Wei(q, 1/2) denotes a Weibull distribution. The joint pdf of (Ti, Wi) is as follows:

f (ti, wi) =
2(w2

i θ)α+1

Γ(α + 1)
t2α+1
i exp{−w2

i θt2
i }2qwq−1

i exp{−2wq
i } .
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The full log-likelihood function is the following:

lc(ϑ) = 2(α + 1)
n

∑
i=1

log wi + n(α + 1) log θ + (2α + 1)
n

∑
i=1

log ti − n log Γ(α + 1)

− θ
n

∑
i=1

w2
i t2

i + n log(q) + (q− 1)
n

∑
i=1

log wi − 2
n

∑
i=1

wq
i + constant

with ϑ = (θ, α, q). To apply the EM algorithm, it is necessary to obtain ̂log(wi) =

E(log(wi)|Ti = ti, ϑ = ϑ̂) and ŵ2
i = E(w2

i |Ti = ti, ϑ = ϑ̂).
Finally, the k-th step of the algorithm is as follows:

Step E: Using θ̂(k−1), α̂(k−1) and q̂(k−1), calculate
̂

log w(k)
i and ŵ2(k)

i , i = 1, . . . , n.
Step ECME I: Using α̂(k−1), update θ as follows:

θ̂(k) =
n(α̂(k−1) + 1)

∑n
i=1 ŵi

2(k)t2
i

.

Step ECME II: Update α as follows:

α̂(k) = Ψ−1

2 ∑n
i=1

(
̂

log w(k)
i + log ti

)
+ n log θ̂(k)

n

− 1 ,

where Ψ−1(·) denotes the inverse of the digamma function.
Step ECME III: Fix α = α(k) and θ = θ(k), update q using the log-likelihood observed as
follows:

q(k) = argmaxq>0l(α(k), θ(k), q) .

This procedure is repeated until a suitable convergence rule is satisfied. Useful starting
values are required to start the recursion.

4.4. Simulation Study

To check the good behavior of ML estimators in the MSGR model, a simulation study
is carried out by using R software [33]. In this study, 1000 samples of sample size n = 100,
200 and 300 were generated from the MSGR model. The aim of this simulation is to study
the performance of the ML estimators for the parameters using the proposed procedure.

For each generated sample, the ML estimates for each parameter were computed
numerically. The mean value and standard deviation (SD) of the estimates for the parame-
ters (θ, α, q) are given as summaries in Table 1. It can be seen there that the ML estimates
are quite stable and close to the real values for the sample sizes under consideration. As
expected, the bias and standard deviation of our estimates decrease as the sample size n
increases.
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Table 1. Empirical means and SD for the ML estimators of θ, α and q.

θ α q θ̂ (SD) α̂ (SD) q̂ (SD)

n = 50

1 −0.5 2 1.249 (0.897) −0.459 (0.233) 2.586 (1.101)
1 −0.5 3 1.183 (0.674) −0.435 (0.171) 3.442 (1.615)
1 −0.5 4 1.117 (0.543) −0.468 (0.132) 4.275 (1.568)

1 −0.5 3 1.172 (0.830) 0.597 (0.517) 3.137 (1.471)
1 0.0 3 1.182 (0.842) 0.099 (0.274) 3.116 (0.977)
1 3.0 3 1.245 (0.897) 3.208 (1.811) 3.258 (0.793)

1 2.0 3 1.296 (1.098) 2.269 (1.607) 3.369 (1.816)
2 2.0 3 2.433 (1.659) 2.240 (1.356) 3.197 (0.918)
3 2.0 3 3.212 (2.365) 2.084 (1.206) 3.247 (0.861)

n = 100

1 −0.5 2 1.223 (0.888) −0.472 (0.105) 2.151 (0.662)
1 −0.5 3 1.137 (0.551) −0.478 (0.082) 3.225 (1.021)
1 −0.5 4 1.093 (0.497) −0.481 (0.074) 4.095 (1.261)

1 −0.5 3 1.096 (0.498) 0.591 (0.401) 3.135 (0.666)
1 0.0 3 1.131 (0.539) 0.057 (0.252) 3.064 (0.672)
1 3.0 3 1.239 (0.821) 2.828 (0.998) 3.138 (0.555)

1 2.0 3 1.276 (0.821) 2.250 (1.115) 3.117 (0.566)
2 2.0 3 2.217 (0.957) 2.237 (0.990) 3.107 (0.598)
3 2.0 3 2.848 (0.923) 2.068 (0.841) 3.135 (0.617)

n = 200

1 −0.5 2 1.127 (0.562) −0.475 (0.096) 2.075 (0.451)
1 −0.5 3 1.072 (0.467) −0.497 (0.062) 3.018 (0.736)
1 −0.5 4 1.016 (0.387) −0.501 (0.055) 4.051 (0.742)

1 −0.5 3 1.044 (0.388) 0.504 (0.301) 3.070 (0.598)
1 0.0 3 1.010 (0.376) 0.010 (0.168) 3.046 (0.585)
1 3.0 3 0.994 (0.443) 2.944 (0.890) 3.080 (0.481)

1 2.0 3 1.144 (0.643) 2.156 (0.514) 3.078 (0.462)
2 2.0 3 2.036 (0.792) 2.015 (0.764) 3.081 (0.498)
3 2.0 3 3.087 (0.746) 2.061 (0.680) 3.092 (0.511)

5. Illustrations

In this section, two applications based on real data sets are given. The aim is to
compare the fit provided by the MSGR, SGR and GR models. As one of the referees points
out, a validation of the virtues of our proposal would require a large number of successful
applications. So, the reader must be cautious. It can be said that our aim is to illustrate the
use of these models.

