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Abstract: Eco-epidemiological can be considered as a significant combination of two research fields
of computational biology and epidemiology. These problems mainly take ecological systems into
account of the impact of epidemiological factors. In this paper, we examine the chaotic nature of
a computational system related to the spread of disease into a specific environment involving a
novel differential operator called the Atangana–Baleanu fractional derivative. To approximate the
solutions of this fractional system, an efficient numerical method is adopted. The numerical method
is an implicit approximate method that can provide very suitable numerical approximations for
fractional problems due to symmetry. Symmetry is one of the distinguishing features of this technique
compared to other methods in the literature. Through considering different choices of parameters
in the model, several meaningful numerical simulations are presented. It is clear that hiring a new
derivative operator greatly increases the flexibility of the model in describing the different scenarios
in the model. The results of this paper can be very useful help for decision-makers to describe the
situation related to the problem, in a more efficient way, and control the epidemic.

Keywords: eco-epidemiological problems; fractional operators; numerical techniques; pray and
predator models

MSC: 26A33; 37N25; 74S30; 91B50

1. Introduction

Nature is full of interactions between different species of living beings to provide
food, shelter, and other essential needs. In many cases, it is necessary to gain a better
understanding of these interactions to preserve different species of living organisms in
nature. In recent years, the use of mathematical modeling in the study of problems
in computational biology has attracted the attention of many experts in the fields of
mathematics and biology [1–13]. As a result, and based on these important applications,
many effective techniques have been proposed in solving mathematical models arising
from such problems [14–39]. One of the most interesting aspects of such problems is
examining cases where the environment has been affected by an infectious disease. Such
models are referred to as eco-epidemiological models and have also been explored with an
aim of disease control. Certainly, in this case, the spread of disease among the populations
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considered in the model can have a direct impact on the survival or extinction of species in
the problem.

Nowadays, with the spread of infectious and contagious diseases throughout the
natural world and their direct impact on food interactions in ecosystems, many models
have been presented and studied. For example, taking the weak Allee effect and harvesting
in prey population into account, the following nonlinear delay system of equations has
been proposed [40]:

dS(t)
dt = S(t)

[
(1− S(t)− I(t)) S(t)

S(t)+θ
− βI(t)− q1E

]
,

dI(t)
dt = I(t)[βS(t)− aP(t)− µ− q2E,

dP(t)
dt = αP(t− τ)I(t− τ)− dP(t),

(1)

where existing parameters in the model are introduced in Reference [40].
Furthermore, an eco-epidemiological model has been investigated in [41] under the

combined influence of strong-Allee parameter and competition coefficients, given by

dS(t)
dt = [r− bS(t)− cI(t)]S(t)

(
1− θ+ f

S(t)+ f

)
− βI(t)S(t)

a+S(t) ,
dI(t)

dt = βI(t)S(t)
a+S(t) −

α1I(t)P(t)
d+I(t) − µI(t),

dP(t)
dt = γ1I(t)P(t)

d+I(t) −mP(t).

(2)

To get some more information about existing parameters in Model (2), please refer to
the work in [41].

The authors of [42] have considered that an infectious disease has spread to the prey
and predator populations in the environment. In their work, they have used the following
nonlinear system to describe these interactions:

dS(t)
dt =

[
r− bS(t)− cI(t)− βI(t)

a+S(t) −
α1P(t)
e+S(t)

]
S(t),

dI(t)
dt =

[
βS(t)

a+S(t) −
α2P(t)
d+I(t) − µ

]
I(t),

dP(t)
dt =

[(
c1α1S(t)
e+S(t) + c2α2I(t)

d+I(t)

)
P(t)

θ+P(t) −m
]
P(t).

(3)

In all these models, S(t) and I(t) denote the susceptible and the diseased prey, re-
spectively. Further, P(t) has been employed to describe the predator population. More
explanations about existing parameters in Model (3) can be found in [42].

