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Abstract: In this article, plenty of wave solutions of the (2 + 1)-dimensional Kadomtsev–Petviashvili–
Benjamin–Bona–Mahony ((2 + 1)-D KP-BBM) model are constructed by employing two recent
analytical schemes (a modified direct algebraic (MDA) method and modified Kudryashov (MK)
method). From the point of view of group theory, the proposed analytical methods in our article are
based on symmetry, and effectively solve those problems which actually possess explicit or implicit
symmetry. This model is a vital model in shallow water phenomena where it demonstrates the wave
surface propagating in both directions. The obtained analytical solutions are explained by plotting
them through 3D, 2D, and contour sketches. These solutions’ accuracy is also tested by calculating the
absolute error between them and evaluated numerical results by the Adomian decomposition (AD)
method and variational iteration (VI) method. The considered numerical schemes were applied based
on constructed initial and boundary conditions through the obtained analytical solutions via the MDA,
and MK methods which show the synchronization between computational and numerical obtained
solutions. This coincidence between the obtained solutions is explained through two-dimensional
and distribution plots. The applied methods’ symmetry is shown through comparing their obtained
results and showing the matching between both obtained solutions (analytical and numerical).

Keywords: (2 + 1)-D KP-BBM equation; computational and numerical simulations

1. Introduction

Recently, the phenomenon of shallow water waves has attracted the attention of
many researchers in different fields. The flow below the medium pressure surface of the
fluid is one of their primary major interests [1,2]. A set of hyperbolic nonlinear evolution
equations are the keyword driving this phenomenon [3]. Following Saint-Venard Adéma
Jean-Claude Bar de Venat, the shallow water wave equation is named the Saint-Venat
equation in bidirectional form [4]. Additionally, the well-known Navier–Stokes equation
explains that the conservation of mass means that the vertical velocity scale of the fluid
is smaller than the horizontal velocity scale when the horizontal length scale is much
larger than the vertical length scale [5–7]. Many nonlinear evolution equations have been
formulated to demonstrate the waves’ dynamic behavior through shallow water waves.
This phenomenon has many applications in engineering and science, such as plasma
physics, cosmology, fluid dynamics, electromagnetic theory, acoustics, electrochemistry
astrophysics, and so on [8–13]. These models have forced many mathematicians and
physicists to find suitable tools for finding computational, semi-analytical, and numerical
solutions. Distinct schemes have been derived such as the well-known

(
Ψ′
Ψ

)
-expansion

methods, the auxiliary equation method, exponential expansion method, Kudryashov
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method, sech-tanh expansion method, direct algebraic equation method, Adomian decom-
position method, iteration method, Khater methods, B-spline schemes and so on [14–20].
These techniques have been applied to several nonlinear evolution equations to construct
the solutions. Still, there is no unified method that can be used for all models until now. In
this scientific race to derive the most general computational technique that can apply to all
nonlinear evolution equations, no one has stopped for a single second and asked about the
accuracy of all models of the already derived computational schemes.

Sophus Lie has put forth several essential concepts and developed basic tools to study
DEs’ group properties. In applied mathematics, he achieved several tangible findings
of enormous value. In particular, he established the maximum group of point (local)
transformations accepted by the one-dimensional heat equation, discovering the Galilei
group’s projective representation. Only lately have these findings been uncovered. Lie’s
Theory of continuous groups is based on the well-known Noether theorem on conserved
law. Nowadays, several discoveries from Lie are recognized and rediscovered in connection
with the present evolution of mathematical and theoretical physics, and we can see the
victory of the Lie Theory in all mathematical disciplines.

The fact that Poincare originally founded the Lorentz transformations in 1905, which
always leaves Maxwell’s equations, is a key point for identifying Lie Theory because they
form a Lie group. In 1909, Bateman and Cunningham found that Maxwell’s equations
had been invariant concerning the conformal group, including Lorentz’s subgroup. To
build its answers, Bateman used the symmetry of the linear wave equation. These answers
were then considered functionally invariant (V.1. Smirnov and S.L. Sobolev, 1932). H.
Birkhoff presented several essential concepts for finding accurate PDE solutions. In works
by Forsyth and Ames, there are several precise alternatives of two-dimensional nonlinear
PDEs. V.P. Ermakov (1890–1900), G.V. Pfeifer (1920–1935), and M.K. Kurensky created the
techniques of Lie in Kiev (1930).

