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Abstract: The fatigue-life or Birnbaum–Saunders distribution is an asymmetrical model that has been
widely applied in several areas of science and mainly in reliability. Although diverse methodologies
related to this distribution have been proposed, the problem of determining the optimal sample
size when estimating its mean has not yet been studied. In this paper, we derive a methodology to
determine the optimal sample size under a decision-theoretic approach. In this approach, we consider
symmetric and asymmetric loss functions for point and interval inference. Computational tools in
the R language were implemented to use this methodology in practice. An illustrative example with
real data is also provided to show potential applications.

Keywords: Bayes risk; inverse gamma distribution; LINEX loss function; Metropolis–Hastings
algorithm; R language; sampling cost

1. Introduction

The determination of the sample size is a relevant topic in all studies when statistical
methods are applied. For example, in clinical trials, this determination was adequately
discussed in ch. 6 of [1] and the references therein, giving an overview on this topic. The
optimal sample size in the classical statistical setting depends crucially on the alternative
hypothesis. However, this is not the case in a Bayesian framework where there is no need
to state a specific alternative hypothesis.

In order to determine the sample size in any knowledge area, prior information
must be available. Introducing uncertainty into this information is essentially a Bayesian
approach. Then, the use of Bayesian methods for determining an optimal sample size
should be explored within the distributional framework that is relevant according to the
problem under study. In general, there are empirical limitations that require sample sizes
to be determined in advance. Therefore, we can determine an optimal sample size that
satisfies a criterion based on the Bayes risk. Given specific loss and sampling cost functions,
a full Bayesian analysis may be performed for determining an optimal sample size. In the
absence of precise information on costs and losses, the loss functions can be approximate,
and a Bayesian approach might be employed to provide reasonable estimates of the optimal
sample size. For more details about this methodology, see [2–8] and the references therein.

Birnbaum and Saunders [9] introduced a family of distributions to model failure
times for metals subject to periodic stress. The authors provided a natural physical jus-
tification for this family, which is known as the fatigue-life or Birnbaum–Saunders (BS)
distribution. In the last few decades, this distribution has received considerable attention
in the literature, and many methodologies have been proposed for parameter inference.
Such attention is justified by its wide applicability, and its variations have been applied

Symmetry 2021, 13, 926. https://doi.org/10.3390/sym13060926 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4528-0379
https://orcid.org/0000-0002-9007-0680
https://orcid.org/0000-0003-4755-3270
https://www.mdpi.com/article/10.3390/sym13060926?type=check_update&version=1
https://doi.org/10.3390/sym13060926
https://doi.org/10.3390/sym13060926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13060926
https://www.mdpi.com/journal/symmetry


Symmetry 2021, 13, 926 2 of 13

in several areas [10–16], but mainly in reliability [17–19]. A detailed review of the BS
distribution including methodologies under the classical and Bayesian approaches was
presented in [20]. Recently, guidelines about the minimum sample size for monitoring the
BS median in quality control under a classical statistical approach were presented in [21].
Although diverse methodologies related to the BS distribution have been proposed, the
problem of determining an optimal sample size when estimating the BS mean has not yet
been studied.

The main objective of this paper is to derive a methodology for determining the
optimal sample size when estimating the mean of the BS distribution under decision theory.
We develop a methodology via a Bayesian decision-theoretic approach based on a criterion
that minimizes the Bayes risk and sampling cost. The proposed approach depends on
ad-hoc loss functions (symmetric or asymmetric) defined to accommodate the implications
of a decision. We consider three loss functions for point inference and two for interval
inference. Computational tools in the R language were developed to use this methodology
in practice.

The paper unfolds as follows. In Section 2, we provide background on the BS distri-
bution, the inference of its parameters, and the Bayesian approach. Section 3 presents the
methodology to obtain the optimal sample size under a decision-theoretic approach. In
Section 4, we show the use of the main functions and methods of an R package implemented
by the authors for the present work [22]. An illustrative example is also provided in this
section. Finally, we conclude with a discussion of the results in Section 5, including ideas
for future research.

