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Abstract: This paper is concerned with the modeling and analysis of quantum dissipation and
diffusion phenomena in the Schrödinger picture. We derive and investigate in detail the Schrödinger-
type equations accounting for dissipation and diffusion effects. From a mathematical viewpoint, this
equation allows one to achieve and analyze all aspects of the quantum dissipative systems, regarding
the wave equation, Hamilton–Jacobi and continuity equations. This simplification requires the
performance of “the Madelung decomposition” of “the wave function”, which is rigorously attained
under the general Lagrangian justification for this modification of quantum mechanics. It is proved
that most of the important equations of dissipative quantum physics, such as convection-diffusion,
Fokker–Planck and quantum Boltzmann, have a common origin and can be unified in one equation.

Keywords: decaying systems; Schrödinger equation; Madelung formulation

1. Introduction

Since the early 20th century, the challenging problem of dissipation and diffusion mod-
eling has been widely studied in quantum theory because a comprehensive understanding
of dissipation in quantum mechanics is fundamental to the foundations of this theory [1,2].
The quantum–mechanical treatment of dissipative processes and other nonequilibrium
phenomena has been the subject of much attention due to its applicability in various fields
such as solid-state and statistical physics, incoherent solitons, photochemistry, Brownian
dynamics, heavy-ion scattering, quantum gravity theories, dynamical modes of plasma
physics, propagation of optical pulses and damping effects in nonlinear media [3–5].

In 1926 (the same year Schrödinger published his celebrated articles), Madelung refor-
mulated the Schrödinger equation into a set of real, non-linear partial differential equations
comparable with the Euler equations which were used in hydrodynamics. Madelung
showed that the two equations were mathematically equivalent [6,7], and if one writes
the wave function in the form of eR+iS, the Schrödinger equation implies that, first, S is
governed by a classical Hamilton–Jacobi-like equation, or alternatively that

→
v = ∇S is for-

mulated by a Newton-like equation; second, ρ (which is defined as ρ(x, t) = |ψ|2 = R(x, t)2)
is governed by a classical continuity equation [8]. The only formal difference between
these equations and their purely classical counterparts is the existence of an additional
“quantum” potential. Since that time these equations have provided the basis for numerous
classical interpretations of quantum mechanics, including the hydrodynamic interpreta-
tion first proposed by Madelung [6], the theory of stochastic mechanics due to Nelson
and others [3,8–12], the hidden-variable and double-solution theories of Bohm and de
Broglie [13–15] and quite possibly other interpretations as well [8,16,17]. In some of these
theories, such as the hydrodynamic interpretation and stochastic mechanics, the Madelung
equations are taken as fundamental, and the Schrödinger equation is viewed as a mathe-
matical consequence [8].

In the Schrödinger picture, quantum diffusion and dissipation effects have been
effectively modeled by nonlinear terms of the type λ∆ψψ, which was first formulated
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by Kostin [18,19] to describe nonlinear Schrödinger–Langevin dynamics, where λ is a
friction constant and ∆ψ = −i log ψ

|ψ| is the argument of the complex wave function ψ(x, t),

and also later by logarithmic nonlinearities with the form log (|ψ|2)ψ, which was studied
by Bialynicki-Birula and Mycielski [20,21]. They suggested that this logarithmic form
maintains the lack of correlation between noninteracting particles. In a system under
observation, there are many degrees of freedom such that information would be lost in the
coupling process, which leads to dissipation [22]. Caldeira and Legget showed by using the
influence-functional method [23] that dissipation tends to destroy quantum interference
in a time scale shorter than the relaxation time of the system [22]. This result has given
justification for the use of logarithmic nonlinear wave equations [12,18,22,24] to describe
quantum dissipation. These equations are acceptable as a proper, practical bath functional
in time-dependent density functional theory for open quantum systems [22,24].

