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Abstract: Natural systems achieve favorable mechanical properties through coupling significantly
different elastic moduli within a single tissue. However, when it comes to man-made materials
and structures, there are a lack of methods which enable production of artifacts inspired by these
phenomena. In this study, a method for design automation based on alternate deposition of soft
and stiff struts within a multi-material 3D lattice structure with desired deformation behavior is
proposed. These structures, once external forces are applied, conform to the geometry given in
advance. For that purpose, a population-based algorithm was proposed and integrated with a
multi-material physics simulator. To reduce the amount of data processed during optimization, a
generative encoding method based on discrete cosine transform (DCT) was proposed. This enabled a
compressed topological description and promoted symmetry in material distribution. The simulation
results showed different three-dimensional lattice structures designed with proposed algorithm
to meet a set of desired deformation behaviors. The relation between residual deformation error,
targeted deformation geometry, and material distribution is discussed.

Keywords: multi-material lattice; design automation; 3D printing; structural optimization;
functional materials

1. Introduction

Processes of manufacturing and design are tightly coupled. The approach designers
take when shaping a product is biased by both CAD (Computer Aided Design) platform
used, but also by manufacturing process necessary for product realization. Usually, so
called feature-based modeling, in which either standard 2D or 3D primitives are used to
create 3D volumes out of homogenous material by standard CAD tools, are applied. These
standard CAD environments were not created with a freeform design paradigm in mind.
This is a limiting factor for their accommodation to complex, non-homogenous, multi-
material 3D design and analysis [1,2]. The standard design approach has its justification
in manufacturing costs, only if the technologies based on additive manufacturing, that
naturally create complex freeform shapes of arbitrarily internal material distribution, are
omitted from consideration. These latter technologies can deliver products of the highest
complexity, where the complexity of the manufactured part comes at no added cost. This
opens a vast space for engineers to explore and utilize when designing completely new
products, with new and previously unattainable properties. Lattice structures are especially
suited for manufacturing with additive technologies. Their complex internal morphology
is materialized through layer-by-layer material deposition, which is hard to replicate with
conventional manufacturing processes. Lattices have several advantages over homogenous
structures, due to their favorable mass to strength ratios. These complex structures have
received more attention recently in the scientific community because they can be used to
fill out the internal space of a volume defined by arbitrarily complex freeform surfaces [3].

A considerable amount of work has been done in the field of topology and shape
optimization, especially for mono-phase material structures. Both lattice-based and contin-
uous volumes were considered, with the most common optimization criteria of compliance
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minimization subject to a mass constraint. Additional constraints on buckling, stress,
etc. were also extensively studied in the single-material field. The seminal method in
the topology optimization field is the homogenization method [4,5], which is an iterative
process of removing unnecessary fractions of materials from the whole volume based on
the stress of each considered fraction of the volume. The “unloaded” fractions of material
are removed from the structure to save weight, with the rationale that they contribute more
to the weight of the structure then they contribute to stress reduction.

In the context of multi-material structures, there are some examples of structures
topologically optimized using multiple materials to emulate an actuated structure [6],
and create compliant mechanisms [7,8]. A thorough review of these approaches can be
found in [9]. The majority of approaches are based on the homogenization method and are
limited to optimizing a single criterion, such as deflection in a specific point or a force at the
specific point. For added complexity, i.e., targeting a deflection line, or competing objectives
including multiple materials with different properties, homogenization approaches become
unwieldy or even completely impractical [10].

