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Abstract: In this article, plenty of wave solutions of the (2 + 1)-dimensional Kadomtsev—Petviashvili—
Benjamin-Bona-Mahony ((2 + 1)-D KP-BBM) model are constructed by employing two recent
analytical schemes (a modified direct algebraic (MDA) method and modified Kudryashov (MK)
method). From the point of view of group theory, the proposed analytical methods in our article are
based on symmetry, and effectively solve those problems which actually possess explicit or implicit
symmetry. This model is a vital model in shallow water phenomena where it demonstrates the wave
surface propagating in both directions. The obtained analytical solutions are explained by plotting
them through 3D, 2D, and contour sketches. These solutions” accuracy is also tested by calculating the
absolute error between them and evaluated numerical results by the Adomian decomposition (AD)
method and variational iteration (VI) method. The considered numerical schemes were applied based
on constructed initial and boundary conditions through the obtained analytical solutions via the MDA,
and MK methods which show the synchronization between computational and numerical obtained
solutions. This coincidence between the obtained solutions is explained through two-dimensional
and distribution plots. The applied methods’ symmetry is shown through comparing their obtained
results and showing the matching between both obtained solutions (analytical and numerical).

Keywords: (2 + 1)-D KP-BBM equation; computational and numerical simulations

1. Introduction

Recently, the phenomenon of shallow water waves has attracted the attention of
many researchers in different fields. The flow below the medium pressure surface of the
fluid is one of their primary major interests [1,2]. A set of hyperbolic nonlinear evolution
equations are the keyword driving this phenomenon [3]. Following Saint-Venard Adéma
Jean-Claude Bar de Venat, the shallow water wave equation is named the Saint-Venat
equation in bidirectional form [4]. Additionally, the well-known Navier-Stokes equation
explains that the conservation of mass means that the vertical velocity scale of the fluid
is smaller than the horizontal velocity scale when the horizontal length scale is much
larger than the vertical length scale [5-7]. Many nonlinear evolution equations have been
formulated to demonstrate the waves” dynamic behavior through shallow water waves.
This phenomenon has many applications in engineering and science, such as plasma
physics, cosmology, fluid dynamics, electromagnetic theory, acoustics, electrochemistry
astrophysics, and so on [8-13]. These models have forced many mathematicians and
physicists to find suitable tools for finding computational, semi-analytical, and numerical
11;/

¥
methods, the auxiliary equation method, exponential expansion method, Kudryashov

solutions. Distinct schemes have been derived such as the well-known ( )-expansion
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method, sech-tanh expansion method, direct algebraic equation method, Adomian decom-
position method, iteration method, Khater methods, B-spline schemes and so on [14-20].
These techniques have been applied to several nonlinear evolution equations to construct
the solutions. Still, there is no unified method that can be used for all models until now. In
this scientific race to derive the most general computational technique that can apply to all
nonlinear evolution equations, no one has stopped for a single second and asked about the
accuracy of all models of the already derived computational schemes.

Sophus Lie has put forth several essential concepts and developed basic tools to study
DEs’ group properties. In applied mathematics, he achieved several tangible findings
of enormous value. In particular, he established the maximum group of point (local)
transformations accepted by the one-dimensional heat equation, discovering the Galilei
group’s projective representation. Only lately have these findings been uncovered. Lie’s
Theory of continuous groups is based on the well-known Noether theorem on conserved
law. Nowadays, several discoveries from Lie are recognized and rediscovered in connection
with the present evolution of mathematical and theoretical physics, and we can see the
victory of the Lie Theory in all mathematical disciplines.

The fact that Poincare originally founded the Lorentz transformations in 1905, which
always leaves Maxwell’s equations, is a key point for identifying Lie Theory because they
form a Lie group. In 1909, Bateman and Cunningham found that Maxwell’s equations
had been invariant concerning the conformal group, including Lorentz’s subgroup. To
build its answers, Bateman used the symmetry of the linear wave equation. These answers
were then considered functionally invariant (V.1. Smirnov and S.L. Sobolev, 1932). H.
Birkhoff presented several essential concepts for finding accurate PDE solutions. In works
by Forsyth and Ames, there are several precise alternatives of two-dimensional nonlinear
PDEs. V.P. Ermakov (1890-1900), G.V. Pfeifer (1920-1935), and M.K. Kurensky created the
techniques of Lie in Kiev (1930).