In this paper the main purpose is to obtain a deeper understanding of some equations
of quantum dissipation and their interrelations in a more satisfactory way based on the
influence-functional method. We start from the fact that the Lagrangian density equation
can be generalized to accommodate arbitrary wave functions. This is done using a sub-
stitution prescription for the principal function by applying a general complex function
of eβ(x,t) to introduce a wide-ranging Schrödinger-type wave equation and their corre-
sponding Hamilton–Jacobi and continuity equations to access desirable results. It is shown
that this approach provides a unified framework to aggregate and reproduce the wide
class of Schrödinger-type equations compatible with the convection–diffusion, quantum
Boltzmann and Fokker–Planck continuity equations; this leads to a deeper understanding
of the nature of dissipative systems. We use Madelung’s fluid dynamical formulation of the
Schrödinger equation, in order to quantize the generalized Hamilton–Jacobi equation [25],
which is intimately related to Hamilton–Jacobi theory. In this work, it is shown that the
spatial dependence of the real part of eβ(x,t) leads to the dissipative form of quantum
potential, which is first introduced here.

This paper includes two main parts. First, the Schrödinger-type equation for dis-
sipative systems via Lagrangian density and Euler–Lagrange equations is derived, and
the related Madelung decomposition is discussed. In the next section it is shown that
by assigning appropriate functions for β(x, t), a wide range of important equations in
nonequilibrium quantum physics, such as convection–diffusion, Fokker–Planck and quan-
tum Boltzmann, are obtained.

2. Schrödinger-Type Equations of Dissipative Systems
2.1. Derivation

The Lagrangian approach based on the Principle of Least Action has been a unifying
principle in almost all areas of physics to obtain dynamical equations. The Lagrangian L is
a functional of field amplitude ψ(x, t). It can usually be expressed as the integral overall
space of a Lagrangian density L(ψ). If the field Lagrangian density L(ψ) is given, we can
obtain the dynamical field equation from the Euler–Lagrange equations [26–29],

∂L
∂ψ
− ∂

∂t

(
∂L
∂

.
ψ

)
−

3

∑
i=1

∂

∂xi

(
∂L

∂(∂ψ/∂xi)

)
= 0, (1)

where ∂
∂ψ is a partial derivative.

Based on the Lagrangian approach, one can obtain the Schrödinger equation by its
corresponding Lagrangian density [26,27], which is

Lsh(ψ) = i}ψ∗
∂ψ

∂t
− }2

2m ∑3
i=1

(
∂ψ∗

∂xi

)(
∂ψ

∂xi

)
,
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If we define
.
ψ = ∂ψ

∂t and the gradient as
→
∇ ≡

(
∂

∂x , ∂
∂y , ∂

∂z

)
, the above equation can be

written as

Lsh(ψ) = i}ψ∗
.
ψ− }2

2m

→
∇ψ∗ ·

→
∇ψ, (2)

Here ψ(x, t) is a complex function, and we can treat ψ and ψ∗ as independent fields.
Now we can put the Lagrangian density (2) in the Euler–Lagrange Equation (1) for the
field ψ∗ to obtain the Schrödinger equation (or ψ for its complex conjugate), and end up
with the Schrödinger equation for free particles [26,27,30]:

− i}∂ψ

∂t
=

}2

2m
∇2ψ (3)

where ∇2 ≡
(

∂2

∂x2 , ∂2

∂y2 , ∂2

∂z2

)
is the Laplacian.

Theorem 1. If ψ(x, t) satisfied Equation (3), and it can be written in the form ψ(x, t) =
e−β(x,t)ψD(x, t) where β(x, t)εC and x ∈ R3, t ∈ R, then ψ(x, t) is also the solution of the
following differential equation,

− i}∂ψ

∂t
=

}2

2m

(→
∇+

→
∇β

)2
ψ. (4)

Proof. By putting ψD = eβ(x,t)ψ(x, t) in Lsh we have

Lsh(ψD) = i}
(
eβψ

)∗ ∂(eβψ)
∂t − }2

2m

→
∇
(
eβψ

)∗.→∇(eβψ
)