In this context, this paper studies the analytical and numerical solutions of the (2 + 1)-
D KP-BBM equation. This model is given by [21–23]

Bx t + Bx x + r1

(
B2
)

x x
+ r2 Bx x x t + r3 By y = 0, (1)

where ri, (i = 0, 1, 2, 3) are undetermined positive constants while B = B(ζ, t) is a space–
time function. This function explains the bidirectional propagating water wave surface.
Handling Equation (1) through the next transformation B(ζ, t) = Y(℘), ℘ = ζ1 + c t,
where c is the wave velocity which converts the PDE into ODE. Integrating the result ODE
twice with respect to ℘, and with zero constants of the integration, obtains the next ODE

(c + r2 + 1)Y + r1 Y2 + r2 cY ′′ = 0. (2)

Using the homogeneous balance principles and the following auxiliary equations for
MDA and MK methods [24–27] for Equation (2), respectively, F′(℘) = J1 + J2 F(℘) +
J3 F(℘)

2 &Q′(℘) = ln(a)
(
Q(℘)2 −Q(℘)

)
where J1, J2, J3, a are arbitrary constants to

be constructed later; give n = 2. Thus, the general solutions of Equation (2) are formulated
in the following forms

Y =


∑n

i=−n ai F(℘)
i = a2 F(℘)

2 + a1 F(℘) +
a−2

F(℘)2 +
a−1
F(℘)

+ a0,

∑n
i=0 ai Q(℘)i = a2 Q(℘)2 + a1 Q(℘) + a0, ,

(3)

where a−2, . . . , a2 are positive constants.
The paper’s remaining sections are given in the following order; Section 2

constructs novel and accurate solutions of the considered model through the suggested
above-mentioned schemes. Section 3 explains the paper’s novelty and contributions.
Finally, Section 4 gives the conclusion of the whole paper.
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2. Accuracy of Computational Solutions

Applying the MDA and MK methods to Equation (2) to construct traveling wave
solutions of the (2 + 1)-D KP-BBM equation is conducted. Additionally, estimate the
requested conditions for investigating the numerical solutions of considered model by
applying the AD and VI methods as follows:

2.1. MDA Method’s Solutions

Handling Equation (3), through the suggested analytical scheme’ framework,
calculates the parameters shown above in the following forms:

Family I

a0 =
J1a1

J2
, a2 =

a1J3

J2
, a−1 = 0, a−2 = 0, r1 = −6cJ2J3r2

a1
, r3 = 4J1cJ3r2 − cJ 2

2 r2 − c− 1.

Family II

a0 =
a−1J3

J2
, a1 = 0, a2 = 0, a−2 =

J1a−1

J2
, r1 = −6J1cJ2r2

a−1
, r3 = 4J1cJ3r2 − cJ 2

2 r2 − c− 1.

Family III

a0 =
a1
(
2J1J3 + J 2

2
)

6J2J3
, a2 =

a1J3

J2
, a−1 = 0, a−2 = 0, r1 = −6cJ2J3r2

a1
, r3 = −4J1cJ3r2 + cJ 2

2 r2 − c− 1.

Family IV

a0 =
a−1
(
2J1J3 + J 2

2
)

6J1J2
, a1 = 0, a2 = 0, a−2 =

J1a−1

J2
, r1 = −6J1cJ2r2

a−1
, r3 = −4J1cJ3r2 + cJ 2

2 r2 − c− 1.

Consequently, the considered model’s traveling solutions are evaluated in the follow-
ing forms:

For J1 = 0, J2 > 0, we obtain

BI,1(ζ, t) =
a1J2eJ2(ct+ζ1+ϑ)(
J3eJ2(ct+ζ1+ϑ) − 1

)2 , (4)

BII,1(ζ, t) =
a−1eJ2(−(ct+ζ1+ϑ))

J2
, (5)

BIII,1(ζ, t) =
2a1J2eJ2(ct+ζ1+ϑ)

3
(
J3eJ2(ct+ζ1+ϑ) − 1

)2 +
a1J2J3e2J2(ct+ζ1+ϑ)

6
(
J3eJ2(ct+ζ1+ϑ) − 1

)2 +
a1J2

6J3
(
J3eJ2(ct+ζ1+ϑ) − 1

)2 . (6)

For J1 = 0, J2 < 0, we obtain

BI,2(ζ, t) =
a1J 3

3 e2J2(ct+ζ1+ϑ)

J2
(
J3eJ2(ct+ζ1+ϑ) + 1

)2 −
a1J 2

3 e2J2(ct+ζ1+ϑ)(
J3eJ2(ct+ζ1+ϑ) + 1

)2 −
a1J3eJ2(ct+ζ1+ϑ)(
J3eJ2(ct+ζ1+ϑ) + 1

)2 , (7)