2. The Birnbaum–Saunders Model

In this section, we present the properties of the BS distribution, the inference of
its parameters, and discuss the Bayesian approach. Much of the background informa-
tion about the BS distribution presented in this section has been gathered from other
works [9,20,23,24].

2.1. Properties

Let X be a BS distributed random variable with a shape parameter α and a scale
parameter β, which we denote by X ∼ BS(α, β). Then, the probability density function of
X is given by:

fX(x|α, β) =
1√
2 π

exp
(
− 1

2α2

(
x
β
+

β

x
− 2
))

(x + β)

2α
√

β x3
,

where x, α, β ∈ <>0.
Besides being a scale parameter, β is also the median of the BS distribution. Further-

more, the mean and variance of the BS distribution are stated as:

µ = E[X] = β

(
1 +

α2

2

)
, Var[X] = (αβ)2

(
1 +

5α2

4

)
. (1)

Moreover, if X is BS distributed, then:

X =
β

4

(
αZ +

√
(αZ)2 + 4

)2
, (2)

where Z follows a standard normal distribution, which is useful to generate random values
from the BS(α, β) distribution. It is possible to show that:

Z =
1
α

(√
X
β
−
√

β

X

)
∼ N(0, 1).
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Some useful properties of the BS distribution are:

P1: If X ∼ BS(α, β), then cX ∼ BS(α, cβ), that is, the BS distribution is a homogeneous family;
P2: If X ∼ BS(α, β), then 1/X ∼ BS(α, 1/β), that is, the BS distribution is invariant under

the reciprocal transformation. This property can be important in financial applications.

2.2. Inference

Given a sample X = (X1, . . . , Xn) and their observed values x = (x1, . . . , xn), modified
moment estimates [25] for α and β are expressed, respectively, as:

α̃ =

√
2
(√

x̄a

x̄h
− 1
)

, β̃ =
√

x̄a x̄h, (3)

where x̄a is the sample arithmetic mean and x̄h is the sample harmonic mean, that is,

x̄a =
1
n

n

∑
i=1

xi, x̄h =

(
1
n

n

∑
i=1

1
xi

)−1

.

In addition, the estimates α̃ and β̃ are well defined because x̄a ≥ x̄h ≥ 0, that is, these
estimates are always positive and mathematically well determined or unique. We may use
α̃ and β̃ as initial values in a sampling algorithm. Furthermore, the likelihood function
obtained from the BS(α, β) probability density function satisfies:

L(α, β; xn) ∝ 1
(αβ)n

n

∏
i=1

((
β

xi

)1/2
+

(
β

xi

)3/2
)

exp

(
− 1

2α2

n

∑
i=1

(
xi
β
+

β

xi
− 2
))

.

For the parameters α and β of the model, we consider proper prior distributions
because the use of non-informative prior distributions yields an improper posterior
distribution and continuous conjugate priors do not exist [26]. A possible choice of a
prior distribution for β is the inverse gamma (IG) distribution whose probability density
function satisfies:

π(β) ∝ β−(a1+1) exp
(
− b1

β

)
, β ∈ <>0,

where a1 and b1 are positive and known constants (hyperparameters) of the IG distribution.
We denote this as β ∼ IG(a1, b1), that is, the IG distribution of parameters a1 and b1. We
also assume an IG prior distribution for α2 with hyperparameters a2 and b2. Thus, the
model can be written hierarchically as:

Xi|α, β
IID∼ BS(α, β), i = 1, . . . , n;

β ∼ IG(a1, b1), α2 ∼ IG(a2, b2),

where “IID” stands for independent and identically distributed. In this context, the condi-
tional posterior distribution of α2 given β and xn is stated as:

α2|β, xn ∼ IG

(
n + 1

2
+ a2,

1
2

n

∑
i=1

(
xi
β
+

β

xi
− 2
)
+ b2

)
, (4)

whereas the marginal posterior distribution of β given xn can be obtained from:

π(β|xn) ∝ β−(n+a1+1) exp
(

b1

β

) n

∏
i=1

((
β

xi

)1/2
+

(
β

xi

)3/2
)(

1
2

n

∑
i=1

(
xi
β
+

β

xi
− 2
)
+ b2

)− (n+1)
2 −a2

, (5)

which is not a known distribution [26]. In this way, we use the random walk Metropolis–
Hastings algorithm [27] to generate samples from the marginal posterior distribution of β
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given xn. Using this sampling algorithm and the posterior distribution defined in (4), we
may generate values from the joint posterior distribution of α2 and β. For a given xn, first,
we generate values of β from (5), and with them, we draw values of α2 using (4). Note that
the parameter of interest µ is the mean of the BS distribution, which is a function of α2 and
β. In order to obtain a random sample of the posterior distribution of µ given xn, we may
draw values from the joint posterior of α2 and β. Then, we apply the expression defined
in (1) for each sampled pair of values.

3. Optimal Sample Size

In this section, we introduce the methodology to obtain the optimal sample size for
estimating µ of the BS distribution under a decision-theoretic approach. Furthermore, we
define the different loss functions to be considered.

3.1. Determining the Optimal Sample Size

We may approach the problem of determining the optimal sample size as a decision
problem [4,28]. Given that µ is the parameter of interest, we specify a loss function L(µ, dn)
based on a sample Xn = (X1, . . . , Xn) and a decision function dn ≡ dn(Xn). For a given
n and depending on the adopted loss function, the action dn(xn) consists of specifying a
quantity (point inference case) representing an estimate for µ or two quantities (interval
inference case) representing the lower and upper limits of a credible interval for µ.

Let π be associated with a prior distribution for the unknown parameter µ and dn be
a decision function. Then, the Bayes risk [4] is defined as:

r(π, dn) =
∫

M

∫
X n

L(µ, dn)g(xn|µ)π(µ)dxn dµ , (6)

where g is related to the sampling distribution for Xn given µ, M is the parameter space,
and Xn is the sample space. The decision d∗n that minimizes r(π, dn) among all the possible
decisions dn is called the Bayes rule. In this context, we define the optimal sample size as
the one that minimizes the total cost (TC) stated as:

TC(n) = r(π, d∗n) + C(n),

where C(n) is a function representing the cost of sampling n observations. Here, we take
C(n) = cn, where c is the per-unit cost for observing a unit in the population. Since it is not
possible to compute r(π, d∗n) analytically, we use Monte Carlo simulations as an alternative
to estimate TC(n) for each n.

Suppose that the order of the integration may be reversed in (6). Note that this reversal
is possible whenever the conditions for the Fubini theorem are satisfied. In this case, as is
known, minimizing the Bayes risk is equivalent to minimizing the posterior expected loss.
Then, we have:

r(π, d∗n) =
∫
X n

E[L(µ, d∗n)|xn]g(xn)dxn,

so that we may estimate the minimized Bayes risk through the posterior expected value
of the loss function applied to the Bayes rule d∗n. This may be done as summarized in
Algorithm 1.

After obtaining an estimate of r(π, d∗n), we added the respective sampling cost cn,
which provided us an estimate of TC(n) for a given n. We apply this procedure for a grid
of plausible values of n. For example, if we set this grid of values as n = 2, 12, . . . , 82, 92,
then we estimate TC(2), TC(12), . . . , TC(82), TC(92), respectively. The choice of the grid
values is arbitrary, but as the distance between its consecutive elements is shorter, a better
visualization is reached of the behavior of the TC. However, as this distance decreases, the
required computer processing power also increases, as well as the time to compute all these
estimates. Thus, the choice of this grid must consider all these settings.
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Algorithm 1: Estimation of the minimized Bayes risk.

1 Set values for the hyperparameters, which reflect the prior knowledge about α2 and β.
2 Draw one value of α2 and one value of β from the respective prior distributions, and

compute the square root of α2.
3 Given α and β, generate a value of Xi from the BS(α, β) distribution using (2), for

i = 1, . . . , n, obtaining a sample xn = (x1, . . . , xn).
4 Given xn, collect a sample of size N (as large as possible) from the joint posterior

distribution of α2 and β as explained in Section 2, generating values (α2
j , β j), for

j = 1, . . . , N.
5 For j = 1, . . . , N, compute the posterior values µj using the generated values in Step 4 and

the expression stated in (1).
6 Obtain the corresponding Bayes rule d∗n using the sample of the posterior distribution of µ

generated in Step 5.
7 Use the values computed in Step 5 to estimate E[L(µ, d∗n)|xn].
8 Repeat Steps 1–7 K times (as large as possible), generating K estimates of E[L(µ, d∗n)|xn].
9 Take the average of the K estimates generated in Step 8 as an estimate of r(π, d∗n).