In recent years, the use of fractional derivative operators in the modeling various prob-
lems in mathematics, physics, and engineering has increased significantly. For example,
In [43], a SIR epidemic model with Crowley–Martin type functional response and Holling
type-II treatment rate is investigated. Moreover, a comparison based on newly defined frac-
tional derivative operators which are called as Caputo–Fabrizio (CF) and Atangana–Baleanu
(AB) has been presented in [44]. A model for HIV-1 primary infection with treatment in frac-
tional order along with its Global dynamics is considered in [45]. The FitzHugh—Nagumo
(F–N) model has been studied in [46] using the nerve impulses process. In [47], several
chaotic systems, involving Atangana–Baleanu fractional derivative operator with interesting
behaviors are presented. In [48], a fractal-fractional differentiation for the modeling and
mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data
has been investigated. In [49], hybrid mathematical models of new strains and co-infection in
Caputo, Caputo–Fabrizio, and Atangana–Baleanu are studied. Further, a mathematical model
in describing the transmission of Nipah virus within a targeted population has been proposed
in [50], More examples can be found in [13,23,51–65].
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One of the main reasons for this increase in popularity is perhaps the fact that these
operators are equipped with the concept of memory. In fact, to determine the value
of the derivative in these fractional operators, it is necessary to collect all the previous
information of those phenomena in the calculations from the beginning to that specific
time situation. This valuable feature of operators plays a very vital and influential role
in biological modeling, where the current behavior of the variables in the models is very
much influenced by their overall behavior in the past. Perhaps it is for these reasons that
many research activities in this field have been carried out with the help of these fractional
operators [66–69]. One of the most prominent applications that has received much attention
recently is the use of this tool in the mathematical modeling of problems related to Covid-19
disease [70–76]. As this disease has had a devastating effect on the lives of many of us
around the world, we still need to study some more related models.

Motivated by the above contribution, this paper considers a newly proposed eco-
epidemiological system. The key point in this model is to use the Atangana–Baleanu
fractional derivative [77–80]. Similar to the works in [81–89], in some special situations, in
this model chaotic behaviors [90–99] occur. This property indicates the high sensitivity of
the model with respect to some values for its parameters. The study of these conditions
has wide applications in the study of natural ecosystems.

The rest parts of this contribution are managed as follows. First, some necessary pre-
requisites, including definitions and properties related to fractional operators are presented
in Section 2. The main proposed system of the article is proposed then investigated in
Section 3. In Section 4, some theoretical aspects of the model, such as the calculation of
equilibrium points of the model along with their stability, and the existence and unique-
ness of the solution for the model are studied. Then, we present an efficient numerical
algorithm to solve the problem in Section 5. Moreover, simulation results and discussion
corresponding to the employed numerical technique are outlined in Section 6. Finally,
some of the achievements and conclusions related to the results are drawn in Section 7.

2. An Overview of Fractional Calculus

In what follows, we outline some important and essential prerequisites in frac-
tional calculus.

Definition 1. For a given function ω(t), calculus operators of the Caputo type are, respectively,
defined as [100]

CDεω(t) =
1

Γ(k− ε)

∫ t

0
(t− ρ)m−ε−1ω(k)(ρ)dρ, k− 1 < ε ≤ k, k ∈ N, (4)

and

CIεω(t) =
1

Γ(ε)

∫ t

0
(t− ρ)ε−1ω(ρ)dρ. 0 < ε < 1. (5)

Definition 2. For a given function ω(t), calculus operators of the Caputo–Fabrizio (CF) type are,
respectively, defined as [101]

CFDεω(t) =
M(ε)

k− ε

∫ t

0

dkω(ρ)

dρk exp
[
− ε

n− ε
(t− ρ)

]
dρ, k− 1 < ε ≤ k (6)

CFIεω(t) =
2(1− ε)

(2− ε)M(ε)
ω(t) +

2ε

(2− ε)M(ε)

∫ t

0
ω(ρ)dρ, (7)
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where
M(ε) =

2
2− ε

. (8)

Definition 3. For a given function ω(t), calculus operators of the Atangana–Baleanu (AB) type
are, respectively, defined as [78]

ABDεω(t) =
Θ(ε)

1− ε

∫ t

0
Eε

[
− ε

1− ε
(t− ρ)

]
ω′(ρ)dρ, ε ∈ (0, 1), (9)

ABIεω(t) =
1− ε

Θ(ε)
ω(t) +

ε

Θ(ε)Γ(ε)

∫ t

t0

(t− µ)ε−1ω(ρ)dρ, (10)

where Θ(ε) = 1− ε + ε
Γ(ε) , and Eε(ρ) is the Mittag–Leffler function given by [102]