BII,2(ζ, t) = − a−1eJ2(−(ct+ζ1+ϑ))

J3
+

a−1J3

J2
− a−1, (8)

BIII,2(ζ, t) =
a1J 3

3 e2J2(ct+ζ1+ϑ)

J2
(
J3eJ2(ct+ζ1+ϑ) + 1

)2 +
a1

J3eJ2(ct+ζ1+ϑ) + 1
+

a1J2

6J3
− a1. (9)
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For 4J1J3 > J 2
2 , we obtain

BI,3(ζ, t) =
J1a1 sec2

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

J2
−

a1J2 sec2
(

1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

4J3
, (10)

BI,4(ζ, t) =
J1a1 csc2

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

J2
−

a1J2 csc2
(

1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

4J3
, (11)

BII,3(ζ, t) =
4J1a−1J 2

3

J2

(
J2 cos

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)
−
√

4J1J3 −J 2
2 sin

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
))2

− a−1J2J3(
J2 cos

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)
−
√

4J1J3 −J 2
2 sin

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
))2 ,

(12)

BII,4(ζ, t) =
4J1a−1J 2

3

J2

(√
4J1J3 −J 2

2 cos
(

1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)
−J2 sin

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
))2

− a−1J2J3(√
4J1J3 −J 2

2 cos
(

1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)
−J2 sin

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
))2 ,

(13)

BIII,3(ζ, t) =− 2J1a1

3J2
+
J1a1 sec2

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

J2

−
a1J2 sec2

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

4J3
+

a1J2

6J3
,

(14)

BIII,4(ζ, t) =− 2J1a1

3J2
+
J1a1 csc2

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

J2

−
a1J2 csc2

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
)

4J3
+

a1J2

6J3
,

(15)

BIV,1(ζ, t) =
a−1J2

6J1
+

4J1a−1J 2
3

J2

(
J2 −

√
4J1J3 −J 2

2 tan
(

1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
))2

− 2a−1J3

J2 −
√

4J1J3 −J 2
2 tan

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
) +

a−1J3

3J2
,

(16)

BIV,2(ζ, t) =
a−1J2

6J1
+

4J1a−1J 2
3

J2

(
J2 −

√
4J1J3 −J 2

2 cot
(

1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
))2

− 2a−1J3

J2 −
√

4J1J3 −J 2
2 cot

(
1
2

√
4J1J3 −J 2

2 (ct + ζ1 + ϑ)
) +

a−1J3

3J2
.

(17)

where ζ = x, y, ζ1 = x + y.
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Semi-Analytical Solutions

1. Applying AD method [28,29] for Equation (2) with the following initial and boundary

conditions Y(0) = 6e2x

(−2e2x−1)2 , Y ′(0) = −4
9 gives the following solutions

Y0 =
2
3
− 4℘

9
, (18)

Y1 =
32℘4

243
− 40℘3

81
+

4℘2

9
, (19)

Y2 = −1024℘7

45927
+

320℘6

2187
− 392℘5

1215
+

20℘4

81
, (20)

Y3 =
4096℘10

2657205
− 16384℘9

1240029
+

1888℘8

45927
− 17264℘7

229635
+

2008℘6

10935
− 512℘5

1215
+

32℘4

81
. (21)

Thus, the semi-analytical solutions of the (2 + 1)-D KP-BBM equation is given by

YApprox. =
4096℘10

2657205
− 16384℘9

1240029
+

1888℘8

45927
− 22384℘7

229635
+

3608℘6

10935
− 904℘5

1215
+

188℘4

243
− 40℘3

81

+
4℘2

9
− 4℘

9
+

2
3
+ · · · .

(22)

2. Applying the variational iteration method [30] for Equation (1) with the following

initial condition B(ζ, 0) = 6e2(ζ1)

(−2e2(ζ1)−1)
2 gives the following solutions:

B1(ζ,t) =
6
(
(sinh(ζ1) + 3 cosh(ζ1))

4 − 288t(3 sinh(2(ζ1)) + 5 cosh(2(ζ1))− 6)
)

(sinh(ζ1) + 3 cosh(ζ1))6 , (23)

B2(ζ,t) =
1

(sinh(ζ1) + 3 cosh(ζ1))14

(
3456t

(
− 215654400 t2 − (sinh(ζ1) + 3

× cosh(ζ1))
2 (3 (4608 t (7− 2904 t) + 88552 sinh(2 (ζ1)) + 32680

× sinh(4(ζ1))− 50826 sinh(6(ζ1)) + 5055 sinh(8 (ζ1)) + 160)

+ 40 (36t(12384t + 7) + 3997) cosh(2(ζ1))− 8(1224t(192t + 17)− 10817)

× cosh(4(ζ1)) + 6(36t(4(12384t + 7) sinh(2(ζ1))− 40(192t + 17)

sinh(4(ζ1)) + 189 sinh(6(ζ1))) + 65(108t− 379) cosh(6(ζ1)))

+ 15043 cosh(8(ζ1)))

))
.