In Step 4 of Algorithm 1, when sampling from the marginal posterior distribution
stated in (5), we consider a burn-in of 500 iterations and a thinning of 20 with a final
number of iterations of 500. We use these 500 iterations to estimate the Bayes risk. A
trace and autocorrelation plot for a lower value of the grid used for n is inspected. We
expect the same or better behavior as n increased in the grid. All the trace plots showed a
random behavior around a value, and in all the autocorrelation plots, the autocorrelations
for almost all lags were zero. In each value of n in the grid, we estimate the Bayes risk ten
times. We inspect the trace plots, autocorrelations plots, and the acceptance rate to set the
burn-in, thinning, and final number of iterations as 500. All these inspection tools showed
that such settings provide good results. If we increase these values, we may have the same
or better behavior. However, we must consider the computational cost, which increases
notoriously as these values increase. Then, taking all this into account, we decide to set
500 iterations. Due to the computational burden, other values were not tested, but we use
triplicate values to show the stability of our results.

Consider the fitting proposed by [8] of the total cost curve established as:

tc(n) =
E

(1 + n)G + cn,

to the grid of values of n and the respective estimates of TC(n), denoted by tc(n), where E
and G are parameters to be estimated. This curve may be linearized by means of:

log(tc(n)− cn) = log(E)− G log(1 + n),

whereas the estimates of E and G can be computed by the least-squares method. In this
setting, the optimal sample size (no) is the integer closest to:

(
Ê Ĝ

c

)1/(Ĝ+1)

− 1,

where Ê and Ĝ are, respectively, the least-squares estimates of E and G.

3.2. Loss Functions

We consider five loss functions to determine the optimal sample size. The loss func-
tions 1 and 2 may be used for point inference and are symmetric. The loss function 3 also
may be used for point inference, but this loss function is asymmetric. The loss functions 4
and 5 may be used for interval inference. Such loss functions are defined below.
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L1: Loss Function 1. The first loss function is defined as:

L(µ, dn) = |µ− dn|,

which is known as the absolute loss function. For this loss function, the Bayes rule d∗n
is the median of the posterior distribution of µ. Given a sample µj, for j = 1, . . . , N,
of the posterior distribution of µ, an estimate of E[L(µ, d∗n)|xn] may be obtained from
∑N

j=1 |µj − d̂∗n|/N, where d̂∗n is the median of the sample µj, for j = 1, . . . , N.

L2: Loss Function 2. Second, we consider the well-known quadratic loss function stated as:

L(µ, dn) = (µ− dn)
2.

For this loss function, the Bayes rule d∗n corresponds to the posterior expected value
of µ, and in this case, E[L(µ, d∗n)|xn] = Var(µ|xn). Given a sample µj, for j = 1, . . . , N,
of the posterior distribution of µ, an estimate of E[L(µ, d∗n)|xn] may be obtained from the
respective sample variance.

L3: Loss Function 3. The loss functions L1 and L2 suffer from two disadvantages in
practical applications: both are symmetric and unbounded. In the list of bounded loss
functions that might be considered, we may include those suggested in [29,30]. However,
in our case, these loss functions are not simple to deal with. Nevertheless, there is a simple
well-know asymmetric loss function that we may consider. This is the linear exponential
(known as LINEX) loss function given by:

L(µ, dn) = exp(`(dn − µ))− `(dn − µ)− 1,

where ` 6= 0. As ` increases positively, the overestimation is more costly than the underesti-
mation. As ` increases negatively, the situation is reversed [31]. From p. 447 in [31], the
Bayes rule for this loss function is established as:

d∗n = −1
`

log
(
E
[
exp(−`µ)

∣∣xn
])

.