In this context, this paper studies the analytical and numerical solutions of the (2 + 1)-
D KP-BBM equation. This model is given by [21-23]

Byt + Byx +11 (Bz)xx+7’28xxxt+7’36yyzoz 1)

where r;, (i = 0, 1, 2, 3) are undetermined positive constants while B = B({, t) is a space—
time function. This function explains the bidirectional propagating water wave surface.
Handling Equation (1) through the next transformation B({,t) = Y(p), p = {1 +ct,
where c is the wave velocity which converts the PDE into ODE. Integrating the result ODE
twice with respect to g, and with zero constants of the integration, obtains the next ODE

(c+rm+D)Y+rdY?*+rnc)y'=0. )

Using the homogeneous balance principles and the following auxiliary equations for
MDA and MK methods [24-27] for Equation (2), respectively, §'(p) = J1 + D2 F(p) +
T35 (p)* & Q' (p) = In(a) (Q(p)? — Q(p)) where J1, Jo, T3, a are arbitrary constants to
be constructed later; give n = 2. Thus, the general solutions of Equation (2) are formulated
in the following forms

"ag(p) = aF(p)? +aF(p) + ;Tf)z + % =+ ag,
Y= . 3)
Yioai Q) = a2 Q(p)? 4 a1 Q(p) + a,

where a_y, ..., ap are positive constants.

The paper’s remaining sections are given in the following order; Section 2
constructs novel and accurate solutions of the considered model through the suggested
above-mentioned schemes. Section 3 explains the paper’s novelty and contributions.
Finally, Section 4 gives the conclusion of the whole paper.



Symmetry 2021, 13, 1085 3o0f 15

apg =

ap =

a1 (20 T3 + J7) _ads

2. Accuracy of Computational Solutions

Applying the MDA and MK methods to Equation (2) to construct traveling wave
solutions of the (2 + 1)-D KP-BBM equation is conducted. Additionally, estimate the
requested conditions for investigating the numerical solutions of considered model by
applying the AD and VI methods as follows:

2.1. MDA Method’s Solutions

Handling Equation (3), through the suggested analytical scheme” framework,
calculates the parameters shown above in the following forms:

Family I
ag = jlal,az = alj?’,aq =0,a =01 = —Mﬂs = 4T1cTary — I3y —c— 1.
T2 T a
Family II
_ _ 6
ag = 2 1j3,a1 =0,a0=0,a2= Jia Ly = —Mf’? = 4J1c T3 — g —c— 1.
I T2 a-1
Family IIT

_6ch T3 X

,a ,a_1=0,a_,=0,r = r3 = —4J1cTarn + cT2ry — ¢ — 1.
677 2 7 1 2 1 a4 1€J312 272
Family IV
a_1 (20T + JF) Jia_q 6J1cJa12 2
,a1 =0,a0 =0,a_» = 1= ———7"2 13 = —4J1c T3 +cT5ry —c — 1.
677 1 2 2 7 1 i 3 1€J312 212

Consequently, the considered model’s traveling solutions are evaluated in the follow-
ing forms:
For 74 =0, J> > 0, we obtain

Bu(ot) - ay Jpe 2 (ctHEi+8) @
LS (Frealet+i+e) —1)%
a_ gj2(7(CH'él+l9))
Bua (g ) = ——— , ()
p)
201 Jred2(ct+G1+0) 11T Jre2J2(ct+51+9) a1 J-
B (g, t) = 12 3 e 7 T 2 2 (6)
3(Frelalctintt) — 1) 6(Tyedalcttin0) — 1) 675 (Frelaleti+e) — 1)
For 71 =0, J» < 0, we obtain
A (é’ t) _ a1j336232(ct+51+'9) B a1j326272(6t+§1+19) B a1j3ejz(Ct+Cl+l9) -
L2 (01 40) 4 1)2 oot T119) 4 1) ot 0140) 4 1)2
T2 (T3 (T3 ) V!
To(—(ct+1+0))
a_ie a_1J3
B ) = — —a_q, 8
m2(3,t) 7 + A a_q 8)
a j3ezjz(ct+€1+l9) a a j
Bma(g,t) = 175 : 2 0. )

_|_
To(Faeloct+5148) 1 1)?  Jpe o0t +1 673
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For 4175 > j22, we obtain

Trarsec (§\ANTs — et + 0 +0))  mTpse(§1/45175 — (et + L +9))