(24)

2.2. MK Method’s Solutions

Handling Equation (3) through the suggested analytical scheme’s framework allows
calculation of the parameters shown above in the following forms:

Family I

a0 = 0, a1 = −6(c + r3 + 1)
r1

, a2 =
6(c + r3 + 1)

r1
, r2 =

−c− r3 − 1

c(ln(a))2 .
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Family II

a0 =
−c− 1

r1
, a1 = −6(−c + r3 − 1)

r1
, a2 =

6(−c + r3 − 1)
r1

, r2 =
c− r3 + 1

c(ln(a))2 .

Consequently, the considered model’s traveling solutions are evaluated by the follow-
ing forms:

BI(ζ,t) = −
6(c + r3 + 1)

((
1± act+ζ

)
− 1
)

r1
(
1± act+ζ1

)2 , (25)

BII(ζ,t) = −
(
1± act+ζ1

)(
(c + 1)

((
1± act+ζ1

)
− 6
)
+ 6r3

)
+ 6(c− r3 + 1)

r1
(
1± act+ζ1

)2 . (26)

2.2.1. Semi-Analytical Solutions

1. Applying the AD method for Equation (2) with the following initial and boundary
conditions Y(0) = 8ex

(ex+1)2 , Y ′(0) = 0 gives the following solutions

Y0 = 2, (27)

Y1 = −℘2

2
, (28)

Y2 =
℘4

12
, (29)

Y3 =
℘4

8
− ℘6

288
. (30)

Thus, the semi-analytical solutions of the (2 + 1)-D KP-BBM equation are given by

YApprox. = −
x6

288
+

5x4

24
− x2

2
+ 2 + · · · . (31)

2. Applying the variational iteration method for Equation (1) with the following initial

condition B(ζ,0) = 8eζ1

(eζ1+1)
2 gives the following solutions:

B1(ζ,t) =
4 cosh2

(
ζ1
2

)
((4− 96t) cosh(ζ1) + 144t + cosh(2(ζ1)) + 3)

(cosh(ζ1) + 1)4 , (32)

B2(ζ,t) =
4 cosh2

(
ζ1
2

)
((4− 96t) cosh(ζ1) + 144t + cosh(2(ζ1)) + 3)

(cosh(ζ1) + 1)4 − 3
32

t

× sech14
(

ζ1

2

)
((48t(15232t− 57)− 70) cosh(ζ1)− 4(48t(904t− 15) + 5)

× cosh(2(ζ1)) + (48t(256t + 25) + 5) cosh(3(ζ1))− 216t cosh(4(ζ1))

− 7(24t(3456t + 25) + 7)− 1932 sinh(ζ1)− 1128 sinh(2(ζ1)) + 78 sinh(3(ζ1))

+ 132 sinh(4(ζ1))− 6 sinh(5(ζ1)) + 5 cosh(4(ζ1)) + cosh(5(ζ1))).

(33)
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3. Interpretation of Results

In this section the interpretation of the results and the paper’s contribution
are shown through comparing the obtained results with those that have been recently
published for the considered model. Comparing our analytical solutions with those that
have been obtained by [21–23] shows the novelty of our result, where all our solutions are
completely different from those that have been obtained in those papers. Additionally,
we explain the shown figures for more physical explanation of each of them and for
demonstration of the flow’s dynamical behavior. Figures 1, 2, 3, 4, 5, 6, 7, 8 show breather
and kink wave in two and three-dimensions and the contour plot of Equations (4), (7), (25)

and (26) when

[
a1 = 4, c = 3, J2 = 2, J3 = 7, ϑ = 10 & a1 = 7, c = 5, J2 = −4, J3 =

20, ϑ = 0 & a = e, c = 5, r1 = 3, r3 = −1 & a = e, c = 5, r1 = 3, r3 = −1

]
and the

matching between the computational and semi-analytical solutions is illustrated. The
paper’s main target is obtaining novel traveling wave solutions of the (2 + 1)-D KP-BBM
equation then investigating their accuracy by applying two numerical schemes of the same
model that show the range of matching between analytical and numerical solutions. The
accuracy of each of the MDA and MK methods is explained through Tables 1–4. Based
on the shown values of computational, semi-analytical and absolute error in Tables 1–4
the obtained solution via the MK method is more accurate than that obtained by the MDA
method that is demonstrated in Figure 9.