In the context of lattice structures, analogically to the homogenization method, a
Ground Structure Approach (GSA) [11] and its derivatives are used to find and remove
unnecessary elements from the highly interconnected lattice (ground structure) while
keeping the nodal locations fixed. Additionally, nodal coordinates, struts cross sections, or
the connectivity might be optimized for, yielding instances of shape, sizing, or topology
optimization [12,13]. However, most of the work based on GSA approaches deals with
single static load scenarios, structured meshes of single-material structures optimized
for stiffness to weight ratio. Another approach to optimization of lattice structures is
design of so called auxetic materials [14]. These structures are designed for negative
Poisson’s ratio, by a carefully performed orientation of the base units to produce a handed
structure with desired properties. The majority of work is done in 2D space. In case of
3D space, linear, bending, and twisting actuators have been proposed. In these examples,
the function originates from the structural orientation of the elements, and not from the
heterogeneity of the materials used. There are significantly less studies dealing with
multi-material lattices. An approach to optimization of multi-material lattice structures
directed towards mass minimization under displacement constraints is proposed [15].
Computational methods for Poisson’s ratio minimization [16], robustness of topology
optimization methods under load uncertainties, and ultralight lattice structures have been
proposed for dynamic loads [17]. Lattices can be designed using, i.e., grating method,
where density of the lattice structure is manipulated, and as a consequence, stiffness of
the structure is alternated in specific regions. Lattices can also be combined with rigid
homogenous volume sections, in order to manipulate stiffness in specific regions. These
properties have not been used to design structures for desired deformation behaviors [18].
The objective is to find optimal distribution of nodes to maximize stiffness and critical
buckling load of the structure. Comparing previous studies to the approach presented in
this study, the main objective here is to explore additional aspects of lattice structures, in
terms of exploiting multi-materiality of struts to meet geometrically conforming structures
for given loads and restraints.

To achieve this, each strut can be printed from different material, thus having specific
mechanical properties. This enables the structure to respond in an unintuitive way to given
external loads and restraints. At this point, the lattice struts are limited to one of the two
phases: (a) stiff material, in following figures illustrated with the red color, and (b) soft
material, in following figures illustrated with the blue color. This limitation is introduced
primarily for the sake of reduction of the search space which the optimization algorithm
has to explore. On the other hand, current top of the market multi-phase 3D printing
devices can use a limited number of materials that can be combined in a single model.

Theoretically, an indefinite number of phases exist through continuous mixing of
resins, but only a selected combination can be printed in a single structure, due to 3D
printers’ manufacturers limitations, and physical compatibility of distinct phases. Regard-



Symmetry 2021, 13, 293 3 of 13

ing the analyzed soft and stiff materials, we show in the following sections how certain
combinations of materials limit the ability of the structure to comply to a desired deflection
line. The structure shown in Figure 1a is a homogenous lattice structure, with illustrated
loads and restraints. It deforms in an expected way, referred to as the normal response. On
the right side is a structure optimized by deposition of soft and stiff lattice struts with the
goal of deforming in a straight line.
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given equal loads and restraints. Red struts—stiff material, blue struts—soft material. The structure
(b) is optimized for linear deflection.

The deflection lines considered in the paper range from simple ones such as straight
line, to complexly composed ones including combinations of linear members, negative
curvatures, step deflection, and fourth order polynomials, where locations of inflections
and slopes are manipulated. These unintuitive responses have the potential to be used in
different applications, i.e., ductility enhancements, fracture toughness, negative to zero
thermal expansion, biomimetic materials, soft robotics, and functional materials [19–22].
Comparable concepts are also present in biological tissues, bones, plants, etc., where
nature has produced a strategy to achieve unusual mechanical properties through coupling
variable elastic moduli from a few GPa to below KPa [23].

The problem of finding material distribution to meet desired profile is formulated in
optimization domain. A robust optimization algorithm is needed to reliably explore this
domain. An evolutionary algorithm is developed and tested for the purpose in this study.
Since the problem considered here has a vast search landscape, which is related to the num-
ber of struts in lattice and number of phases of materials used, a particular consideration
in the development of the algorithm was dedicated to the genotype–phenotype mapping
scheme since it is a time-consuming procedure.

It is necessary to find such an encoding that will allow the representation of the whole
structure using a minimal number of parameters. The scheme should be simple, but allow
for the representation of a desired level of details in the structure. It should also naturally
promote evolvability of the population. For that reason, a generative encoding procedure
was proposed, based on inverse Discrete Cosine Transform (DCT).

This procedure compresses the data necessary to describe complete structures at the
arbitrarily fine resolution, and has some other favorable traits, such as natural symmetry
promotion, which is important since it allows reduced calculation of error profiles, as
explained in detail in Section 2.2.

The main contributions in this paper can be summarized as follows: (1) Proposing a
method based on the Discrete Fourier Transform (DFT) for compressing the topological
data of multi-material lattice structures, and reliable transformation from genotypic to
phenotypic space and vice versa. This allows reduction of the convergence time in the
evolutionary optimization domain. The method described in this study can be considered
as a generalization of methods proposed to describe continuous topology in the frequency
domain [24,25]. (2) Multi-material lattice domain space exploration by evolutionary algo-
rithms allows optimization of the complete structures’ deformation behavior, as opposed
to deformation performed in a single point.