= i}eβ∗ eβψ∗
(

∂β
∂t ψ + ∂ψ

∂t

)
− }2

2m eβ∗ eβ

(
ψ∗
→
∇β∗ +

→
∇ψ∗

)
.
(

ψ
→
∇β +

→
∇ψ

)
Now eβ∗ eβ = e(βr−iβi)+(βr+iβi) = e2βr , where βr(x, t) and βi(x, t) are the real and

imaginary parts of β(x, t). By defining LD(ψ) = Lsh(ψD), the above equation gives

LD(ψ) = i}e2βr ψ∗
(

∂β
∂t ψ + ∂ψ

∂t

)
− }2

2m e2βr

(→
∇β∗ ·

→
∇βψ∗ψ +

→
∇β ·

→
∇ψ∗ψ +

→
∇β∗ ·

→
∇ψψ∗ +

→
∇ψ∗ ·

→
∇ψ

)
. (5)

This is the Lagrangian density of dissipation wave function. Now to obtain the
dynamical equation of dissipation wave function, we substitute LD in the Euler–Lagrange
Equation (1) to obtain

i} ∂β
∂t ψ + i} ∂ψ

∂t −
}2

2m (
→
∇β∗ ·

→
∇β)ψ− }2

2m

→
∇β∗ ·

→
∇ψ + }2

2m 2(
→
∇βr ·

→
∇β)ψ

+ }2

2m (∇2β)ψ + }2

2m

→
∇β ·

→
∇ψ + }2

2m 2
→
∇βr ·

→
∇ψ + }2

2m∇2ψ = 0.
(6)

To simplify the above equation we replace β = (βr + iβi) and β∗ = (βr − iβi) in some
terms in Equation (6), then we have

{
i} ∂β

∂t +
}2

2m∇2β
}

ψ +
{

i} ∂ψ
∂t + }2

2m∇2ψ
}
− }2

2m (
→
∇βi)

2
ψ + }2

2m (
→
∇βr)

2
ψ + i }

2

2m 2
→
∇βr.

→
∇βiψ + }2

2m

→
∇βr.

→
∇ψ

+ i }
2

2m

→
∇βi.

→
∇ψ = 0.

(7)

By using the two following equations

(
→
∇β)

2
ψ = (

→
∇βr + i

→
∇βi)

2
ψ =

(
(
→
∇βr)

2
− (
→
∇βi)

2
+ i2

→
∇βr.

→
∇βi

)
ψ (8)

and →
∇β.

→
∇ψ = (

→
∇βr + i

→
∇βi).

→
∇ψ (9)
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Equation (7) is rephrased in terms of β as{
i}∂β

∂t
ψ + i}∂ψ

∂t

}
+

}2

2m
∇2ψ +

}2

2m
∇2βψ +

}2

2m
(
→
∇β)

2
ψ +

}2

2m
2
→
∇β.

→
∇ψ = 0.

Finally, to shorten Equation (9) and have an optimal form we use

(
→
∇+

→
∇β)

2
ψ = ∇2ψ + ψ∇2β + (

→
∇β)

2
ψ + 2

→
∇β.

→
∇ψ

Therefore, we conclude

− i}∂ψ

∂t
=

}2

2m
(
→
∇+

→
∇β)

2
ψ + i}∂β

∂t
ψ (10)

Equation (10) is a dissipative Schrödinger-like equation (DSE). �

Theorem 1, to some extent, is comparable to the Stoker [25] method, which has a
variable function from which different equations can be obtained. Stocker’s method was
rudimentary and was not covered thoroughly. In the quantum hydrodynamical framework,
Nassar [22,31] proposed a generalized nonlinear equation covering some of the famous
equations due to Kostin [18], Süssmann and Hasse [32], Bialynicki-Birula–Mycielski [20],
Stocker–Albrecht [25] and Schuch–Chung–Hartmann [33]. His equation had a variable
parameter to produce different equations. Zander, Plastino and Díaz-Alonso [34] have
investigated the nonlinear equation proposed by Nassar [22], and in its corresponding
Hamilton–Jacobi and continuity parts some terms are left undefined. Recently, Gonçalves
and Olavo [35] have derived, from first principles, a generalized Schrödinger equation that
encompasses dissipative phenomena. Their results are not applicable to different equations
of quantum dissipation systems.