Eε(t) =
∞

∑
j=0

tj

Γ(1 + jε)
. (11)

Moreover, the combination of the AB derivative and differential operators yields

ABIε
(
ABDεω(t)

)
= ω(t)−ω(0). (12)

3. The Model Formulation

In this paper, we consider a eco-epidemiological system that models the interaction
between three species: X1(t),X2(t), and X3(t). The description of the interactions between
the variables in this system is done using the following nonlinear system [103]:

dX1(t)
dt = rX1(t)− bX 2

1 (t)− cX1(t)X2(t)− α1X1(t)X3(t)
e+X1(t)

− βX1(t)X2(t)
a+X1(t)

,
dX2(t)

dt = βX1(t)X2(t)
a+X1(t)

− α2X3(t)X2(t)
d+X2(t)

− µX2(t),
dX3(t)

dt = α1c1X1(t)X3(t)
e+X1(t)

+ c2α2X3(t)X2(t)
d+X2(t)

−mX3(t).

(13)

Three state variables exist in this model, including susceptible prey X1(t) and infected
prey X2(t), and predator population X2(t). These variables have considered the saturated
incidence βX1(t)X2(t)

a+X1(t)
, where β is the force of infection and a is saturation constant. Further-

more, r represents the growth rate of X1(t), and b and c are the intra-class and inter-class
competition coefficients, respectively. The predation rate of a susceptible prey and infected
prey are respectively denoted by α1 and α2. Both e, d are the half-saturation constants, and
c1 and c2 are the conversion efficiency of the predator on susceptible and infected prey,
respectively. Moreover, µ is the death rate of infected prey. Finally, m is used to explain
the natural mortality rate of the predator population. More details about the model can be
found in [103].

In order to benefit from the valuable features of fractional differential calculus in
the studied model (13), let us replace the normal derivative in the model with the AB
fractional derivative ABDε. Subsequently, the new structure for the model (13) is considered
as follows:

ABDεX1(t) = rX1(t)− bX1
2(t)− cX1(t)X2(t)− α1X1(t)X3(t)

e+X1(t)
− βX1(t)X2(t)

a+X1(t)
,

ABDεX2(t) = βX1(t)X2(t)
a+X1(t)

− α2X3(t)X2(t)
d+X2(t)

− µX2(t),
ABDεX3(t) = α1c1X1(t)X3(t)

e+X1(t)
+ c2α2X3(t)X2(t)

d+X2(t)
−mX3(t),

(14)

subject to initial conditions (X1(t),X2(t),X3(t))|t=0 = (X1,0,X2,0,X3,0) ≥ 0.
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4. Mathematical Analysis for Model

In this section, some theoretical features corresponding to the model (14) are explored.

4.1. The Equilibrium Points

The model considered in (14) includes the following equilibrium points:

• W1 = (0, 0, 0), that explains the trivial equilibrium point.

• W2 =
(

0, dm
α2c2−m , −µdc2

α2c2−m

)
, which is meaningless from a biological point of view.

• W3 =
( r

b , 0, 0
)

that explains the existence of susceptible prey-only situation.

• W4 =

(
em

α1c1−m , 0, ec1(α1c1r−bem−mr)
(α1c1−m)2

)
, that explains the coexistence of suspected prey

and predator populations situation. A sufficient condition for the existence of these
points is that we have

α1c1 > m,
α1c1r
be + r

> m.

• W5 =
(

aµ
β−µ ,− a(abµ−βr+µr)

(β−µ)(ac+β−µ)
, 0
)

, that implies the coexistence of suspected and in-
fected prey populations in the model. A sufficient condition for the existence of these
points is that we have

µ < β,
bµa

β− µ
< r.