Given a sample µj, for j = 1, . . . , N, of the posterior distribution of µ, we may compute
an estimate of d∗n through:

d̂∗n = −1
`

log

(
1
N

N

∑
j=1

exp(−`µj)

)
.

For the LINEX function, we have that [5]:

E[L(µ, d∗n)|xn] = `(E[µ|xn]− d∗n).

An estimate of E[L(µ, d∗n)|xn] may be obtained from:

Ê[L(µ, d∗n)|xn] = `

(
1
N

N

∑
j=1

µj − d̂∗n

)
.

L4: Loss Function 4. The fourth function is defined as:

L(µ, dn) = ρτ + (a− µ)+ + (µ− b)+, (7)

where 0 < ρ < 1 is a weight, τ = (b− a)/2 is the half-length of the desired interval, and the
function x+ is equal to x if x > 0 and equal to zero, otherwise. Note that as τ decreases, the
interval is narrower. The terms (a− µ)+ and (µ− b)+ are included to penalized intervals
that do not contain the parameter of interest µ. These terms are equal to zero if µ ∈ [a, b]
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and increase as µ moves away from the interval. Note that the loss function given in (7)
is a weighted sum of two terms, τ and (a− µ)+ + (µ− b)+, where the weights are ρ and
one, respectively. The Bayes rule d∗n corresponds to taking a and b as the 100(ρ/2)th and
100(1− ρ/2)th quantiles of the posterior distribution of µ [8,32]. If we consider this loss
function applied to the Bayes rule, we have that:

E[L(µ, d∗n)|xn] = E[µδµ(Ab∗)|xn]− E[µδµ(Aa∗)|xn],

where Ab∗ = [b∗, ∞), Aa∗ = (0, a∗], a∗ and b∗ are the corresponding bounds of the Bayes
rule d∗n, whereas δµ is the indicator function. Given a sample µj, for j = 1, . . . , N, of the
posterior distribution of µ, an estimate of E[L(µ, d∗n)|xn] may be obtained from:

Ê[L(µ, d∗n)|xn] =
1
N

N

∑
j=1

(µjδµj(Ab∗)− µjδµj(Aa∗)).

L5: Loss Function 5. The fifth and last loss function considered here is expressed as:

L(µ, dn) = γτ +
(µ−m)2

τ
, (8)

where γ > 0 is a fixed constant and m = (a + b)/2 is the center of the credible interval.
The first term defined in (8) involves the half-width of the interval, and the second term
is the square of the distance between the parameter of interest µ and the center of the
interval, which is divided by the half-width to maintain the same measurement unit of the
first term. The weights attributed to each term stated in (8) are γ and one, respectively. If
γ < 1, we attribute the largest weight to the second term; if γ > 1, the situation is reversed;
and if γ = 1, the two terms have the same weight. For this loss function, the Bayes rule
d∗n corresponds to the quantities that define the interval [a∗, b∗] = [m∗ − SDγ, m∗ + SDγ],
where m∗ = E[µ|xn] and SDγ = γ−1/2(Var(µ|xn))1/2, that is, the corresponding standard
deviation [4,8,32]. In this case, we have that:

E[L(µ, d∗n)|xn] = 2γ1/2
√

Var(µ|xn). (9)

Given a sample µj, for j = 1, . . . , N, of the posterior distribution of µ, an estimate of
E[L(µ, d∗n)|xn] may be obtained from the sample variance and the expression (9).

4. Computational Aspects and Empirical Applications

In this section, we provide the characteristics of the computer that was used in
our study. Also, we show the capabilities and features of a new R package which is
named samplesizeBS [22] and is available from GitHub at https://github.com/santosneto/
samplesizeBS (accessed on 21 May 2021). The capabilities of the samplesizeBS package
allow us to calculate an optimal sample size when estimating the BS mean and generate
random numbers of the joint posterior BS/IG distribution. This section finishes with an
empirical application based on real data.