Our approach is based on a variable complex valued function of eβ(x,t), which can
produce Fokker–Plank, convection–diffusion and quantum Boltzmann equations. These
equations are only some examples of the applicability of this approach.

In this work, to the best of our knowledge, for the first time we present:
(A) a formalism which aggregates most of the important equations of dissipative

quantum systems in a comprehensive manner; this leads to a deeper understanding of the
nature of dissipative systems, see Section 3;

(B) a general form for quantum potential that would appear when the dissipation
parameter depends on space, such as plasma currents where the quantum Boltzmann
equation is used [36], see Sections 2.2 and 3.4.

Corollary 1. if β = −γt (γ > 0), we have e−γtψ which describes a decaying wave function, then
its relevant wave equation is

− i}∂ψ

∂t
=

}2

2m
∇2ψ− i}|γ|ψ. (11)

Corollary 2. if β = i qϕ
}c (where qϕ

}c is the Aharonov–Bohm parameter [27]), we have ei qϕ
}c ψ which

describes an Aharonov–Bohm effect, and its relevant wave equation is the same as the standard
Schrödinger equation.

2.2. Madelung Decomposition of DSE

The equations of quantum hydrodynamics (Madelung equations) are Madelung’s
corresponding alternative formulation of the Schrödinger equation [6], which is written
in terms of hydrodynamical variables. The derivation of Madelung equations is similar
to the de Broglie–Bohm formulation, which represents the Schrödinger equation as a
quantum Hamilton–Jacobi equation [37]. The Madelung equations, by their virtue of being
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formulated in the language of Newtonian mechanics, make it possible to construct a wide
class of quantum theories by making the same coordinate-independent modifications found
in Newtonian mechanics, without any need to construct a quantization algorithm [38].

Consider the one-dimensional time-dependent Schrödinger Equation (3) and write
the polar form of wave function in terms of amplitude R(x, t) and phase function (or action
function) S(x, t), i.e.,

ψ(x, t) = R(x, t)e
iS(x,t)

} , (12)

in which both are real valued functions. The probability density associated with this wave
function is ρ(x, t) = R(x, t)2.

By substituting this wave function into the Schrödinger Equation (3), one obtains a
system of two coupled partial differential equations, which are the Madelung hydrodynam-
ical formulation of wave mechanics [7,15,25,39]. Now by equating the real and imaginary
parts, first we find the continuity equation for the imaginary part,

∂ρ

∂t
+
→
∇ ·

→
J = 0, (13)

in which the probability flux is
→
J , defined as

→
J = ρ

→
∇S
m , and

→
ν =

→
∇S
m is the flow velocity

(or drift velocity) of the probability current.
The second equation or the real part is the quantum Hamilton–Jacobi equation (for

V = 0), given by

− ∂S
∂t

=
1

2m
(
→
∇S)

2
− }2

2m
∇2R

R
; (14)

in which the total energy is equal to the kinetic energy plus a quantum potential Q (Q =

− }2

2m
∇2R

R ). Because of the explicit dependence of the quantum potential on }, it brings all
quantum effects into hydrodynamic formulation [39].

Now by applying Madelung decomposition on DSE (10), and after some manipula-
tions, with the use of the identity

(
→
∇+

→
∇βr)

2
R = ∇2R + R∇2βr + 2

→
∇βr ·

→
∇R + (

→
∇βr)

2
R (15)

the general quantum Hamilton–Jacobi and the general continuity equations, respectively,
become

− ∂

∂t
(S + }βi) =

1
2m

(
→
∇S + }

→
∇βi)

2
− }2

2m
(
→
∇+

→
∇βr)

2
R

R
(16)

and (
∂

∂t
+ 2

∂βr

∂t

)
ρ + (

→
∇+ 2

→
∇βr) ·

ρ

→
∇S + }

→
∇βi

m

 = 0 (17)

Equation (16) is the Hamilton–Jacobi equation, in which on the left-hand side is the
total energy and the right-hand side includes a dissipative form of the kinetic energy plus

the general form of quantum potential. It is noteworthy to emphasize, when
→
∇βr 6= 0, the

quantum potential equation appears as

QD = − }2

2m
(
→
∇+

→
∇βr)