The local stability for the equilibrium points of the model (14) atWi = (X ∗1 ,X ∗2 ,X ∗3 )
can be investigated using the following Jacobian matrix

−cX ∗2 − 2 bX ∗1 + r− βX ∗2
a+X ∗1

+
βX ∗1 X

∗
2

(a+X ∗1 )
2 −

α1 X ∗3
e+X ∗1

+
α1 X ∗1 X

∗
3

(e+X ∗1 )
2 −cX ∗1 −

βX ∗1
a+X ∗1

− α1 X ∗1
e+X ∗1

βX ∗2
a+X ∗1

− βX ∗1 X
∗
2

(a+X ∗1 )
2

βX ∗1
a+X ∗1

− α2 X ∗3
d+X ∗2

+
α2 X ∗2 X

∗
3

(d+X ∗2 )
2 − µ − α2 X ∗2

d+X ∗2

α1 c1 X ∗3
e+X ∗1

− c1 α1 X ∗1 X
∗
3

(e+X ∗1 )
2

α2 c2 X ∗3
d+X ∗2

− α2 c2 X ∗2 X
∗
3

(d+X ∗2 )
2

c1 α1 X ∗1
e+X ∗1

+
α2 c2 X ∗2
d+X ∗2

−m


. (15)

4.2. The Existence of the Solution

Here, we aim to confirm that the fractional model always possesses a solution. To
this end, after incorporating the AB integral operator (10) on both sides of equations of the
system (14) one gets

X1(t)−X1(0) =
1− ε

Θ(ε)
Q1(Y(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1Q1(Y(ρ))dρ,

X2(t)−X2(0) =
1− ε

Θ(ε)
Q2(Y(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1Q2(Y(ρ))dρ,

X3(t)−X3(0) =
1− ε

Θ(ε)
Q3(Y(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1Q3(Y(ρ))dρ,

(16)

where Y(t) = [X1(t),X2(t),X3(t)], and also we define

Q1(Y(t)) = rX1(t)− bX1
2(t)− cX1(t)X2(t)− α1X1(t)X3(t)

e+X1(t)
− βX1(t)X2(t)

a+X1(t)
,

Q2(Y(t)) = βX1(t)X2(t)
a+X1(t)

− α2X3(t)X2(t)
d+X2(t)

− µX2(t),

Q3(Y(t)) = α1c1X1(t)X3(t)
e+X1(t)

+ c2α2X3(t)X2(t)
d+X2(t)

−mX3(t).

(17)
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Defining N(Y(t)) = [Q1(Y(t)), Q2(Y(t)), Q3(Y(t))], and moreover Y0 =
[X1(0),X2(0),X3(0)]. Using these assumptions, Equation (16) can be rewritten as

Y(t)− Y0 =
1− ε

Θ(ε)
N(Y(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1N(Y(ρ))dρ. (18)

Now, inspired by the (18) and starting from Y0(t) = Y0, we define the following
iterative scheme

Yn(t)− Y0 =
1− ε

Θ(ε)
N(Yn−1(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1N(Yn−1(ρ))dρ. (19)

Considering Equation (19), we have

Yn(t)− Yn−1(t) =
1− ε

Θ(ε)
[N(Yn−1(t))−N(Yn−2(t))] +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1[N(Yn−1(ρ))−N(Yn−2(ρ))]dρ. (20)

In this position, we define ςn(t) = Yn(t)− Yn−1(t). Then, it follows that

Yn(t) =
n

∑
i=0

ςi(t). (21)

As a result, one gets

‖ςn(t)‖ = ‖Yn(t)− Yn−1(t)‖

‖ςn(t)‖ = ‖1− ε

Θ(ε)
[N(Yn−1(t))−N(Yn−2(t))] +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1[N(Yn−1(ρ))−N(Yn−2(ρ))]dρ‖.

Therefore, we have

‖ςn(t)‖ ≤
1− ε

Θ(ε)
‖N(Yn−1(t))−N(Yn−2(t))‖+

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1‖N(Yn−1(ρ))−N(Yn−2(ρ))‖dρ.

Now, if nonlinear operator N satisfies the Lipshitz condition, then one obtains

‖ςn(t)‖ ≤
1− ε

Θ(ε)
L‖Yn−1(t)− Yn−2(t)‖+

εL
Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1‖Yn−1(t)− Yn−2(t)‖dρ.

Consequently, we derive the following inequality:

‖ςn(t)‖ ≤
1− ε

Θ(ε)
L‖ςn−1(t)‖+

εL
Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1‖ςn−1(t)‖dρ.

Further, replacing ‖ςn−1(t)‖ by its value, it reads

‖ςn(t)‖ ≤
(

1− ε

Θ(ε)
L +

εLtε

Θ(ε)Γ(ε + 1)

)2
‖ςn−2(t)‖.