Bis(gt) = 7 17 , (10)
Jhay csc (%\/m(ct—i—gljtﬁ)) ﬂljZCSCZ(%\/m(Ct+§1+l9))
Bra(C,t) = A - 473 ’ (
Bus(¢,t) = Witordy
, s - 2
Fo(Tacos(3\ /a5 — T3 (et + 01 +9)) — A T — Fpsin(3\ /40 Ts — T (et + 51+ 9)) ) 12
a_10J3
_ 5/
(Facos(3/015 — (et +-01 +0)) — 45175 — Fsin(3\ /40 T5 — TR(et + 01+ 0))
Bua(g,t) = Wrardy
’ i — 2
(/4013 — Frcos (31T~ TRt +2a-+9)) - Tasin (34T — (et +21+ 9)) )
B a_15Js
(V3155 — T2 cos (14 Ts — T (et + 01+ 9)) — Tasin (1 [4h o — T(ct + 81 +9)) )
27101 J1a1 sec ( \/mmf+gl+l9)>
Bu3(g,t) = — 375, 7
2 2 (14)
aljzsecz(%\/m(ct+51+l9)) a T
_ + ’
4,_73 6j3
2714 J1a1 csc ( W(CH‘Q +19)>
Bua(g,t) = — 37 + 7
> 2 (15)
117> csc? (%m(d +01+ 19)) a1 7>
_ + ,
4j3 6j3
Bra(@, 1) :a6i7jz N Ja1J3 ;
U (% 4155 - Frtan (3 [A0Ts - TRt + 4+ 9))) 6
. Za 1\-73 + a_lj?’
P~ \Jands - Trtan (L an g - Bt +a+ o)) 5
Bry2(g,t) =a637jz + N1 )
VA mcot(%m“”gﬁﬁ))) (17)
2a_173 a_1J3

+

- jz_\/mCOt(%\/m(Cf+Cl+l9)> 37

where { = x,y, {1 =x+y.
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Semi-Analytical Solutions

1. Applying AD method [28,29] for Equation (2) with the following initial and boundary

conditions Y (0) = = 2655( o V'(0) = %4 gives the following solutions
2 4
o = 3 jp/ (18)

32p* 40p°  4p°
243 81 9 ’

M = (19)

1024 7 | 32090° 392¢p° 20"
45927 2187 1215 81 '

W =- (20)

v, — 4096 p'° 16384 o’ N 1888 0° 17264 ¢’ N 2008 p°  512p° N 32 p* @1
37 2657205 1240029 ' 45927 229635 10935 1215 81

Thus, the semi-analytical solutions of the (2 + 1)-D KP-BBM equation is given by

4096 "0 16384 p°  1888¢p° 223847  3608p° 904>  188p* 40

Vapprox. = 2657205 1240029 ' 45927 229635 10935 1215 243 81 22)
LA dp 2
9 9 3
2. Applying the variational iteration method [30] for Equation (1) with the following
initial condition B({,0) = ﬂ)z gives the following solutions:
(—2e2) 1)
Bi(Ct) = 6((sinh(g1) + 3cosh(gy))* — 288t(3sinh(2(1)) + 5cosh(2(Z1)) — 6)) 23)
e (sinh(Z1) +3cosh(Z1))® ’
1
By(Ct) = 3456t | — 215654400 > — (sinh 3
2(6.4) (sinh(Zy) + 3 cosh({7))H ( < (sinh(1) +

x cosh(Z1))2 (3 (4608 t (7 — 2904 t) + 88552 sinh(2 (Z1)) + 32680

« sinh(4({1)) — 50826 sinh(6(Z;)) -+ 5055 sinh(8 (1)) + 160)

+ 40 (36£(12384¢ + 7) + 3997) cosh(2(Z1)) — 8(1224¢(192¢ + 17) — 10817) (24)
x cosh(4(g1)) + 6(36t(4(12384t + 7) sinh(2(gy)) — 40(192t +17)

sinh(4({1)) + 189sinh(6(Z1))) + 65(108t — 379) cosh(6(Z1)))

+ 15043 cosh(8(§1)))> > .

2.2. MK Method'’s Solutions

Handling Equation (3) through the suggested analytical scheme’s framework allows
calculation of the parameters shown above in the following forms:
Family I

1 1 —c—r3—1
ao:O,a1=—6(c+r3+ ),a2:6(c+r3+ ),rzz c—r3 =
41 | c(In(a))
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Family II
—c—1 - ~1 - —1 —r3+1
to = c ,u1:—6( c+r3 ),a2:6( c+r13 ),szc r3+2'
a1 4l r c(In(a))

Consequently, the considered model’s traveling solutions are evaluated by the follow-

ing forms:
6(c+rs+1)((1+a""¢) —1)
Bi(gt) = — , 25
1(G,1) (1 £ a2 (25)
Bazp) = - AEC) (A )((A£a"0) ~6) +6r3) +6(c—r3+1) 0

r(1+ a“+§1)2

2.2.1. Semi-Analytical Solutions
1.  Applying the AD method for Equation (2) with the following initial and boundary
conditions Y(0) = —&~_ 1/(0) = 0 gives the following solutions