Figure 1. Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (4).

Figure 2. Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (7).
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Figure 3. Two-dimensional plots for analytical and semi-analytical solutions (a) and calculated absolute error between both
solutions (b) that were constructed by the MDA and AD methods.

Figure 4. Two-dimensional plot for analytical and semi-analytical solutions (a) and two-dimensional distribution plot of the
calculated absolute error between both solutions (b) that were constructed by the MDA and VI methods.

Figure 5. Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (25).
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Figure 6. Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (26).

Figure 7. Two-dimensional plots for analytical and semi-analytical solutions (a) and calculated absolute error between both
solutions (b) that were constructed by the MK and AD methods.

Figure 8. Two-dimensional plot for analytical and semi-analytical solutions (a) and two-dimensional distribution plot of the
calculated absolute error between both solutions (b) that were constructed by the MK and VI methods.
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Figure 9. Two-dimensional plots for the calculated absolute error through the MK & AD methods and MDA & AD
methods (a), and the MK & VI methods and MDA & VI methods (b) based on the shown values in Tables 1–4.

Table 1. Computational, semi-analytical, and absolute error of the (2 + 1)-D KP-BBM equation along
the MDA method.

Value of ℘ Computational Semi-Analytical Absolute Error
0 0.666666667 0.666666667 0

0.001 0.666221778 0.666222666 8.87902× 10−7

0.002 0.665776004 0.665779552 3.54766× 10−6

0.003 0.665329347 0.66533732 7.97339× 10−6

0.004 0.664881809 0.664895969 1.41592× 10−5

0.005 0.664433395 0.664455494 2.20992× 10−5

0.006 0.663984107 0.664015894 3.17875× 10−5

0.007 0.663533947 0.663577166 4.32184× 10−5

0.008 0.66308292 0.663139306 5.63859× 10−5

0.009 0.662631027 0.662702312 7.12843× 10−5

0.01 0.662178273 0.662266181 8.79078× 10−5
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Table 2. Absolute error between computational and the obtained semi-analytical through the VIM of the (2 + 1)-D KP-BBM equation with different values of t and x when y = 5.

Value of x t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
0 9.435× 10−5 0.0001206 0.0001469 0.0001731 0.0001994 0.0002257 0.000252 0.0002783 0.00030459 0.0003309
1 9.697× 10−6 1.018× 10−5 1.066× 10−5 1.114× 10−5 1.162× 10−5 1.21× 10−5 1.258× 10−5 1.307× 10−5 1.3546× 10−5 1.4028× 10−5

2 1.256× 10−6 1.265× 10−6 1.274× 10−6 1.283× 10−6 1.291× 10−6 1.3× 10−6 1.309× 10−6 1.318× 10−6 1.3266× 10−6 1.3354× 10−6

3 1.69× 10−7 1.691× 10−7 1.693× 10−7 1.694× 10−7 1.696× 10−7 1.698× 10−7 1.699× 10−7 1.701× 10−7 1.7026× 10−7 1.7042× 10−7

4 2.285× 10−8 2.285× 10−8 2.285× 10−8 2.286× 10−8 2.286× 10−8 2.286× 10−8 2.287× 10−8 2.287× 10−8 2.2872× 10−8 2.2875× 10−8

5 3.092× 10−9 3.092× 10−9 3.092× 10−9 3.092× 10−9 3.092× 10−9 3.092× 10−9 3.092× 10−9 3.092× 10−9 3.0922× 10−9 3.0923× 10−9

6 4.184× 10−10 4.184× 10−10 4.184× 10−10 4.184× 10−10 4.184× 10−10 4.184× 10−10 4.184× 10−10 4.184× 10−10 4.1843× 10−10 4.1843× 10−10

7 5.663× 10−11 5.663× 10−11 5.663× 10−11 5.663× 10−11 5.663× 10−11 5.663× 10−11 5.663× 10−11 5.663× 10−11 5.6627× 10−11 5.6627× 10−11

8 7.664× 10−12 7.664× 10−12 7.664× 10−12 7.664× 10−12 7.664× 10−12 7.664× 10−12 7.664× 10−12 7.664× 10−12 7.6636× 10−12 7.6636× 10−12