Furthermore, it reads

‖ςn(t)‖ ≤
(

1− ε

Θ(ε)
L +

εLtε

Θ(ε)Γ(ε + 1)

)3
‖ςn−3(t)‖.
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Moreover, finally, we obtain

‖ςn(t)‖ ≤
(

1− ε

Θ(ε)
L +

εLtε

Θ(ε)Γ(ε + 1)

)n
‖ς0(t)‖,

≤
(

1− ε

Θ(ε)
+

εtε

Θ(ε)Γ(ε + 1)

)n
Lnmaxt∈[0,T]Y0(t). (22)

In this case, we examine the following definition:

Y(t) =
n

∑
i=0

ςi(t). (23)

The general structure for Y(t) is then suggested as

Y(t) = Yn(t) + µn(t), (24)

where µn(t)→ 0 when n(t)→ ∞. Thus,

Y(t)− Yn(t) =
1− ε

Θ(ε)
N(Y(t)− µn(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1N(Y(ρ)− µn(ρ))dρ. (25)

Now, we can write

Y(t)− Y0 −
1− ε

Θ(ε)
N(Y(t)− µn(t))−

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1N(Y(ρ)− µn(ρ))dρ

= µn(t) +
1− ε

Θ(ε)
[N(Y(t)− µn(t))−N(Y(t))]− ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1[N(Y(ρ)− µn(ρ))−N(Y(ρ))]dρ.

Taking norm on both sides of the latter result, one gets

‖ Y(t)− Y0(t)−
1− ε

Θ(ε)
N(Y(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1N(Y(ρ)dρ‖

≤ ‖µn(t)‖+
1− ε

Θ(ε)
‖N(Y(ρ)− µn(ρ))−N(Y(ρ))‖

+
ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1‖N(Y(ρ)− µn(ρ))−N(Y(ρ))‖dρ,

≤ ‖µn(t)‖+
1− ε

Θ(ε)
L‖µn−1(t)‖,+

εtε

Θ(ε)Γ(ε + 1)
L‖µn−1(t)‖.

For large values n, the right side of the equation becomes zero, so one gets

Y(t)− Y0 =
1− ε

Θ(ε)
N(Y(t)) +

ε

Θ(ε)Γ(ε)

∫ t

0
(t− ρ)ε−1N(Y(ρ))dρ. (26)

Moreover, this result provides clear proof of the uniqueness for the solution for
the system.
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4.3. The Uniqueness of the Solution

At this point in the article, we assume that the system has two solutions Y1(t) and
Y2(t). Now, we obtain

‖Y1(t)− Y2(t)‖ ≤
1− ε

Θ(ε)
L‖Y1(t)− Y2(t)‖+

εLtε

Θ(ε)Γ(ε + 1)
‖Y1(t)− Y2(t)‖,

≤
(

1− ε

Θ(ε)
L +

εLtε

Θ(1 + ε)Γ(ε)

)
‖Y1(t)− Y2(t)‖,

...

≤
(

1− ε

Θ(ε)
L +

εLtε

Θ(1 + ε)Γ(ε)

)n
‖Y1(t)− Y2(t)‖.

Then, if 1−ε
Θ(ε)

L + εLtε

Θ(1+ε)Γ(ε) < 1 holds then for n→ ∞, one obtains(
1− ε

Θ(ε)
L +

εLtε

Θ(1 + ε)Γ(ε)

)n
→ 0.

Consequently, ‖Y1(t)− Y2(t)‖ = 0 holds. Therefore, Y1(t) = Y2(t) is resulted.

5. An Approximate Approach to the Solution

The introduction of numerical methods has always been one of the consequences of
presenting new definitions in the field of fractional differential calculus. In other words,
each new definition for operators requires its numerical method. Each of these numerical
methods has its own advantages, limitations, and requirements. In this article, we follow
the numerical idea of the product integration (PI) rule [104].