4.1. Computer Characteristics

The characteristics of the Cluster Euler, used when calculating the optimal sample
size in Section 4.3, are available at http://www.cemeai.icmc.usp.br/Euler/index.html
(accessed on 22 May 2021). The other numerical results presented in the simple example
of Section 4.2, and the illustrative example with real data of Section 4.4, were obtained
by a computer with the following characteristics: (i) OS: Linux Mint 19.3 Cinnamon;
(ii) RAM: 7.7 GiB; and (iii) processor: Intel Core i5-7200U CPU@2.50GHz x 2. In addition,
the following tools and programming languages were used: (i) development tool –IDE–:
RStudio Version (1.3.1093); and (ii) statistical software: R. Note that, in the simple example
regarding the use of the function bss.dt.bs(), the elapsed time was: 19 m 48 s.

https://github.com/santosneto/samplesizeBS
https://github.com/santosneto/samplesizeBS
http://www.cemeai.icmc.usp.br/Euler/index.html
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4.2. The samplesizeBS Functions

In Table 1, we present the details of the functions contained in the samplesizeBS package.

Table 1. Functions and the respective outputs of the samplesizeBS package.

Function Output

rbs() A sample of size n from the BS distribution
logp.beta() The logarithm of the marginal posterior distribution of β

rbeta.post()
A random sample from the marginal posterior distribution of β using the random walk Metropolis–Hastings
algorithm

bss.dt.bs()
An integer representing the optimal sample size for estimating µ of the BS distribution and the acceptance rate for
the random walk Metropolis–Hastings algorithm

In order to determinate the BS optimal sample size, we use the function bss.dt.bs().
In the example below, we calculate the optimal sample size considering the loss function
L1, with a1 = a2 = 8, b1 = b2 = 50, and c = 0.01. The function also returns the graph with
the sample size (n) versus the TC(n) of sampling, that is, TC(n) takes into account both
the cost of sampling n observations and the cost of inference through the loss function. In
this way, the optimal sample size is the value that minimizes the total cost (see Figure 1).

1 > bss.dt.bs(loss = ’L1’,
2 nmin = 50, nmax = 400, nlag = 10, lrep=50, npost = 10)
3 |===============================================| 100%, Elapsed

19:48
4

5 Call:
6 bss.dt.bs(loss = "L1

", a1 = 8, b1 = 50, a2 = 8, b2 = 50, cost = 0.01,
7 nmin = 50, nmax = 400, nlag = 10, nrep = 6, lrep = 50,
8 npost = 10)
9

10 Sample size:
11 n = 148
12 ---------------
13 accept = 0.7071214

50 100 150 200 250 300 350 400

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

n

T
C

(n
)

Optimal Sample Size = 148

Figure 1. Fitted curve with the respective optimal sample size obtained using the loss function L1.
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4.3. Optimal Sample Sizes

Next, we calculate the optimal sample size assuming different scenarios. For the
hyperparameters of the prior distribution of β, we take b1 = 50 and a1 = 8, 10, 13, 15. With
these values, we have different degrees of prior information (see Figure 2). For the prior
distribution of α2, we set a2 = a1 and b2 = b1. We consider c = 0.001, 0.01, 0.1 for the
per-unit cost. For the loss function L3, we take ` = 0.50, 1.00, 2.00, for L4, ρ = 0.01, 0.05, 0.10,
and for L5, γ = 0.25, 0.50, 1.00. For each combination of these values, we compute the
optimal sample size no for estimating µ. The average acceptance rate for the Metropolis–
Hastings algorithm in all these combinations was ≈ 70%. Since the proposed methodology
is based on simulation methods, we obtain no in triplicate and observe the difference for
the three values. Table 2 reports the optimal sample sizes computed with these settings. In
addition, no may be reached via the following link, which also presents a graph with the
fitted curve:

https://santosneto.shinyapps.io/samplesizeBSapp (accessed on 21 May 2021)

Note that values of the hyperparameters are fixed according to the practitioner’s
knowledge for the parameters α2 and β (see Step 1 of Algorithm 1). For example, if we set
the hyperparameters as a1 = 8 and b1 = 50, it means that our prior knowledge indicates
the most likely values for β in the interval between the numbers 3 and 5 (see Figure 2) and
similarly for the parameter α2. Thus, for instance, if the practitioner’s prior knowledge
is that the possible values for β (and/or α2) are in the interval between the numbers
6 and 9, the practitioner must set the values of the hyperparameters (parameters of the
IG distribution) such that the greatest mass of probability of the IG distribution is in the
interval between the numbers 6 and 9.