(e¥+1)*
Yo =2, (27)
Y = —%2, (28)
Vo= %1, (29)
V3 = %4 - %~ (30)

Thus, the semi-analytical solutions of the (2 + 1)-D KP-BBM equation are given by

6 4 2
X 5x X
Yapprov. = “ogg o T 2T G

2. Applying the variational iteration method for Equation (1) with the following initial

condition B({ 0) = el gives the following solutions:

(1 +1)°

4cosh?( 4 ) ((4 — 96t) cosh(Zy) + 144t + cosh(2(Z1)) + 3
B - (%)« zh (G IR 1Y)
cosh(¢1) +1)
4 cosh? (%) ((4 —96t) cosh({q) + 144t +cosh(2(f1)) +3) 3
Balet) = (cosh(Z1) +1)* 3!
x sech!4 (gzl) ((48t(15232t — 57) — 70) cosh({7) — 4(48t(904t — 15) + 5) 33)

x cosh(2(g1)) + (48t(256t +25) 4+ 5) cosh(3(g1)) — 216t cosh(4(Z1))
— 7(244(3456¢ + 25) + 7) — 1932sinh(Z;) — 1128sinh(2({1)) + 78sinh(3(Z1))
+132sinh(4({1)) — 6sinh(5({1)) + 5cosh(4(Z1)) + cosh(5(C1)))-
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3. Interpretation of Results

In this section the interpretation of the results and the paper’s contribution
are shown through comparing the obtained results with those that have been recently
published for the considered model. Comparing our analytical solutions with those that
have been obtained by [21-23] shows the novelty of our result, where all our solutions are
completely different from those that have been obtained in those papers. Additionally,
we explain the shown figures for more physical explanation of each of them and for
demonstration of the flow’s dynamical behavior. Figures 1, 2, 3, 4, 5, 6, 7, 8 show breather
and kink wave in two and three-dimensions and the contour plot of Equations (4), (7), (25)

and(26)when a1:4,c:3,j2:2,j3:7,0:10&a1:7,c:5,J2:—4,j3:

20,9 = 0&a =e¢,¢c =51 =3,13 = —1&a =e¢,c =5,r1 = 3,73 = —1| and the

matching between the computational and semi-analytical solutions is illustrated. The
paper’s main target is obtaining novel traveling wave solutions of the (2 + 1)-D KP-BBM
equation then investigating their accuracy by applying two numerical schemes of the same
model that show the range of matching between analytical and numerical solutions. The
accuracy of each of the MDA and MK methods is explained through Tables 1-4. Based
on the shown values of computational, semi-analytical and absolute error in Tables 14
the obtained solution via the MK method is more accurate than that obtained by the MDA
method that is demonstrated in Figure 9.

(b)
Bia(x.t)

~

50

Figure 1. Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (4).

(c)

(b) \

Bi2(x.t)
S

\ T +—
| /
\\
[ 5 10 x ’405\ //
[ \ / T~
\ / '
\ /
\ !
400\//
\
-2
[ \a\\
[ CoT

Figure 2. Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (7).
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R Computational
----- Semi-analytical

Computational

Value of {

T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010

0.00010

Absolute error

0.00005

0.00000 @----0"""

---0--- Absolute error

Value of {

T T T T
0.000 0.002 0.004 0.006

T T
0.008 0.010

Figure 3. Two-dimensional plots for analytical and semi-analytical solutions (a) and calculated absolute error between both
solutions (b) that were constructed by the MDA and AD methods.

—u— t=1
n o t=2
3510 4 & A {=
. t=3
. 4 v t=
ERT 1 o t=5
i r < t=6
25:10° “ »ot=7
2:10" ﬂ o t=8
*— t=9
15 10° * t=10
10¢ 4
05:10*
0 q FESESSES08 08080080080 080088
Value of x
0.5x10" T T T T T T T
0 5 10 15 20 25 30

30+

25

g gy
LT T | | 1

2 OO NOOAWN =

BCLRCINLREC

11

I

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030

t=1

Figure 4. Two-dimensional plot for analytical and semi-analytical solutions (a) and two-dimensional distribution plot of the

calculated absolute error between both solutions (b) that were constructed by the MDA and VI methods.

Figure 5.

Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (25).
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(b)
B(x.t)

-10

Figure 6. Three-dimensional (a), two-dimensional (b) and contour 3D (c) representation of Equation (26).

--%-- Computational
---+--- Semi-analytical --#--- Absolute error
1.4.10° 4 5
200000 K- £
Hoeoge s N
N 12.10°4 @ ;
N S ;
* 2 :
1.99999 - ol 2 /
. ;
10" *
1.99998 | * 8:10
* 10 l,‘l
_ '-\ 6:10 /.
1999979 & >
i< X, 4,10 7
5 : >
1.99996 - : .10% ]
g- X_- 2.10 ¥
<} %
© A o 4 Femdm ook KT
1.99995 %
Value of { ) Value of
T T T T T T 2:10 T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010

Figure 7. Two-dimensional plots for analytical and semi-analytical solutions (a) and calculated absolute error between both
solutions (b) that were constructed by the MK and AD methods.

- =1 % [ ]t=1

124 ---0---t=2 — t=2

—pe- =3 304 =3

10  Jt=4

251 [ t=5

8 t=6

+ 204 e t=7

6 5 [ |t=8

S t=9

© 151 —

t=10
4 [
i
i ]
24 i
*i
.\! 5,
« 04 ‘mﬂﬂm \u
- — T T T T T 0- - — . ~ —
0 5 10 15 20 25 30 0 2 4 6 8 10
Value of x =1

Figure 8. Two-dimensional plot for analytical and semi-analytical solutions (a) and two-dimensional distribution plot of the
calculated absolute error between both solutions (b) that were constructed by the MK and VI methods.
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J— ESE method - Absloute error --—-- ESE Method - absolute error (t=1)

-~ MK method - Absolute error 124 ---+--- ESE Method - absolute error (t=10)

--»-- MK Method - absolute error (t=1)
MK Method - absolute error (t=10)

0.00010

1)

0.00005

ESE method - Absloute error

0.00000 - )é..-n;g::_'.'.;(‘.._..x ..... Komee HKemee Ko m e Hem e Hemee K =-- =X

ESE Method - absolute error (t:

O HHERNN NI K HHHHHHH HHHHHKHH K HHHKHK NN
Value of {
T T T T T T T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0 5 10 15 20 25 30
Value of x

Figure 9. Two-dimensional plots for the calculated absolute error through the MK & AD methods and MDA & AD
methods (a), and the MK & VI methods and MDA & VI methods (b) based on the shown values in Tables 1-4.

Table 1. Computational, semi-analytical, and absolute error of the (2 + 1)-D KP-BBM equation along

the MDA method.
Value of o Computational Semi-Analytical Absolute Error
0 0.666666667 0.666666667 0
0.001 0.666221778 0.666222666 8.87902x 10~
0.002 0.665776004 0.665779552 3.54766x 10~°
0.003 0.665329347 0.66533732 7.97339x 107°
0.004 0.664881809 0.664895969 1.41592x 1075
0.005 0.664433395 0.664455494 2.20992x 10~°
0.006 0.663984107 0.664015894 3.17875x 107>
0.007 0.663533947 0.663577166 4.32184x 107°
0.008 0.66308292 0.663139306 5.63859x 107>
0.009 0.662631027 0.662702312 7.12843x 107>

0.01 0.662178273 0.662266181 8.79078 x 10>
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Table 2. Absolute error between computational and the obtained semi-analytical through the VIM of the (2 + 1)-D KP-BBM equation with different values of t and x when y = 5.

Value of x

0

1

2

3

4

5

6

7

8

9
10
11

WNRNRNRNRNNRNRNRD R /R e e
SO OIRNTHEDNRR,SO®O®AO G @R

9.697x 10~
1.256x 10~°
1.69% 107
2.285% 10~8
3.092x 10~°
4.184x 10710
5.663%x 10711
7.664x 10~12
1.037x 10~12
1.404x 1013
1.9x 10714
2571x 1015
3.479% 10716
4.709% 10~17
6.373x 10718
8.624x 1019
1.167x 10719
1.58% 1020
2.138x 102!
2.893x 1022
3.915x 10~
5.299% 1024
7.171x 10~
9.705% 1026
1.313x 10726
1.778x 10~27
2.406x 1028
3.256x 102
4.406% 1030
5.963x 103!