To develop the numerical method, first, consider the following fractional system:

ABDεΩ(t) = N (t, Ω). (27)

The use of the integral operator introduced in (10) on both sides of (27) results in the
following Volterra integral equation:

Ω(t)−Ω(t0) =
1− ε

Θ(ε)
N (t, Ω(t)) +

ε

Θ(ε)Γ(ε)

∫ t

t0

(t− ρ)ε−1N (ρ, Ω(ρ))dρ. (28)

Considering the time discretization of t = tn = t0 + n} in (28) suggests

Ω(tn) = Ω(t0) +
1− ε

Θ(ε)
N (tn, Ω(tn)) +

ε

Θ(ε)Γ(ε)

n−1

∑
i=0

∫ ti+1

ti

(tn − ρ)ε−1N (ρ, Ω(ρ))dρ. (29)

Using the idea of linear interpolation, the function N (ρ, Ω(ρ)) can be expanded
as follows:

N (ρ, Ω(ρ)) ≈ N (ti+1, Ωi+1) +
ρ− ti+1

} (N (ti+1, Ωi+1)−N (ti, Ωi)), ρ ∈ [ti, ti+1], (30)

where Ωi = Ω(ti).
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Taking the linear function (30) into account in the integrand in (29), and also by
performing some required algebraic calculations, the following iterative scheme is obtained
to approximate the AB fractional problem (27) as [79,105,106]

Ωn = Ω0 +
ε}

Θ(ε)

(
νnN (t0, Ω0) +

n

∑
i=1

ζn−iN (ti, Ωi)

)
, n ≥ 1, (31)

where

νn =
(−1 + n)ε+1 − n(−1 + n− ε)

Γ(ε + 2)
,

ζi =

{ 1−ε
ε} + 1

Γ(ε+2) , i = 0,
(i−1)ε+1−2iε+1+(i+1)ε+1

Γ(ε+2) , i = 1, 2, . . . , n− 1.

(32)

The approximate method obtained in (31) and (32) can be efficiently employed to
characterize the approximate solution to the model (14). In this case, it is obtained as

X1n = X10 +
ε}

Θ(ε)

[
νn

(
rX1,0 − bX 2

1,0 − cX1,0X2,0 −
α1X1,0X3,0

e +X1,0
− βX1,0X2,0

a +X1,0

)
+

n

∑
i=0

ζn−i

(
rX1,i − bX 2

1,i − cX1,iX2,i −
α1X1,iX3,i

e +X1,i
− βX1,iX2,i

a +X1,i

)]
,

X2n = X20 +
ε}

Θ(ε)

[
νn

( βX1,0X2,0

a +X1,0
− α2X3,0X2,0

d +X2,0
− µX2,0

)
+

n

∑
i=0

ζn−i

( βX1,iX2,i

a +X1,i
− α2X3,iX2,i

d +X2,i
− µX2,i

)]
,

X3n = X30+
ε}

Θ(ε)

[
νn

(α1c1X1,0X3,0

e +X1,0
+

c2α2X3,0X2,0

d +X2,0
−mX3,0

)
+

n

∑
i=0

ζn−i

(α1c1X1,iX3i

e +X1,i
+

c2α2X3,iX2,i

d +X2,i
−mX3,i

)]
.

(33)

Applying these iterative forms will result in approximate solutions to the fractional
problem we are considering in this paper. It is clear that these schemes are implicit forms
and can be solved via existing efficient techniques, such as Newton’s method.

6. Discussion of Simulation Results

To solve the fractional system fractional, the iterative scheme introduced in (33) is used.
The values for ε that have been taken in the model are 0.85, 0.874, 0.898, 0.922, 0.946, and
0.97. Further, corresponding numerical simulations in the model are generated by taking

c = 0.01, b = 1, r = 1, β = 0.6, a = 0.363, α1 = 0.01, e = 15, α2 = 0.05, d = 0.5, µ = 0.4, c1 = 2, c2 = 1, m = 0.01. (34)

Note that in all simulations, we have used the initial condition
(X1(0),X2(0),X3(0)) = (0.93, 0.25, 1.2).

In Figures 1 and 2, we have selected the value of ε as 0.85, 0.874, 0.898, 0.922, 0.946, and
0.97 in the system (14). In these plots, it is clear that any value for the ε causes a certain
effect on the system, but eventually, the system tends to a single equilibrium point.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Investigating the evolution of the model (14) through taking the values mentioned in (34). (a–c) Evolution of
X1(t), X2(t), and X3(t). (d–f) The 2D phase planes.
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(a) (b)

(c) (d)

Figure 2. Investigating the evolution of the model (14) through taking the values mentioned in (34). (a–c) The 2D phase
planes of the system. (d) 3D phase portrait for the solutions.