0.0

0.1

0.2

0.3

0.4

0.5

4 8 12
β

π
(β

)

8
10
13
15

Figure 2. Probability density functions for different values of the hyperparameter a1 (b1 = 50) of the
IG prior distribution for β.

4.4. Illustrative Example

A practical application of the methodology to compute the optimal sample size when
estimating the mean of the BS distribution is illustrated here with one example. In this
example, we consider a data set composed by 46 observations given in [33] and available
in the samplesizeBS package [22]. These observations correspond to maintenance data on
active repair times (in hours) for an airborne communications transceiver. Let xi be the
observation i of this data set associated with the random variable Xi ∼ BS(α, β).

https://santosneto.shinyapps.io/samplesizeBSapp
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First, we estimate α and β using the modified moment method defined in (3), which
result in α̃ = 1.25 and β̃ = 2.02, respectively. In this way, we can set IG prior distributions
for α2 and β with a1 = a2 = 15 and b1 = b2 = 50 (see Figure 2). Hence, if our interest is
in obtaining a credible interval for µ considering the loss function L5, with γ = 0.25 and
c = 0.01, the optimal sample size may be obtained from Table 2, which is no = 46.

Table 2. Optimal sample sizes no (in triplicate) when estimating the mean of the BS distribution via five different
loss functions.

ρ/γ/`
a1 = 8 a1 = 10 a1 = 13 a1 = 15

c = 0.001 c = 0.01 c = 0.1 c = 0.001 c = 0.01 c = 0.1 c = 0.001 c = 0.01 c = 0.1 c = 0.001 c = 0.01 c = 0.1
Loss function L1

651 117 23 436 80 13 267 47 9 210 36 6
641 121 22 429 77 14 267 47 8 209 36 6
627 140 21 429 77 13 268 47 8 209 37 6

Loss function L2
2096 641 176 1130 317 108 542 144 33 381 88 21
2129 697 200 1198 326 97 558 138 42 380 89 23
2075 622 218 1182 292 81 530 139 32 360 89 21

Loss function L3
1787 354 61 1111 229 41 631 138 24 467 101 18

` = 2.00 1826 363 62 1115 235 40 640 135 25 468 101 18
1820 352 61 1112 229 41 616 134 25 454 97 19
929 190 34 553 122 22 310 69 13 226 51 9

` = 1.00 924 197 34 556 122 22 311 69 13 227 51 9
925 190 34 552 116 22 308 67 13 222 49 9
465 101 19 281 63 12 153 35 7 111 25 5

` = 0.50 463 101 19 275 63 12 155 35 7 111 25 4
471 99 18 275 59 12 146 33 6 105 23 4

Loss function L4
279 53 9 175 31 7 103 18 3 79 14 2

ρ = 0.10 271 54 10 171 31 6 106 18 3 79 14 2
284 53 10 168 33 5 103 18 3 80 14 2
187 37 8 118 22 4 70 13 2 54 9 0

ρ = 0.05 197 37 8 121 22 4 71 12 2 55 9 0
184 40 7 121 22 4 71 13 2 55 9 0
82 18 3 54 9 0 30 5 0 22 4 0

ρ = 0.01 85 19 3 52 9 0 29 5 0 22 4 0
83 18 3 49 9 0 30 5 0 22 4 0

Loss function L5
1461 271 51 899 171 30 556 103 18 441 78 13

γ = 1.00 1472 292 55 942 162 31 561 99 18 438 78 13
1460 282 56 883 162 30 554 101 18 433 78 13
1208 203 39 684 132 23 427 78 14 337 59 10

γ = 0.50 1179 201 38 690 130 23 434 78 14 335 59 10
1183 213 42 693 134 24 436 80 14 338 60 10
796 166 32 538 106 18 333 59 10 259 46 8

γ = 0.25 859 171 30 540 99 19 331 62 11 260 47 8
894 167 32 531 101 18 333 60 10 260 46 8

Now, we generate 1000 observations from the posterior distribution of µ and estimate
the mean and variance of the respective posterior distribution through the sample mean
and variance, respectively. With these estimates, we obtain a credible interval for µ given
by [2.108; 3.939].