The whole lattice structure with all attributes, including topology, elasticity constants,
and shape, is uniquely mathematically described using connectivity and nodal matrices, is
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scalable in terms of including additional materials, and is suitable for manufacturing using
additive manufacturing processes.

The remainder of the paper is organized as follows: the methods and algorithm
outline are presented in Sections 2 and 3. In Section 4, a number of 3D structures optimized
to conform to deflection lines of different complexities are presented. Limitation of the
structures based on material properties and complexity of deflection lines are discussed.
In Section 5, discussion is given, and results are compared to similar existing approaches.
Section 6 gives conclusions and insights in future research.

2. Method
2.1. Evolutionary Algorithms

Evolutionary algorithms belong to the family of population based heuristic optimiza-
tion algorithms. These algorithms are inspired by some of the processes found in biological
evolution, i.e., selection, mutation, and recombination. These mechanisms are used to
evolve, or to artificially breed a solution for a typically hard optimization problem. The ba-
sic principle here is that individuals that form a population of potential solutions compete
to survive. An individuals’ fitness, which is proportionate to its survival rate, is measured
with the fitness function. Fitter individuals have a higher chance to survive and to pass
their genetic material through crossover and mutation to the following generations.

Evolutionary algorithms, and other population-based algorithms, have been success-
fully applied to different problem domains. Nondeterministic polynomial time (NP) hard
problems, large search spaces, constrained optimization problems with deceptive domains,
among others, have all been successfully explored and optimized with evolutionary algo-
rithms [26–28]. The disadvantages of evolutionary algorithms (EA)s compared to other
optimization techniques lie in their stochastic nature. There is no formal guarantee of
finding global optima. The quality of the solution depends on many factors, whose in-
terconnections are highly nonlinear and stochastic in nature. Thus, finding a satisfactory
combination of these parameters, i.e., population size, selection and surviving mechanism,
probabilities of mutation and recombination, fitness scaling, genotype to phenotype map-
ping, etc., is very problem dependent and requires tedious experimental fine tuning to
yield satisfactory results. Additionally, similarly to the biological process of evolution, the
evolutionary algorithms might become slow for larger populations of individuals holding
large information size in their genotype.

In this study, we propose a procedure based on generative encoding concept to
compress the data contained in each individual, using a frequency matrix, and an inverse
discrete cosine transform to make the mapping from genotype—this is a computational
domain where crossover and mutation take place, to phenotype—this is the physical space
where selection takes place. In our example, genotypic space consists of 3D frequency
matrices where frequencies dictate material properties of struts, while phenotypic space
consists of actual three-dimensional multi-material lattice structures subjected to loads
and restraints.

2.2. Generative Encoding

It is worth describing encoding procedure in more detail. In generative encoding-
based approaches, the information about the individual in the population are stored
indirectly applying a set of rules. These rules are used to perform the transition of the
individual from the phenotypic to genotypic space and vice versa. This can be considered
a way of compressing the amount of data that describes the individual. The drawback
of this approach is that there exists a computational overhead in applying these rules.
Some examples of successfully applying generative encodings are generative grammar
approaches, which were used to reduce the search space in evolving conceptual tensegrity
structure deigns [29]. Compositional pattern-producing networks (CPPN) were used to
optimize shape and material distribution of free-form objects [30]. Gaussian Mixtures
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(GMX) and its derivatives, based on level-set approaches, have been used to describe
density fields and successfully applied to describe continuous soft-body robot systems [31].

In this study, we use a DCT approach to represent material distribution of the lattice
structure. It is applied here for its simplicity and proven evolvability, and the ability
to easily describe increasingly complex material distributions by including higher order
harmonics. The distribution of material along a specific axis can be interpreted as a one-
dimensional signal and treated as Fourier series. The usefulness of the Fourier analysis is
that we can break up any arbitrary periodic function into a set of simple terms that can be
solved individually and then recombined to reconstruct the original signal to a high degree
of accuracy.