2
R

R
. (18)

This means that the spatial part of βr changes the quantum properties and modifies
the effect of the quantum potential. Since βr is responsible for dissipative phenomena, one
could refer (18) as a dissipative quantum potential (DQP).
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It can be shown that the mean value of the DQP is proportional to the Fisher informa-
tion probability density about the observable x̂. By definition of Fisher information

F (θ) := E
[
− ∂2

∂θ2 log f (X|θ)
]
= −

∫
f∇2(ln f )d3x (19)

and since

∇2(ln f ) =
∇2 f

f
−
(
∇ f

f

)2
(20)

it can be proved that, similar to quantum potential [40–42], the mean value of the DQP is
proportional to Fisher information

〈QD〉 =
∫

ψ∗DQDψDdr =
}2

8m
F (21)

and this is important because quantum fluctuations and quantum geometry are related to
the quantum potential via Fisher information [43,44].

Temporal and spatial dependence of the imaginary part β (which adds to the phase)
changes the total energy and the kinetic energy, respectively. Additionally, the spatial
dependence of the real part β changes the well-known quantum potential, but its temporal
part has no effect on the quantum Hamilton–Jacobi Equation (16).

Equation (17) is the origin of several important equations in open quantum systems.
In the following sections, Equation (17) will be further discussed.

3. Applications

In this section, we will provide further discussion of Equations (16) and (17). We show
that by selecting an appropriate function for β(x, t), a wide range of important equations
in quantum physics are obtained. Moreover, with enough knowledge about the wave
function, it would be possible to predict the nature of the Hamilton–Jacobi, continuity and
more importantly wave equations and vice versa.

For example, here is a brief description of the Berry’s phase. Berry’s phase [43] is
a quantum phase effect arising in systems that undergo a slow, cyclic evolution. In an
adiabatic evolution of the Hamiltonian, a quantum system in an nth eigenstate, remains in
this nth eigenstate of the Hamiltonian, while picking up a phase factor. Under adiabatic
approximation, the coefficient of the nth eigenstate is given by

Cn(t) = Cn(0) exp
[
−
∫ t

0
〈ψn(t′)|

.
ψn(t′)〉dt′

]
= Cn(0)eiγn(t) (22)

where γn(t) is the Berry’s phase with respect of parameter t. According to (22) and
comparison with (16) and (17) one concludes that the adiabatic evolution has no effect on
the continuity part, but the Hamilton-Jacobi equation takes the form of

− ∂S
∂t

=
1

2m
(
→
∇S)

2
− }2

2m

→
∇2R

R
+ }∂γ(t)

∂t
(23)

and the corresponding wave equation is obtained as

i}∂ψ

∂t
= − }2

2m
∇2ψ− }∂γ(t)

∂t
ψ (24)

In the following, for better clarification, we will apply this approach to obtain the
continuity equation, the Fokker–Planck equation, the convection–diffusion equation and
the quantum Boltzmann equation. The important point is that they are all derived from a
single equation produced by the “Lagrangian density of the Srodinger equation”. Therefore,
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Equation (10) can be considered as a consistent and constructive generalization for the
Schrödinger equation.

3.1. Continuity Equation with Source or Sink

In the simplest example we take

βi = 0 and βr = γt, γ ∈ R (25)

so, the wave function is ψD = eγtψ, in which γ is a real number. Therefore, the correspond-
ing wave equation takes the form

i}∂ψ

∂t
= − }2

2m
∇2ψ + iγ}ψ. (26)

In this case, the Hamilton–Jacobi equation remains without change

− ∂S
∂t

=
1

2m
(
→
∇S)

2
− }2

2m
∇2R

R
, (27)

and, as expected, the probability current is no longer conserved

∂R2

∂t
+
→
∇ ·

→
J = −2γρ (28)

where 2γρ represents source or sink for the current [17].