0.0001206
1.018% 10>
1.265x 10~°
1.691x 10~7
2.285% 10~8
3.092x 10~°
4184x 10710
5.663x 10~ 11
7.664x 10~12
1.037x 10~12
1.404x 1013

1.9%x 10714
2571x 10715
3.479% 1016
4.709% 10-17
6.373x 10718
8.624x 1019
1.167x 10~ 19
1.58% 1020
2.138x 10721
2.893% 1022
3.915x 1023
5.299% 102
7.171x 10~
9.705x 1026
1.313x 10726
1.778x 10~%7
2.406x 1028
3.256x 102
4.406x 10730
5.963x 103!

0.0001469
1.066x 107>
1.274x 10~
1.693x 10~7
2.285% 10~8
3.092x 1077
4184x 10710
5.663x 10711
7.664x 10~ 12
1.037x 10~12
1.404x 1013

1.9%x 1014
2571x 10715
3.479% 10716
4.709% 10-17
6.373x 10718
8.624x 1019
1.167x 1019
1.58% 1020
2.138x 102!
2.893x 1022
3.915x 10~
5.299% 102
7.171x 102
9.705% 1026
1.313x 10726
1.778x 10~%7
2.406x 10~28
3.256x 10~22
4.406x 1030
5.963x 103!

0.0001731
1.114%x 10>
1.283x 10~
1.694x 10~
2.286% 10~ 8
3.092x 10~°
4.184% 10710
5.663x 10711
7.664x 10~12
1.037x 1012
1.404x 10~ 13

1.9x 10714
2571x 1012
3.479% 10716
4.709% 10-17
6.373x 10718
8.624x 1019
1.167x 10719
1.58% 1020
2.138x 102!
2.893x 1022
3.915x 10~
5.299% 10~24
7.171x 10~
9.705x 1026
1.313x 10726
1.778x 10~%7
2.406x 1028
3.256x 102
4.406x 10730
5.963x 103!

0.0001994
1.162x 107°
1.291x 10~
1.696x 10~7
2.286% 10~8
3.092x 10~?
4184x 10710
5.663x 10~ 1
7.664x 10~12
1.037x 10~12
1.404x 1018

1.9%x 10~ 14
2.571x 1015
3.479x 1016
4.709% 10-17
6.373x 10718
8.624x 1019
1.167x 10719
1.58% 1020
2.138x 102!
2.893% 1022
3.915x 1023
5.299% 102
7.171x 1072
9.705% 1026
1.313x 10726
1.778x 10~%7
2.406x 1028
3.256x 10~%°
4.406x 10730
5.963x 10731

0.0002257
1.21x 10>
1.3x10~°
1.698x 10~
2.286% 108
3.092x 10~°
4184x 10710
5.663x 10711
7.664x 10712
1.037x 10~12
1.404x 1013
1.9x 10714
2571%x 10~15
3.479% 10716
4.709% 10-17
6.373x 10718
8.624x 1017
1.167x 10719
1.58% 1020
2.138x 102!
2.893x 1022
3.915x 10~
5.299% 102
7.171x 10~
9.705% 1026
1.313x 10726
1.778x 10~%7
2.406x 10~28
3.256x 102
4.406x 10730
5.963x 103!

0.000252
1.258x 107>
1.309x 10~°
1.699x 10~7
2.287%x 1078
3.092x 10~°
4184x 10710
5.663x 10711
7.664x 10~12
1.037x 10~12
1.404x 1013

1.9x 10714
2571x 1012
3.479% 1016
4.709% 10-17
6.373x 10718
8.624x 1019
1.167x 1071
1.58% 1020
2.138x 10721
2.893x 1022
3.915x 10~
5.299% 10~24
7.171x 10~
9.705% 1026
1.313x 10726
1.778x 10~%7
2.406x 10-28
3.256x 102
4.406x 10730
5.963x 103!

0.0002783
1.307x 107>
1.318x 10
1.701x 10~7
2.287%x 108
3.092x 10~?
4184x 10710
5.663x 10711
7.664x 10~ 12
1.037x 10~12
1.404x 1018

1.9%x 1014
2571x 1015
3.479% 1016
4.709% 10-17
6.373x 10718
8.624x 1019
1.167x 10719
1.58% 1020
2.138x 102!
2.893% 1022
3915% 1023
5.299% 102
7.171x 102
9.705% 1026
1.313x 10726
1.778x 10~%7
2.406x 10~28
3.256x 10~22
4.406x 10730
5.963x 103!