In the approach adopted in this paper, a phenotype of an individual is a 3D matrix
composed of frequency amplitudes ranging from an arbitrarily chosen interval. Each
amplitude is related to an adjacent harmonic, and the number of harmonics for each axis
included in the phenotype limits the complexity of the design that can be reconstructed
from the frequency matrix for that specific axis.

If there are N harmonics dedicated to the specific axis of the lattice design, there are
potentially N regions along this axis, each describing a region of different mechanical
properties of the structure. If we sum the numbers of all harmonics for all axes, we can
define a metric called fineness of the structure:

F =
i=3

∑
i=1

j=n

∑
j=1

Nij (1)

where j is for all the harmonics associated with a particular axis, and i is for the number of
axes considered: 1 is for 1D case, 2 is for 2D, and 3 is for a 3D case. The Discrete Cosine
Transformation sums all weighted sinusoids and applies a threshold at a given value to
define distinct regions of materials. This procedure is applied for each axis of the structure
allowing the reconstruction of volumetric density field for the complete lattice structure.

The structure illustrated in Figure 2 is represented by summation of three weighted
sinusoids to form a three-dimensional weighted space. The three sine waves have the
following form:

F(Xi) =
i=N

∑
i=0

ai cos(ωi) + c (2)
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This space is thresholded by the usage of inverse discrete cosine transformation. In
the material distribution given above, the lattices belonging to regions above the threshold
are defined as stiff and vice versa. This approach easily represents 3D topologies with
arbitrarily detailed resolution of geometry in all three principal axes.
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The one-dimensional Fourier cosine series on the interval [0, L] is given by:

f (x) =
c0

2
+

∞

∑
k=1

ck cos
(

kπx
L

)
(3)

with coefficients:

ck =
2
L

∫ L

0
f (x) cos

(
kπx

L

)
dx (4)

This representation is useful for even functions. Now, the discrete version of the
Fourier cosine series can be derived by dividing the interval [0, L] into N equal segments.
Let xi denote the midpoint of the ith segment and let fi denote f (xi). To avoid aliasing, the
values of k are limited to be k = 0, 1, 2, . . . , N—1. The integral (4) is approximated by the
midpoint quadrature rule, yielding:

ck =
2
N

N−1

∑
i=0

f (xi) cos
(

kπxi
L

)
k = 0, 1, · · · , N − 1 (5)

which is, in some settings, known as Discrete Cosine Transform of Type II (DCT-II). This
is the most used form and referred to as the DCT [32]. It is important to stress here that
describing the structure using the approach presented in this study not only compresses the
data required for representation of the structure, but also promotes symmetry of material
deposited through the structure. This is exploited for the case of symmetrical loads and
restraints analyzed in this study.

In general, to meet the targeted defection profile, at least four contours, each associated
to one edge along the longest dimension, in our case, x1 of the structure, should be
evaluated. This also holds for the case of symmetrical loads and restraints, but without
promoting the symmetry through appropriate encoding. In the approach presented in this
paper, all the deflection error calculations were performed only for one edge, which proved
enough, as will be explained in the following sections.

Before rendering a multi-material lattice structure, it is necessary to check the position
of the center of mass (cm) of each strut. The position of cm for the strut i in the 3D density
matrix defines the property of the material of this strut, proportional to the material density
field. This procedure must be repeated for each strut in the lattice structure. Despite that,
the computational overhead in doing this is not excessively intensive, because the topology
of the lattice stays fixed over time, since the nodes remain fixed and there is no variation
of the length of the struts. For that reason, no iteration over the structure is necessary, a
lookup table is designed in advance holding the information of cm and compared to mass
distribution matrix.

2.3. Fitness Evaluation

Fitness function presents a central part of any evolutionary algorithm. This function
is, in evolutionary context, an environment to which competing individuals must adapt.
The ones that can make this adaptation better are fitter and have an increased chance
to survive compared to the individuals that are less fit. In the example presented here,
individuals must evolve a material distribution which enables them to achieve desired
structural deformation.

To measure how a multi-material lattice structure deforms, the following is needed: a
method to create the outer shape of the structure, a method to fill this shape with lattice
structure, and a method to apply restraints, loads, and evaluate structural response.