3.2. The Fokker–Plank Equation

As an important example, we take

βr = 0 and βi = ln R(x, t) (29)

where R(x, t) is the real valued amplitude of the wave function, and upon substituting in
DSE (10), its corresponding wave equation takes the form

i} ∂ψ
∂t = − }2

2m∇2ψ− i }
2

2m∇2(ln|ψ|)ψ− i}
2

m

→
∇ ln|ψ| ·

→
∇ψ

+ }2

2m (
→
∇ ln|ψ|)

2
ψ− } ∂ ln|ψ|

∂t ψ.
(30)

Next, by setting (29) in Equations (16) and (17), we obtain its relevant continuity and
the Hamilton–Jacobi equations, respectively

− ∂

∂t
(S + } ln R) =

1
2m

(
→
∇S + }

→
∇ ln R)

2
− }2

2m
∇2R

R
(31)

∂ρ

∂t
+
→
∇ ·

→
J = − }

2m
∇2ρ. (32)

Equation (31) is the Hamilton–Jacobi equation of a diffusive system, whose total
energy is on the left-hand side and total kinetic energy plus quantum potential is on the
right-hand side. Total kinetic energy includes kinetic energy corresponding to drift velocity
in which there is an added non-classical, stochastic diffusion velocity (either of Markovian
or of non-Markovian type) [1].

Equation (32) is the well-known Fokker–Planck equation. Some fundamental consid-
erations of quantum theory suggest a general, complex nonlinear Schrödinger equation
(outside the classes most often studied), which follows from admitting quantum diffusion
currents, so that its probability density satisfies the Fokker–Planck equation [17,45–47].
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It is worth mentioning that the diffusion current, and thus the Fokker–Planck equation,
are due to the presence of ln R(x, y) in the phase of the wave function

ψ→ ψD = e(βr+iβi)ψ

ψD = Reiκ ln Rei S
} = Re

i(S+}κ ln R)
}

where κ is a real number.
Doebner and Goldin in [45] propose a group-theoretical justification for a nonlin-

ear modification of quantum mechanics, as the most general class of Schrödinger-type
equations compatible with the Fokker–Planck continuity equation; they start with

i}∂ψ

∂t
= H0ψ +R[ψ]ψ + iI [ψ]ψ with I [ψ] = }D

2

(
∇2(ψψ

)
ψψ

)
(33)

whereR[ψ] and I [ψ] are the real and imaginary parts of the nonlinear functional multiply-
ing ψ; and I [ψ] is the key phrase to create the Fokker–Planck equation. Then, they declare
that the theory at this point gives no further information aboutR[ψ], but it is reasonable to
assume thatR[ψ] is of a form similar to I [ψ].

If Equation (30) is rewritten as (34), its compliance with the Doebner–Goldin Equation
(33) is determined [35,45,46,48]

i} ∂ψ
∂t = − }2

2m∇2ψ +

{
}
m

→
∇|ψ|
|ψ|
→
∇S + }2

2m

(→
∇|ψ|
|ψ|

)2

+ } ∂ ln|ψ|
∂t

}
ψ + i

{
−}2

2m

(
∇2ψ2

2ψ2

)}
ψ (34)

The general Lagrangian justification for this nonlinear modification of quantum me-
chanics seems to suggest it as a minimal nonlinear generalization of the Schrödinger
equation; it contains the least terms and still satisfies the Fokker–Planck equation. In
addition, it satisfies the general requirements of a nonlinear Schrödinger equation: (a)
the probability is conserved, (b) the equation is homogeneous, (c) non-interacting particle
subsystems remain uncorrelated, (d) plane waves are solutions for the free equation and (e)
the free equation is also time and space translation invariant [45,48].

Logarithmic terms which appear in (34) have a great importance in quantum friction
and diffusion effects. Dissipation tends to destroy quantum interference in a time scale
shorter than the relaxation time of the system [21]. This result has given justification for the
use of logarithmic nonlinear wave equations [12,18,22,24] to describe quantum dissipation.
Additionally, the logarithmic form guarantees non-interacting particle subsystems remain
uncorrelated [20].