0.00030459
1.3546x 10~°
1.3266x 10~°
1.7026x 10~7
2.2872x 108
3.0922x 10~°?
4.1843% 10710
5.6627x 10~ 11
7.6636x 10712
1.0372x 10712
1.4036x 10~13
1.8996x 10~ 14
2.5709x 10~ 15
3.4793x 1016
47087 x 10~
6.3725x 10718
8.6243x 10~ 19
1.1672x 10719
1.5796x 10—20
2.1377x 10~
2.8931x 10~22
3.9154x 10~
5.2989x 10~24
7.1713x 10~25
9.7054x 1026
1.3135x 1026
1.7776x 10~%7
2.4057x 10~28
3.2558x 10~%
4.4062x 1030
5.9632x 1031

0.0003309
1.4028x 10~°
1.3354x 10~
1.7042x 107
2.2875x 108
3.0923x 10~
4.1843x 10710
5.6627x 10~ 11
7.6636x 10~12
1.0372x 10712
1.4036x 1013
1.8996x 1014
2.5709x 10~ 1°
3.4793x 1016
4.7087 x 1017
6.3725x 10718
8.6243x 10~19
1.1672x 1019
1.5796x 10~20
2.1377x 10721
2.8931x 10~22
3.9154x 10~23
5.2989 x 10~24
7.1713x 10~2
9.7054% 1026
1.3135x 1026
1.7776x 10=%7
2.4057 x 10~28
3.2558x 10~%°
4.4062x 10730
5.9632x 1031




Symmetry 2021, 13, 1085 12 of 15

Table 3. Computational, semi-analytical, and absolute error of the (2 + 1)-D KP-BBM equation along

the MK method.
Value of o Computational Semi-Analytical Absolute Error
0 2 2 0

0.001 1.9999995 1.9999995 1.25011x 10~ 13
0.002 1.999998 1.999998 2.0004x 10~12
0.003 1.9999955 1.9999955 1.01248x 10~ 11
0.004 1.999992 1.999992 3.20004x 1011
0.005 1.9999875 1.9999875 7.81248x 1011
0.006 1.999982 1.999982 1.62x 10710
0.007 1.9999755 1.999975501 3.00126x 1010
0.008 1.999968 1.999968001 5.12002x 1010
0.009 1.999959501 1.999959501 8.20129x 1010

0.01 1.999950001 1.999950002 1.25001x 10~
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Table 4. Absolute error between computational and the obtained semi-analytical through the VIM of the (2 + 1)-D KP-BBM equation with different values of t and x when y = 5.

Value of x

0

O 0 NI O\ Ul WIN-

W NN DNDNDNDNNDNNDNRPRRER R 22222
O O XUk WN P O WO U R WNR-RO

0.1248386
0.0186997
0.0025576
0.0003461

4681x 105
6.333x 10~°
8.57x 107
1.16x 1077
1.57x 1078
2.124x 10~°
2.875% 1010
3.89x 1011

5.265x 1012

7.126x 10~ 13

9.643x 1014

1.305x 10~ 14

1.766x 10~15

2.39x 10716
3.235x 10~17

4378% 1018

5.925x 1019

8.019% 1020

1.085% 10~20

1.469x 102!

1.988x 10~22

2.69x 10~2
3.64x 10~

4928% 102

6.667x 1026

9.024x 1027

1.221x 10~%7

0.242138
0.0402194
0.0053241
0.0007039

9.423% 10>
1.27x 1075
1.716x 10~
2.32x 10~7
3.139x 1078
4.248% 10?7
5.749x 1010
7.781x 10~ 11
1.053x 10~ 1
1.425x 10~12
1.929% 10~ 13
2.61x 10714
3.533x 10~ 1°
4781x 10716
6.47x 10717
8.756x 1018
1.185x 10~18
1.604x 10~19
2.17x 10=20
2.937x 102!
3.975x 10~22
5.38x 10~23
7.281x 1024
9.855%x 102
1.333x 10~
1.805x 1026
2.443% 1027

0.2554887
0.0625657
0.0082615
0.0010728
0.0001422

1.909x 10>
2.576x 100
3.482x 10~/
471x 108
6.373x 1077

8.624x 1010

1.167x 10710

1.58x 10~11

2.138% 10712

2.893x 1013

3915%x 1014

5.299%x 1015

7.171x 10716

9.705x 10~17

1.313x 10~/

1.778x 1018

2.406% 1019

3.256x 1020

4.406x 102!

5.963x 1022

8.07x 10~
1.092x 10~23
1.478x 10~24
2x 1072
2.707x 1026
3.664x 10727

0.0684811
0.0837456
0.0113314
0.0014519
0.0001908

2552x 10
3.437x 1076
4.644%x 1077
6.28x 1078
8.498x 10~
1.15% 102
1.556x 10~ 10
2.106x 10~ 11
2.85x 10712
3.857x 1013
522x 10714

7.065% 10~15

9.561x 1016

1.294% 1016

1.751x 10~ 17

2.37x 1018

3.208x 1019

4.341x 1020

5.875x 102!