As it concerns the first problem, outer geometry defined as a STEP model method is
applied in this paper. STEP-file can support arbitrarily complex shapes, is free, easy to
read, and recognized through the ISO-10303-21 standard. The outer geometry then is used
to bound the lattice. The lattice itself is constructed using a standard tetrahedral mesh
generator. In this study Gmsh generator [33] is used.
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The output from the mesh generator consists of two matrices: connectivity matrix,
later referred to as Conn.txt, and a nodal coordinate matrix, later referred to as Coord.txt.
These two matrices are fed to the next step. In the next step, material and volume is
associated with each strut. This enables the calculation of the response of the structure once
loads are applied. The following step is to employ a multi-material physics simulator to
evaluate structures’ response based on the distribution of the material, loads and restraints.
Standard nonlinear finite element solvers are of limited applicability in situations including
large deformations, instabilities, and significant differences between elastic moduli of
struts [34]. Another problem is their computational time, which makes them impractical
for implementation in population-based optimization algorithms. For that purpose, Vox-
CAD [35–40], a multi-material physics simulator is used. Voxelyze, the underlying engine
running behind VoxCAD, is a computationally efficient simulation approach based on
nonlinear relaxation of structural elements. Voxelyze simulates elastic voxels based on an
internal lattice of discrete points, interconnected by spring like beam elements with transla-
tional and rotational stiffness. Once it is possible to calculate deformation of the structure
subjected to loads, the optimization algorithm distributes the soft and stiff lattice struts
throughout the structure, trying to minimize the deviation between the actual deflection
profile, and the desired deflection profile. The outline of the optimization processes are
illustrated in Figure 3.
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To limit the search space size, the length of the cantilever beam is normalized and
divided to thirteen equally spaced regions. For the problems presented in this study, this
number proved to be a good balance between calculation time and ability of the structure to
conform to given profiles. Finer discretization of the lattice comes at higher computational
cost but would enable conforming to more complex geometries. On the other hand, a
coarse discretization, with less elements, comes with increased rigidity, and thus limits
the ability of the structure to conform to complex geometries. In each of these regions,
the differences between the target and actual profiles are checked, and the summation of
these differences defines so called root mean square error (RMSE), Equation (6), which is to
be minimized. Individuals from the population with smaller RMSE values have a higher
chance of being transferred to the population of parents, and to transfer their phenotypic
material to the following generations.

3. Algorithm Details

A population of 60 individuals is subject to optimization until either the deviation
of the best individual in the population, measured by RMSE, falls below a predefined
threshold, or there is no significant fitness increase in the last 50% of the evaluations. RMSE,
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which is the objective function, is calculated as the difference between targeted deflection
profile and current deflection profile of the structure, according to Equation (6):

minimize:

RMSE =
∑i=N

i=1 ‖
→
δ i‖

N

 (6)

N is for number of evaluated points along the deflection line. δi is a deviation vector
to measure the difference between targeted and current profiles, as shown in Figure 4.
As indicated in previous sections, due to promotion of symmetrical load distribution
through presented encoding procedures, it is enough to evaluate only one contour for
RMSE minimization. In the case of symmetrical structures and loads, this suffices. For more
complex distributions of loads and restraints, a minimum of two or even more profiles
should be associated to the contours of the structure and included in RMSE calculation.
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To evaluate a population and find those individuals fitter than others, a tournament
selection scheme was used. Five individuals were randomly chosen from the population.
The two fittest members of the five produced two children. A weight associated to the
Fourier series defining material distribution was randomly selected from one and added
to the other parent to create offspring. After the new population of 60 individuals was
created, the mutation operator was applied.

Mutation was used to randomly change a small part of an individual and thus ensure
diversity in the genetic pool and connectivity of the search space.

A randomly chosen weight of an individual was changed by 2%. In one individual, at
most, 10% of weights can change through mutation.