3.3. Convection–Diffusion Equation

If we combine the diffusion (the Fokker–Planck equation) (32) with source or sink (28),
the result would be a convection–diffusion equation. Thus, based on previous sections
we pick ψD = e(βr+iβi)ψ = e

γ
2 t+ilnRψ (γ ∈ R), and substituting in (10), (16) and (17),

respectively, the wave equation, the Hamilton–Jacobi equation and continuity equations
are obtained as

i}∂ψ

∂t
= − }2

2m
(
→
∇+ i

→
∇ ln|ψ|)

2
ψ + } ∂

∂t
ln|ψ| ψ + i}γ

2
ψ (35)

− ∂

∂t
(S + } ln R ) =

1
2m

(
→
∇S− }

→
∇ ln R )

2
− }2

2m
∇2R

R
(36)

∂ρ

∂t
+
→
∇ ·

→
J = − }

2m
∇2ρ− 2γρ. (37)

Equation (37) is the convection–diffusion equation [49], and 2γρ is the source or sink
of the probability current.
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3.4. Quantum Boltzmann Equation

As a last example, we take Γ(x, t) as a general real function and again the diffusion
factor of i ln R(x, t) we have

β =
−Γ(x, t)

2
+ ilnR(x, t), (38)

Therefore, wave Equation (10) takes the form of

i}∂ψ

∂t
= − }2

2m
(
→
∇−

→
∇Γ + i

→
∇ ln|ψ|)

2
ψ + }∂ ln|ψ|

∂t
ψ +

i}
2

∂Γ
∂t

ψ (39)

and corresponding Hamilton–Jacobi and continuity equations become

− ∂

∂t
(S + } ln R) =

1
2m

(
→
∇S + }

→
∇ ln R)

2
− }2

2m

(→
∇−

→
∇Γ
2

)2
R

R
(40)

(
∂

∂t
− ∂Γ

∂t

)
ρ + (

→
∇−

→
∇Γ) ·

(→
J +

}
2m

ρ
→
∇ ln ρ

)
= 0. (41)

We see in Equation (40) that DQP is revealed. It means that if
→
∇Γ(x, t) 6= 0, the

well-known quantum potential will take a new form of DQP.
Equation (41) is the continuity equation, and with some manipulations it takes a

familiar form

∂ρ

∂t
+
→
∇ ·

(
ρ
→
v
)
− }

2m
∇2ρ = ρ

(
∂

∂t
+
→
v ·
→
∇+

}
2m

→
∇ ln ρ ·

→
∇
)

Γ. (42)

where
→
v =

→
∇S
m is the drift velocity. The left-hand side of the above equation is the Fokker–

Plank equation and the right-hand side resembles the quantum Boltzmann equation[
∂

∂t
+
→
v ·
→
∇+

→
F ·
→
∇p

]
f (
→
x ,
→
p , t) = Q[ f ](

→
x ,
→
p ). (43)

The quantum Boltzmann equation gives the non-equilibrium time evolution of a gas
of quantum mechanically interacting particles. In Equation (43), f (

→
x ,
→
p , t) is a general

distribution function,
→
F is external applied force and Q is quantum collision operator,

accounting for the interactions between the gas particles; if it is zero then the particles do
not collide. Thus, the Fokker–Planck term at the left-hand side of (42) represents the effects
of particle collisions [50].

Go back to the right-hand side of Equation (42). Since we can write

→
∇Γ =

∂Γ
∂x

∂
→
∇S

∂
→
∇S

= ∇2S
∂Γ

∂
→
∇S

, (44)

then by substituting (44) and (43) into the right-hand side of (42), we have(
→
F · ∂

∂
→
p

)
f =

(
}

2m2∇
2S
→
∇ ln ρ · ∂

∂
→
∇S

)
Γ. (45)

Thus, we can write Equation (42) as

∂ρ

∂t
+
→
∇ · (ρ→v )− }

2m
∇2ρ = ρ

(
∂

∂t
+
→
v ·
→
∇+

}
2m

(
→
∇ ·→v )

→
∇ ln ρ ·

→
∇p

)
Γ. (46)
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So, the external applied force is defined as
→
F = }