Now, we investigate the sensitivity of the model with respect to some of the parame-
ters in the formulation presented in the system (14). First, we consider the values defined
in (34) with ε = 0.95 and examine the effect of β on results via taking 0.57, 0.58, 0.59, 0.6, 0.61,
and 0.62. Approximate solutions corresponding to these assumptions are shown in
Figures 3 and 4. In these plots, it is clear that as the amount of β increased, the system
tends to exhibit more malicious behavior. However, for smaller values, the system is stable
and tends towards a certain equilibrium point.

In this section, we look at the effect of parameter m1 on model results. To this end, the
values of m1 are taken as 0.01, 0.018, 0.026, 0.034, 0.042, and 0.05. In Figures 5 and 6, we have
depicted the acquired approximate results by taking these values. The results show that a
change in this value for the parameter will change the type of system equilibrium point.

Moreover, we have examined the role of a through taking 0.3, 0.34, 0.38, 0.42, 0.46, and
0.5. Figures 7 and 8 display corresponding to the obtained solutions of the system (14).
Behaviors related to smaller values of a’s are more stable whilst for larger values of the
parameter; a very severe oscillation behavior is evident in the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Approximate solutions related to the effect of parameter β. (a–c) Evolution of X1(t), X2(t), and X3(t). (d–f) The
2D phase planes.
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(a) (b)

(c) (d)

Figure 4. Approximate solutions related to the effect of parameter β. (a–c) The 2D phase planes of the system, (d) 3D phase
portrait for the solutions.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Approximate solutions related to the effect of parameter m1. (a–c) Evolution of X1(t), X2(t), and X3(t). (d–f) The
2D phase planes.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Approximate solutions related to the effect of parameter m1. (a–c) The 2D phase planes of the system. (d) 3D
phase portrait for the solutions.

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Approximate solutions related to the effect of parameter m1. (a–c) Evolution of X1(t), X2(t), and X3(t). (d–f) The
2D phase planes.

(a) (b)

(c) (d)

Figure 8. Approximate solutions related to the effect of parameter a. (a–c) The 2D phase planes of the system. (d) 3D phase
portrait for the solutions.
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Then, we have taken the role of α1 on results via taking 0.01, 0.02, 0.03, 0.04, 0.05, and
0.06 in Figures 9 and 10. In these graphs, it is clear that by increasing the value for α1, the
behavior will be very chaotic and unstable.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Approximate solutions related to the effect of parameter α1. (a–c) Evolution of X1(t), X2(t), and X3(t). (d–f) The
2D phase planes.
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(a) (b)

(c) (d)

Figure 10. Approximate solutions related to the effect of parameter α1. (a–c) The 2D phase planes of the system. (d) 3D
phase portrait for the solutions.

Finally, we study the role of α2 on results through taking values 0.01, 0.02, 0.03, 0.04, 0.05,
and 0.06 in Figures 11 and 12.

(a) (b)

Figure 11. Cont.
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(c) (d)

(e) (f)

Figure 11. Approximate solutions related to the effect of parameter α2. (a–c) Evolution of X1(t), X2(t), and X3(t). (d–f) The
2D phase planes.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. Approximate solutions related to the effect of parameter α2. (a–c) The 2D phase planes of the system. (d) 3D
phase portrait for the solutions.

The results obtained in these plots confirm that the system solution for each case
converges to its different corresponding equilibrium points.

7. Conclusions

Eco-epidemiology can be considered as a meaningful combination of two research
fields of ecology and epidemiology. These problems mainly take ecological systems into
account epidemiological factors. By utilizing new modern mathematical tools, significant
progress can be made in the modeling eco-epidemiological scenarios. By fully incorporat-
ing these elements, eco-epidemiology would be rooted in the investigation of the pathways
by which biological and social experiences generate health and disease. In this contribution,
the AB fractional derivative is employed to study some computational aspects of three
species of the prey–predator model in mathematical biology. The concept of memory and
symmetry are the main reasons for using these useful tools. According to the results
obtained in this study, which is very compatible with the expected conditions, the method
used in the article can be used to solve other problems in epidemiology. This can be consid-
ered as a direction for future research in describing other eco-epidemiological problems.
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