4. Results

In this section, results of the proposed evolutionary algorithm for multi-material
lattice structures are presented. So far, the structures are optimized to follow a predefined
response, deflection after the load is applied. In all the cases illustrated in Figure 5, the left
surface is clamped, the right one is free. The load was applied on the latter surface, and the
bottom edge. Four cases are presented here: linear, quadratic, step, and slope discontinuity.
All the deformations were multiplied ten times for the purpose of illustration. Red struts
correspond to stiff material, while blue struts were for soft material. By deposition of soft
and stiff struts, it was possible to evolve structures that follow given deformation behaviors
with a small error. In all the results presented, the lattice consisted of 731 struts. There were
no constraints on the distribution of soft and stiff materials in the lattice, although these
could be easily implemented. All the structures were evolved for five thousand generations.
For the case (a) linear deformation response, the algorithm showed favorable results for
this problem, being able to minimize RMSE below 10−3 within 2000 iterations. Case (b)
showed that the deflection line was constructed to have a zero slope both on the clamped
and the free edge.



Symmetry 2021, 13, 293 9 of 13

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 13 
 

 

There were no constraints on the distribution of soft and stiff materials in the lattice, alt-
hough these could be easily implemented. All the structures were evolved for five thou-
sand generations. For the case (a) linear deformation response, the algorithm showed fa-
vorable results for this problem, being able to minimize RMSE below 10−3 within 2000 
iterations. Case (b) showed that the deflection line was constructed to have a zero slope 
both on the clamped and the free edge. 

 

  
(a) Straight (b) Quadratic 

  
(c) Step (d) Slope 

Figure 5. Evolved structures for different deflection profiles, with goal, actual, and normal profiles and deviation between 
target and actual profiles. 

Additionally, inflection point was enforced in the midpoint of the structure in the 
direction of the longest axis. To meet these criteria, we assume the deflection line is a 
fourth order polynomial of the form: 

fሺxሻ =෍𝑎௜௜ୀସ
௜ୀ଴ 𝑥௜ (7)

With following boundary conditions: fሺ0ሻ = 0; fሺ1ሻ = െ1; dfdx ሺ0ሻ = 0; dfdx ሺ1ሻ = 0; dଶfdxଶ ሺ0.5ሻ = 0 (8)

then the deflection line takes following form: fሺxሻ = 2𝑥ଷ െ 3𝑥ଶ (9)

The polynomial order is 3, which is the same as for the homogenous case, but bound-
ary conditions are satisfied. 

Figure 5. Evolved structures for different deflection profiles, with goal, actual, and normal profiles and deviation between
target and actual profiles.

Additionally, inflection point was enforced in the midpoint of the structure in the
direction of the longest axis. To meet these criteria, we assume the deflection line is a fourth
order polynomial of the form:

f (x) =
i=4

∑
i=0

aixi (7)

With following boundary conditions:

f (0) = 0; f (1) = −1;
d f
dx

(0) = 0;
d f
dx

(1) = 0;
d2 f
dx2 (0.5) = 0 (8)

then the deflection line takes following form:

f (x) = 2x3 − 3x2 (9)

The polynomial order is 3, which is the same as for the homogenous case, but boundary
conditions are satisfied.

If we move the x location of second derivative equals zero condition away from
x = 0.5, the deflection line takes the general fourth order polynomial form. The algorithm
performed well on this problem, being able to reduce RMSE to approximately 5e10−3

within 5000 iterations. Case (c) was for the step function, which proved to be hard to satisfy,
especially in the region where discontinuities were located.
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To minimize deflection error in this case, significant differences between elastic moduli
between the two phases are required, as discussed later. Here, we have larger RMSE,
approximately 2.5e10−1 at the end, compared to the previous two cases. The last case,
(d), presents the slope discontinuity, which is composed of two piecewise linear functions.
The algorithm yields quality results, with the RMSE values at 10−2 found around the
discontinuity of the profile.

A typical optimization cycle of the structure is shown in Figure 6. Three phases are
presented: at the beginning of the optimization, at 50% of total iterations number, and the
final structure. The structure presented was optimized for negative curvature. This type
of curvature is difficult to achieve, which is illustrated with the error plot. The error plot
shows that difference between target and achieved is spread thorough whole structure.
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The ratio between elastic moduli of stiff and soft struts is an important parameter, and
it bounds the minimal RMSE the structure can achieve for the given total number of struts.

This is illustrated in Figure 7. Parameter ξ is defined as: ξ =
Estiff
Eso f t

.
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Figure 7. RMSE relation to different elastic moduli ratio ξ =
Esti f f
Eso f t

, for negative quadratic (S1) and
step discontinuity specimens (S2).