9 1.037× 10−12 1.037× 10−12 1.037× 10−12 1.037× 10−12 1.037× 10−12 1.037× 10−12 1.037× 10−12 1.037× 10−12 1.0372× 10−12 1.0372× 10−12

10 1.404× 10−13 1.404× 10−13 1.404× 10−13 1.404× 10−13 1.404× 10−13 1.404× 10−13 1.404× 10−13 1.404× 10−13 1.4036× 10−13 1.4036× 10−13

11 1.9× 10−14 1.9× 10−14 1.9× 10−14 1.9× 10−14 1.9× 10−14 1.9× 10−14 1.9× 10−14 1.9× 10−14 1.8996× 10−14 1.8996× 10−14

12 2.571× 10−15 2.571× 10−15 2.571× 10−15 2.571× 10−15 2.571× 10−15 2.571× 10−15 2.571× 10−15 2.571× 10−15 2.5709× 10−15 2.5709× 10−15

13 3.479× 10−16 3.479× 10−16 3.479× 10−16 3.479× 10−16 3.479× 10−16 3.479× 10−16 3.479× 10−16 3.479× 10−16 3.4793× 10−16 3.4793× 10−16

14 4.709× 10−17 4.709× 10−17 4.709× 10−17 4.709× 10−17 4.709× 10−17 4.709× 10−17 4.709× 10−17 4.709× 10−17 4.7087× 10−17 4.7087× 10−17

15 6.373× 10−18 6.373× 10−18 6.373× 10−18 6.373× 10−18 6.373× 10−18 6.373× 10−18 6.373× 10−18 6.373× 10−18 6.3725× 10−18 6.3725× 10−18

16 8.624× 10−19 8.624× 10−19 8.624× 10−19 8.624× 10−19 8.624× 10−19 8.624× 10−19 8.624× 10−19 8.624× 10−19 8.6243× 10−19 8.6243× 10−19

17 1.167× 10−19 1.167× 10−19 1.167× 10−19 1.167× 10−19 1.167× 10−19 1.167× 10−19 1.167× 10−19 1.167× 10−19 1.1672× 10−19 1.1672× 10−19

18 1.58× 10−20 1.58× 10−20 1.58× 10−20 1.58× 10−20 1.58× 10−20 1.58× 10−20 1.58× 10−20 1.58× 10−20 1.5796× 10−20 1.5796× 10−20

19 2.138× 10−21 2.138× 10−21 2.138× 10−21 2.138× 10−21 2.138× 10−21 2.138× 10−21 2.138× 10−21 2.138× 10−21 2.1377× 10−21 2.1377× 10−21

20 2.893× 10−22 2.893× 10−22 2.893× 10−22 2.893× 10−22 2.893× 10−22 2.893× 10−22 2.893× 10−22 2.893× 10−22 2.8931× 10−22 2.8931× 10−22

21 3.915× 10−23 3.915× 10−23 3.915× 10−23 3.915× 10−23 3.915× 10−23 3.915× 10−23 3.915× 10−23 3.915× 10−23 3.9154× 10−23 3.9154× 10−23

22 5.299× 10−24 5.299× 10−24 5.299× 10−24 5.299× 10−24 5.299× 10−24 5.299× 10−24 5.299× 10−24 5.299× 10−24 5.2989× 10−24 5.2989× 10−24

23 7.171× 10−25 7.171× 10−25 7.171× 10−25 7.171× 10−25 7.171× 10−25 7.171× 10−25 7.171× 10−25 7.171× 10−25 7.1713× 10−25 7.1713× 10−25

24 9.705× 10−26 9.705× 10−26 9.705× 10−26 9.705× 10−26 9.705× 10−26 9.705× 10−26 9.705× 10−26 9.705× 10−26 9.7054× 10−26 9.7054× 10−26

25 1.313× 10−26 1.313× 10−26 1.313× 10−26 1.313× 10−26 1.313× 10−26 1.313× 10−26 1.313× 10−26 1.313× 10−26 1.3135× 10−26 1.3135× 10−26

26 1.778× 10−27 1.778× 10−27 1.778× 10−27 1.778× 10−27 1.778× 10−27 1.778× 10−27 1.778× 10−27 1.778× 10−27 1.7776× 10−27 1.7776× 10−27

27 2.406× 10−28 2.406× 10−28 2.406× 10−28 2.406× 10−28 2.406× 10−28 2.406× 10−28 2.406× 10−28 2.406× 10−28 2.4057× 10−28 2.4057× 10−28