5.1. Active Repair Time Data

The first illustration consists of n = 46 lifetime data (in hours) for an airborne com-
munication transceiver. This data set was previously studied by [34]. Table 2 presents the
statistics summaries for these data. These are the sample mean, sample variance (s2), b1
and b2, which denote the sample asymmetry and kurtosis coefficients, respectively. We
highlight the fact that the sample kurtosis coefficient b2 is higher than expected for a GR
distribution. Therefore, it makes sense to fit a MSGR model.
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Table 2. Descriptive statistics for the active repair time data.

n X s2 b1 b2

46 3.606 24.445 2.794 11.294

First, the moment estimators under the MSGR model were computed. We obtained
the following estimates: θ̂M = 0.011, α̂M = −0.803 and q̂M = 4.638. Using the method of
moment estimates as the initial values, the maximum likelihood estimates were computed
and are presented in Table 3; their standard errors (s.e) are given in parenthesis. For every
model, we also give the estimated log-likelihood value.

In order to compare distributions with different numbers of parameters, the Akaike
information criterion (AIC) [35] and Bayesian information criterion (BIC) [36] were com-
puted. Recall that AIC = 2k− 2 log lik and BIC = k log n− 2 log lik, where k is the number
of parameters in the model, n is the sample size and log lik is the maximized value of the
log-likelihood function. The Kolmogorov–Smirnov statistic (KS) is considered. In Table 3,
the corresponding AIC, BIC and KS statistics are reported for each fitted model. Note that
the AIC, BIC and KS statistics values show that the better fit is provided by the MSGR
model. Figure 6 depicts the histogram of this data set, including the estimated densities
under the MSGR, SGR, and GR models. Finally, the Q–Q plots are given in Figure 7, where
we can again see that the MSGR model fits better than the GR and SGR models.

Table 3. Maximum likelihood estimates, log-likelihood estimated value and respective AIC, BIC, KS
statistics for GR, SGR and MSGR models.

Parmeters GR (s.e) SGR (s.e) MSGR (s.e)

θ̂ 0.008 (0.002) 2.121 (2.316) 2.772 (0.132)
α̂ −0.696 (0.049) 0.241 (0.640) 0.731 (0.091)
q̂ - 0.859 (0.202) 1.182 (0.080)

Log-likelihood 111.041 101.888 100.292

AIC 226.083 209.776 206.585
BIC 229.740 215.262 212.071
KS 0.173 0.152 0.108

Active repair time (Hours)
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0
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Figure 6. Fitted models by ML method for active repair time data set: MSGR (solid line), SGR (dashed
line), GR (dotted line).
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Figure 7. QQ-plots: (a) MSGR model, (b) SGR model, (c) GR model.

5.2. Remission Time Data

The second data set corresponds to the remission times (in months) of a random sam-
ple of n = 128 bladder cancer patients. This data set can be found in [37]. Table 4 presents
the statistics summaries for this data set. Notice that sample kurtosis b2 is quite high.

Table 4. Descriptive statistics of the remission time data.

n X s2 b1 b2

128 9.365 110.425 3.286 18.483

Computing initially the moment estimators under the MSGR model we have the follo-
wing estimates: θ̂M = 0.003, α̂M = −0.681 and q̂M = 4.071. Using the moment estimators
as initial values, the maximum likelihood estimates are computed and presented in Table 5
with the standard errors in parenthesis. Table 5 also reports the log-likelihood estimated
value and the corresponding AIC, BIC and KS statistic for each fitted model. Figure 8
depicts the histogram of this data set, including the estimated densities under the MSGR,
SGR, GR models. Finally, from the Q–Q plots in Figure 9 we can observe that the MSGR
model fits better than the GR and SGR models.

Table 5. Maximum likelihood estimates, log-likelihood estimated value and respective AIC, BIC, KS
statistics for GR, SGR and MSGR models.

Parameters GR (s.e) SGR (s.e) MSGR (s.e)

θ̂ 0.002 (0.0002) 0.019 (0.007) 0.023 (0.009)
α̂ −0.610 (0.035) −0.390 (0.086) −0.355 (0.100)
q̂ - 1.839 (0.381) 2.213 (0.402)

Log-likelihood −426.824 −410.183 −409.695

AIC 859.648 826.366 825.391
BIC 868.204 834.922 833.947
KS 0.156 0.070 0.062
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Figure 8. Fitted models by ML method for remission time data set: MSGR (solid line), SGR (dashed
line), GR (dotted line).
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Figure 9. QQ-plots: (a) MSGR model, (b) SGR model, (c) GR model.

6. Concluding Remarks

In this article, a new generalization of the GR distribution, which is able to model
positive data with high kurtosis, is introduced. The proposed distribution can be written as
the ratio of two independent random variables. These are a GR distribution and a power
of the exponential distribution. We derived some special cases that can be seen as two-
parameter extensions of the Rayleigh, half normal, Maxwell and chi square distributions.
The parameters were estimated by using moments and maximum likelihood methods.
The method of moments estimates were used to start the maximum likelihood estimation
through the Newton–Raphson procedure. The asymmetry and kurtosis coefficients were
also obtained. The study of these coefficients illustrates the fact that the MSGR model can
be used to describe positive right-skewed data with high kurtosis. Finally, the MSGR model
was fitted to two real data sets. In both applications, the MSGR distribution presented
a better fit than the GR and SGR models, which shows the potential applicability of our
proposal. To conclude, we point out that these models can be used not only in reliability
studies, but also in the fields of economics, for instance, to describe financial data, where
models with heavy tails are very interesting.
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