2m (
→
∇ ·→v )

→
∇ ln ρ, which is related to

both drift and diffusion velocities.
The Fokker–Planck equation, which was firstly derived to treat the Brownian motion

of molecules, has been extensively used to evaluate the collision term of the Boltzmann
equation for describing small-angle binary collisions of the inverse-square type of force [36].
In stellar dynamics, Chandrasekhar first discussed this theory for stochastic effects of grav-
ity [36,51]. The applications of this equation to classical plasma physics were first treated
by Landau, Spitzer, as well as Cohen, Spitzer and Routly, and an elegant mathematical
treatment was completed by Rosenbluth, MacDonald and Judd [36,52].

4. Summery and Conclusions

In this approach based on the influence-functional method we gain a better under-
standing on quantum friction and diffusion effects in a more satisfactory way. We generalize
the Lagrangian density equation to accommodate arbitrary wave functions, to provide
an approach to general quantum dissipation and diffusion modeling by introducing a
dissipative Schrödinger-type equation (DSE). The key point of this approach is β(x, t), as a
complex function, which is responsible for taking the problem from equilibrium phenom-
ena to nonequilibrium ones. The approach provides the achievable analysis, for all aspects
of the phenomena, concerning the wave equation, the Hamilton–Jacobi equation and the
continuity equation. It is shown that by applying a general complex function of eβ(x,t)

one can produce a wide-ranging Schrödinger-type wave equation and their correspond-
ing Hamilton–Jacobi and continuity equations to access desirable results. To show the
widespread applications of this approach, we provided some examples of the Berry phase,
the continuity equation, the Fokker–Planck equation, the convection–diffusion equation
and the quantum Boltzmann equation. All of these equations are obtained by step-by-step
generalizations of the beta function, see Table 1.

Table 1. Dissipation quantum equations and their related β functions.

Quantum Equations βr βi

Continuity equation with Source or Sink βr(x, t) = γt βi(x, t) = 0

Fokker–Planck equation βr(x, t) = 0 βi(x, t) = ln R(x, t)

Convection–diffusion equation βr(x, t) = γt
2 βi(x, t) = ln R(x, t)

Quantum Boltzmann equation βr(x, t) = −Γ(x,t)
2

βi(x, t) = ln R(x, t)

As a first step, we chose βr(x, t) = γt with no imaginary part, then we would have
growing/shrinking amplitude; it means the probability current is no longer conserved,
and there would be source/sink in the continuity equation.

Some fundamental considerations of quantum theory suggest a general, complex non-
linear Schrödinger equation, which follows from admitting quantum diffusion currents and
must be such that its probability density satisfies the Fokker–Planck equation. To describe
the diffusion current there is no need for source or sink; so the real part which affects the
amplitude is zero, and the imaginary part which controls the phase gets the βi = ln R(x, t)
value. From this choice the Fokker–Plank equation results in the continuity part, but it
also changes the usual appearance of the Hamilton–Jacobi (31). As expected, by quantum
friction and diffusion effects, logarithmic nonlinearities appear in the corresponding wave
Equation (34).

Now if we have a combination of growing/shrinking amplitude with diffusion current,
βr(x, t) = γt

2 and βi(x, t) = ln R(x, t), the result is the convection–diffusion Equation (37).

Finally, choosing for general real part Γ(x, t), which means βr(x, t) = −Γ(x,t)
2 and

βi(x, t) = ln R(x, t), this leads to the quantum Boltzmann equation. Because of the spatial
dependence of βr(x, t), the new appearance for quantum potential (DQP) has been revealed
(18). Since the quantum potential depends on the amplitude of a wave function, it is
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deformed as DQP for a dissipative system. This form of quantum potential is first presented
in this work.

All of above equations are derived from a single equation produced by the Dissipative
Schrödinger Equation (10). This unified framework provides a common ground for a better
understanding of quantum friction and diffusion effects and allows a deeper understanding
of the nature of the dissipative systems. The present approach is useful to the study of
non-equilibrium quantum mechanical systems, such as mesoscopic systems.
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