28 3.256× 10−29 3.256× 10−29 3.256× 10−29 3.256× 10−29 3.256× 10−29 3.256× 10−29 3.256× 10−29 3.256× 10−29 3.2558× 10−29 3.2558× 10−29

29 4.406× 10−30 4.406× 10−30 4.406× 10−30 4.406× 10−30 4.406× 10−30 4.406× 10−30 4.406× 10−30 4.406× 10−30 4.4062× 10−30 4.4062× 10−30

30 5.963× 10−31 5.963× 10−31 5.963× 10−31 5.963× 10−31 5.963× 10−31 5.963× 10−31 5.963× 10−31 5.963× 10−31 5.9632× 10−31 5.9632× 10−31
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Table 3. Computational, semi-analytical, and absolute error of the (2 + 1)-D KP-BBM equation along
the MK method.

Value of ℘ Computational Semi-Analytical Absolute Error
0 2 2 0

0.001 1.9999995 1.9999995 1.25011× 10−13

0.002 1.999998 1.999998 2.0004× 10−12

0.003 1.9999955 1.9999955 1.01248× 10−11

0.004 1.999992 1.999992 3.20004× 10−11

0.005 1.9999875 1.9999875 7.81248× 10−11

0.006 1.999982 1.999982 1.62× 10−10

0.007 1.9999755 1.999975501 3.00126× 10−10

0.008 1.999968 1.999968001 5.12002× 10−10

0.009 1.999959501 1.999959501 8.20129× 10−10

0.01 1.999950001 1.999950002 1.25001× 10−9
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Table 4. Absolute error between computational and the obtained semi-analytical through the VIM of the (2 + 1)-D KP-BBM equation with different values of t and x when y = 5.

Value of x t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
0 0.1248386 0.242138 0.2554887 0.0684811 0.4152942 1.2922469 2.6587865 4.6113225 7.24626454 10.6600221
1 0.0186997 0.0402194 0.0625657 0.0837456 0.1017657 0.1146328 0.1203537 0.1169351 0.10238377 0.07470652
2 0.0025576 0.0053241 0.0082615 0.0113314 0.0144959 0.0177167 0.0209557 0.0241746 0.02733544 0.03039995
3 0.0003461 0.0007039 0.0010728 0.0014519 0.0018407 0.0022383 0.0026442 0.0030575 0.00347755 0.00390366
4 4.681× 10−5 9.423× 10−5 0.0001422 0.0001908 0.00024 0.0002897 0.00034 0.0003908 0.00044211 0.00049393
5 6.333× 10−6 1.27× 10−5 1.909× 10−5 2.552× 10−5 3.197× 10−5 3.846× 10−5 4.497× 10−5 5.151× 10−5 5.8086× 10−5 6.4687× 10−5

6 8.57× 10−7 1.716× 10−6 2.576× 10−6 3.437× 10−6 4.3× 10−6 5.165× 10−6 6.031× 10−6 6.899× 10−6 7.768× 10−6 8.6387× 10−6

7 1.16× 10−7 2.32× 10−7 3.482× 10−7 4.644× 10−7 5.806× 10−7 6.97× 10−7 8.134× 10−7 9.3× 10−7 1.0465× 10−6 1.1632× 10−6

8 1.57× 10−8 3.139× 10−8 4.71× 10−8 6.28× 10−8 7.851× 10−8 9.423× 10−8 1.099× 10−7 1.257× 10−7 1.414× 10−7 1.5712× 10−7

9 2.124× 10−9 4.248× 10−9 6.373× 10−9 8.498× 10−9 1.062× 10−8 1.275× 10−8 1.487× 10−8 1.7× 10−8 1.9124× 10−8 2.125× 10−8

10 2.875× 10−10 5.749× 10−10 8.624× 10−10 1.15× 10−9 1.437× 10−9 1.725× 10−9 2.012× 10−9 2.3× 10−9 2.5875× 10−9 2.8751× 10−9

11 3.89× 10−11 7.781× 10−11 1.167× 10−10 1.556× 10−10 1.945× 10−10 2.334× 10−10 2.723× 10−10 3.112× 10−10 3.5016× 10−10 3.8906× 10−10

12 5.265× 10−12 1.053× 10−11 1.58× 10−11 2.106× 10−11 2.633× 10−11 3.159× 10−11 3.686× 10−11 4.212× 10−11 4.7387× 10−11 5.2652× 10−11

13 7.126× 10−13 1.425× 10−12 2.138× 10−12 2.85× 10−12 3.563× 10−12 4.275× 10−12 4.988× 10−12 5.7× 10−12 6.4131× 10−12 7.1256× 10−12