7.951x 10~22

1.076 x 1022

1.456x 10~23

1.971x 10~24

2.667%x 102

3.61x 10726
4.886x 10~%7

0.4152942
0.1017657
0.0144959
0.0018407

0.00024
3.197x 10>
43%x 107
5.806x 107
7.851x 108
1.062x 108
1.437x 10~?

1.945%x 1010

2.633x 1011

3.563% 1012

4.822%x 10713

6.525%x 1014

8.831x 10715

1.195x 10~15

1.618x 1016

2.189x 10~

2.963%x 1018

4.009% 10719

5.426% 1020

7.343x 1021

9.938x 1022

1.345x 10~22

1.82x 1023

2.464x 102

3.334x 102

4512x 10726

6.106x 1027

1.2922469
0.1146328
0.0177167
0.0022383
0.0002897

3.846x 10
5.165x 106
6.97x 10~
9.423%x 1078
1.275% 108
1.725% 10~°?

2.334x 1010

3.159x 10~ 11

4275% 1012

5.786x 1013

7.831x 10~ 14

1.06x 10~ 14

1.434x 10715

1.941x 1016

2.627x 1017

3.555x 1018

4811x 10719

6.511x 1020

8.812x 1021

1.193x 10~

1.614x 10~22

2.184x 1023

2.956% 1024

4001x 102

5414x 10726

7.328x 10~%7

2.6587865
0.1203537
0.0209557
0.0026442

0.00034
4.497x 10>
6.031x 106
8.134x 1077
1.099% 107
1.487x 108
2.012%x 10~°

2.723x 10710

3.686x 10~ 11

4.988x 1012

6.75x 10713

9.136x 1014

1.236x 1014

1.673x 10~1°

2.265x 1016

3.065% 10~

4.148% 10718

5.613%x 10719

7.597 x 10~20

1.028x 10~20

1.391x 1021

1.883x 10~22

2.548% 1023

3.449% 10~

4.667x 102

6.317x 10726

8.549x 1027

46113225
0.1169351
0.0241746
0.0030575
0.0003908

5.151x 10~>

6.899x 10~
9.3x 1077

1.257%x 10~7
1.7x10°8
2.3x107°

3.112x 1010

4212x 10~ 11

5.7x 10~12

7.715%x 10713

1.044x 10~13

1.413x 10~ 14

1.912x 10~15

2.588% 10~ 16

3.502x 10717

4.74%x 1018

6.415% 1019

8.682x 1020

1.175x 10~20

1.59% 10~21

2.152x 1022

2912x 1023

3.942% 102

5334x 102

7.219% 1026

9.769% 10~2%7

7.24626454
0.10238377
0.02733544
0.00347755
0.00044211

5.8086x 107>
7.768x 10~°
1.0465% 10~
1.414x 107
1.9124x 1078
2.5875x 10~?
3.5016x 10~10

4.7387x 10~ 1

6.4131x 10~12

8.6791x 10713

1.1746x 10~13

1.5896x 1014

2.1513x 10~15

29115x 1016

3.9403x 10~

5.3326x 1018

7.2169x 1019

9.767x 1020
1.3218x 10~20
1.7889x 10—2L
2421x 1022

3.2765% 10~23

4.4343%x 1072

6.001x 10=2

8.1216x 10726

1.0992x 10—26

10.6600221
0.07470652
0.03039995
0.00390366
0.00049393

6.4687x 107°
8.6387x 10~°
1.1632x 10~
1.5712x 107
2.125x 10~8
2.8751x 10~

3.8906x 1010

5.2652x 1011

7.1256x 10~12

9.6434x 10713

1.3051x 1013

1.7663x 1014

2.3904x 10~

3.235x 1016
43781x 10~

59251x 10718

8.0188x 1019

1.0852x 1019

1.4687x 10~20

1.9877x 10~
2.69x 10~22

3.6405% 10~23

4927x 10
6.6678x 10~25

9.0238x 10726

1.2213x 1026
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4. Conclusions

This manuscript successfully applied four analytical and numerical techniques
to the (2 + 1)-D KP-BBM equation used as a shallow water wave model. Many accurate
novel traveling wave solutions were obtained. The accuracy and novelty of the obtained
solutions were investigated. The traveling obtained solutions were demonstrated by 2D,
3D, and contour 3D plots. The symmetry between analytical and numerical solutions is
explained through the given tables and figures.
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