The error plots were obtained by running the algorithm 50 times for a particular
deflection profile. Two specimens were compared here: negative quadratic deflection
profile (Specimen S1) and step discontinuity profile (Specimen S2).

It is obvious that step discontinuity minimizes the residual RMSE better with increase
of ξ. Whereas negative quadratic profile has a sweet spot at ξ =100, and with further
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increase of ξ, the residual error increases. That means that there is no general rule about
the nature of relation between error minimization and elastic moduli difference.

We analyzed hypothetical minimal values for ξ which will allow the desired structural
deformation behaviors. We found that for simpler scenarios, i.e., linear response, and
ξ > 10 to minimize RMSE to acceptable level, and ξ ≥ 1000 for most complex desired
deformation profiles. We found that ξ > 10 is enough to minimize RMSE to acceptable
level in case of simple deflection profiles, i.e. linear target deformation. For most complex
cases, i.e. step discontinuity, a significantly larger difference in elastic moduli, ξ ≥ 1000
is required.

It is important to stress that, in theory, significant differences between elastic moduli, as
high as 3000 times, are possible at the present state of the art 3D printing technology [15]. In
addition to the parameter ξ, the number of lattice struts plays a role in RMSE minimization.
The drawback of increasing this number is the computational cost that comes with it. The
number of 731 struts used in the paper showed to be a good compromise between the
quality of solutions and computational time. Fundamentally, this number does not give
new qualitative insight, it is favorable to have a finer lattice compared to more coarse
structures if the calculation time is not a limiting factor.

5. Discussion

Heterogeneity of material distribution in lattice structures was exploited to enable
conforming of lattice to a set of predefined shapes. It was shown that by combining
different elastic moduli, it was possible to achieve a range of predefined geometries with
various complexities. Existing approaches dealing with design of functional, lattice-based
materials deal with auxetics [14], optimality criteria for mass minimization [15], and design
of a complex data-driven process for volume deformation control [41].

Other important findings have been made in the field of simulation tools designed for
deformation analysis of lattice structures [34]. In the case of auxetic materials, careful ori-
entation of the base units is needed to produce a handed structure with desired properties.
Most of the work in auxetics deals with 2D problems. In the case of 3D structures, motions
such as bending, twisting, or linear extension are considered. Recent works in 3D lattice
optimization consider a grading approach to increase yield strength and stiffness of the
structure through manipulation of shape and size of the struts [18].

In this study, the goal is to exploit the trait of different elastic moduli to enable
conforming of the lattice structure to different 3D structures once load is applied. This
approach is motivated by the current state of the art of 3D multi-material technology, which
enables simultaneous printing of different material phases. The proposed population
algorithm can explore the search space and evolve complex multi-material structures
that deform to the predefined geometry once external forces are applied. This is not
easily achieved by manually designing structures using conventional CAD techniques, or
using standard topological optimization approaches, such as homogenization or shape
optimization. It was pointed out that the crucial parameter for success of optimization is
the ratio between the elastic moduli of stiff and soft materials, ξ.

The dependency between this parameter and residual error is neither linear nor
proportionate. For some cases, residual error decreases with increase of ξ only up to a
certain point, after which the structure cannot use the heterogeneity of materials as a source
of further decreasing the residual error. For ξ < 10, the optimization cannot be performed,
considering the problems presented in this paper and the methods used.

A procedure based on discrete cosine transform was proposed for data compression
of the topology of truss structures. This increases the speed of the convergence, but also
symmetry is naturally promoted in the structures. This is a favorable trait for the case of
symmetrically loaded structures, and desired symmetrical deformation behaviors.
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6. Conclusions and Future Work

The method presented in this study proved suitable for solving the problem of finding
material distribution of lattices’ struts with the goal of achieving desired deformation
behaviors. Despite proven reliability of the used numerical simulation environment,
additional analyses through both numerical and experimental validation are necessary to
reliably describe the hyperelastic nature of printed structures.

The future work will include additional optimization criteria, i.e., mass minimization
in addition to fulfilling deformation criteria. Another interesting problem will be to enable
simultaneous shape optimization. In addition, variable lattices will be incorporated, which
will affect the rigidity/compliance of the structure in certain regions, based on the structure
of the lattice in that domain. The last step would be to manufacture specimens and
experimentally confirm results obtained through simulations.
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