14 9.643× 10−14 1.929× 10−13 2.893× 10−13 3.857× 10−13 4.822× 10−13 5.786× 10−13 6.75× 10−13 7.715× 10−13 8.6791× 10−13 9.6434× 10−13

15 1.305× 10−14 2.61× 10−14 3.915× 10−14 5.22× 10−14 6.525× 10−14 7.831× 10−14 9.136× 10−14 1.044× 10−13 1.1746× 10−13 1.3051× 10−13

16 1.766× 10−15 3.533× 10−15 5.299× 10−15 7.065× 10−15 8.831× 10−15 1.06× 10−14 1.236× 10−14 1.413× 10−14 1.5896× 10−14 1.7663× 10−14

17 2.39× 10−16 4.781× 10−16 7.171× 10−16 9.561× 10−16 1.195× 10−15 1.434× 10−15 1.673× 10−15 1.912× 10−15 2.1513× 10−15 2.3904× 10−15

18 3.235× 10−17 6.47× 10−17 9.705× 10−17 1.294× 10−16 1.618× 10−16 1.941× 10−16 2.265× 10−16 2.588× 10−16 2.9115× 10−16 3.235× 10−16

19 4.378× 10−18 8.756× 10−18 1.313× 10−17 1.751× 10−17 2.189× 10−17 2.627× 10−17 3.065× 10−17 3.502× 10−17 3.9403× 10−17 4.3781× 10−17

20 5.925× 10−19 1.185× 10−18 1.778× 10−18 2.37× 10−18 2.963× 10−18 3.555× 10−18 4.148× 10−18 4.74× 10−18 5.3326× 10−18 5.9251× 10−18

21 8.019× 10−20 1.604× 10−19 2.406× 10−19 3.208× 10−19 4.009× 10−19 4.811× 10−19 5.613× 10−19 6.415× 10−19 7.2169× 10−19 8.0188× 10−19

22 1.085× 10−20 2.17× 10−20 3.256× 10−20 4.341× 10−20 5.426× 10−20 6.511× 10−20 7.597× 10−20 8.682× 10−20 9.767× 10−20 1.0852× 10−19

23 1.469× 10−21 2.937× 10−21 4.406× 10−21 5.875× 10−21 7.343× 10−21 8.812× 10−21 1.028× 10−20 1.175× 10−20 1.3218× 10−20 1.4687× 10−20

24 1.988× 10−22 3.975× 10−22 5.963× 10−22 7.951× 10−22 9.938× 10−22 1.193× 10−21 1.391× 10−21 1.59× 10−21 1.7889× 10−21 1.9877× 10−21

25 2.69× 10−23 5.38× 10−23 8.07× 10−23 1.076× 10−22 1.345× 10−22 1.614× 10−22 1.883× 10−22 2.152× 10−22 2.421× 10−22 2.69× 10−22

26 3.64× 10−24 7.281× 10−24 1.092× 10−23 1.456× 10−23 1.82× 10−23 2.184× 10−23 2.548× 10−23 2.912× 10−23 3.2765× 10−23 3.6405× 10−23

27 4.928× 10−25 9.855× 10−25 1.478× 10−24 1.971× 10−24 2.464× 10−24 2.956× 10−24 3.449× 10−24 3.942× 10−24 4.4343× 10−24 4.927× 10−24

28 6.667× 10−26 1.333× 10−25 2× 10−25 2.667× 10−25 3.334× 10−25 4.001× 10−25 4.667× 10−25 5.334× 10−25 6.001× 10−25 6.6678× 10−25

29 9.024× 10−27 1.805× 10−26 2.707× 10−26 3.61× 10−26 4.512× 10−26 5.414× 10−26 6.317× 10−26 7.219× 10−26 8.1216× 10−26 9.0238× 10−26

30 1.221× 10−27 2.443× 10−27 3.664× 10−27 4.886× 10−27 6.106× 10−27 7.328× 10−27 8.549× 10−27 9.769× 10−27 1.0992× 10−26 1.2213× 10−26
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4. Conclusions

This manuscript successfully applied four analytical and numerical techniques
to the (2 + 1)-D KP-BBM equation used as a shallow water wave model. Many accurate
novel traveling wave solutions were obtained. The accuracy and novelty of the obtained
solutions were investigated. The traveling obtained solutions were demonstrated by 2D,
3D, and contour 3D plots. The symmetry between analytical and numerical solutions is
explained through the given tables and figures.
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