5. Discussion, Conclusions and Future Research

We proposed a methodology to compute the optimal sample size for estimating the
mean of the Birnbaum–Saunders distribution, a widely applied and studied distribution in
several areas of science. We considered five different loss functions, which allowed us to
perform both point and interval inference for the parameter of interest.
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An advantage of the proposed methodology is that the per-unit cost, represented
by c, is explicitly taken into account. When the cost c is fixed and b1 = 50, the optimal
sample size no decreases as a1 increases (or as the prior variance decreases), as expected,
since in such a case, the prior knowledge increases as a1 increases. This occurred with all
loss functions considered in our study. For b1 = 50 and a1 fixed, no also decreases as c
increases, but the sampling total cost increases. For example, if we take the loss function L1,
a1 = 8 and c = 0.001, the corresponding no is 651 (see Table 2), which generates a sampling
cost of C(651) = 0.001× 651 = 0.651, whereas if we take c = 0.1, the corresponding no
is 23 (see Table 2), which produces a sampling cost of C(23) = 0.1× 23 = 2.3. For the
loss function L3, no increases as ` increases, if we consider a1 and c fixed, which makes
sense since overestimation is more costly as ` increases. For the loss function L4, when ρ
increases, no also increases, if we consider a1 and c fixed. This makes sense because ρ is the
weight attributed to the term τ in L4, a term related to the length of the credible interval.
In addition, when ρ increases, we expect longer credible intervals, and consequently, the
probability of the respective interval decreases. The same is valid for γ in the loss function
L5, but in this case, the decreasing of the corresponding credible interval is easily noted
by the presence of the term γ−1/2 in the expression of the respective Bayes rule. When γ
increases, this term shrinks the length of the interval.

Since the proposed methodology was based on simulations, we obtained the value of
no in triplicate for each scenario of values of a1, c, `, ρ, and γ. We observed that the largest
discrepancies in the scenarios occurred for a1 = 8. However, these discrepancies decreased
as a1 increased, or when the prior variance decreased. This also occurred when c = 0.001
and/or when we considered the loss function L2. In general, the discrepancy was close
to zero, but if a large discrepancy occurs, we suggest visually inspecting the graph of the
fitted curves and taking the value of no that corresponds to the best fit. Nevertheless, if all
the curves fit visually well, we suggest using the median of the values obtained for no. In
our case, we obtained the values of no in triplicate, as mentioned. For example, in Figure 3,
under the loss function L5 with a1 = 8, c = 0.001, and γ = 0.50, the values of no were 1208,
1179, and 1183. Since there was a discrepancy between these values and the fittings of the
curves were visually suitable, in this case, we suggest using no = 1183. Note that we have
optimal sample sizes equal to zero in Table 2 in some scenarios, which means that it is not
worth sampling in these cases because the sampling cost outweighs the decreasing of the
minimized Bayes risk. This was also observed in [2,6].
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Figure 3. Fitted curves with the respective optimal sample sizes obtained via the loss function L5 with a1 = 8, c = 0.001,
and γ = 0.50.

We recall that the objective of the present investigation was to calculate the optimal
sample size when estimating the mean of the Birnbaum–Saunders distribution. Simulation
experiments should be performed to study the relative bias of the estimator of the mean (or
the width of the corresponding interval estimate). A sensitivity analysis considering such
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simulation experiments would also be helpful. However, as mentioned, our methodology
uses very intensive computational resources, which limits the implementation of such
experiments. In addition, we plan to consider different priors for the parameters and to
examine the robustness and the sensitivity of the results. Moreover, we are interested in
studying the possibility of using bounded loss functions and other sampling algorithms.

The relevance of calculating sample sizes in statistics is undeniable. Another im-
portant challenge to be implemented is related to calculating the sample size when
estimating the Birnbaum–Saunders mean (or other parameters) under more complex
modeling structures, such as regression, temporal, spatial, functional, PLS, and errors-in-
variables settings [34–38]. We hope to report findings associated with these open aspects
in future research.
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