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Abstract: The purpose of this paper is to prove fixed point theorems for cyclic-type operators in
extended b-metric spaces. The well-posedness of the fixed point problem and limit shadowing
property are also discussed. Some examples are given in order to support our results, and the last
part of the paper considers some applications of the main results. The first part of this section is
devoted to the study of the existence of a solution to the boundary value problem. In the second
part of this section, we study the existence of solutions to fractional boundary value problems with
integral-type boundary conditions in the frame of some Caputo-type fractional operators.
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1. Introduction and Preliminaries

In 1922, Banach proved an interesting fixed point theorem for metric spaces (see [1]),
known as the famous “Banach contraction principle”. Since then, different generalisations
of this theorem have been established.

Generalising the Banach contraction principle has been considered in a variety of ways.
One of these is the consideration of different types of operators that satisfy some contraction
conditions. Recently, different authors proved fixed point theorems for operators that
satisfy a cyclic-type contraction condition. One important paper that deals with fixed point
theory for cyclic contractions is [2], where some fixed point results for cyclic mappings
are proved. The results are then extended in the paper [3], where the authors considered
generalisation of the contraction condition. R. George et al. in [4] considered various types
of cyclic contractions, such as Kannan, Chatterjee, and Ćirić, and proved the existence and
uniqueness theorems for these classes of operators. Other results that involve the notion
of cyclic contraction, including applications to integral equations, can be found in [5–8].
We also note that the cyclic operator idea has been applied in deriving synchronisation
conditions of complex dynamical systems—see [9].

Concerning the other direction in generalising the “Banach contraction principle”—
changing the working space, a popular concept is that of b-metric space (also known as
quasimetric space). This was introduced by Bakhtin in 1989 in [10] and formally defined
by Czerwik in 1993 in [11]. Since then, many authors have proved different fixed point
theorems in the context of a b-metric space (see [12–14]). One of the major difference
between the concepts of metric and b-metric is that fact that the latter is not necessary
continuous (see [15,16]).

The purpose of this paper is to extend the previous results to the class of extended
b-metric spaces and also to discuss the well-posedness and the limit shadowing property
of the fixed point problem. Some examples are provided in order to support the results.
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The standard notations and terminologies in nonlinear analysis are used throughout
this paper. We recall some essential definitions and fundamental results. We begin with the
definition of the b-metric space.

Definition 1 (Bakhtin [10], Czerwik [17]). Let X be a set and let s ≥ 1 be a given real number.
A function d : X× X → [0, ∞) is said to be a b-metric if the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x);
3. d(x, z) ≤ s[d(x, y) + d(y, z)].

for all x, y, z ∈ X. A pair (X, d) is called a b-metric space.

We notice that the notion reduces to that of a metric space if s = 1. Hence, this notion
is a generalisation of that of the metric space.

A classical example of a b-metric is the following:

Example 1 (Berinde see [18]). The space Lp(0 < p < 1) of all real functions x(t), t ∈ [0, 1]
such that ∫ 1

0
|x(t)|pdt < ∞,

is a b-metric space if we take

d(x, y) = (
∫ 1

0
|x(t)− y(t)|pdt)1/p, for each x, y ∈ Lp.

The constant s is 21/p.

For other examples regarding the notions of b-metric and extended b-metric,
see [10,12,17–19].

With the paper [4] as a starting point, we consider the case of cyclic operators in
extended b-metric spaces. In [2], we found a generalisation of the well-known Banach
contraction principle, where the notion of cyclic contraction is inductively introduced for
the first time. Let us recall the definition of the cyclic operator in the context of a complete
metric space as follows:

Definition 2 ([2]). Let (X, d) be a b-metric space. Let p be a positive integer; p ≥ 2, A1, A2, ..., Ap

be nonempty and closed subsets of X, Y =
p⋃

i=1
Ai and T : Y → Y. Then, T is called a cyclic

operator if

1. Ai, i ∈ {1, 2, ...p} are nonempty subsets;
2. T(A1) ⊆ A2, ..., T(Ap−1) ⊆ Ap, T(Ap) ⊆ A1.

In [20], T. Kamran et al. introduced the notion of extended b-metric space as follows:

Definition 3. Let X be a nonempty set and θ : X × X → [1, ∞). The function dθ : X × X →
[0, ∞) is said to be an extended b-metric if the following conditions are satisfied:

1. dθ(x, y) = 0 if and only if x = y;
2. dθ(x, y) = d(y, x);
3. dθ(x, z) ≤ θ(x, z)[d(x, y) + d(y, z)].

for all x, y, z ∈ X. A pair (X, dθ) is called an extended b-metric space.

It is obvious that if θ(x, z) = s with s ≥ 1, the notion reduces to that of b-metric space.
As a remark, we must emphasise the symmetry of the extended b-metric, which appears in
the second axiom in the previous definition.
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In this paper, for the function T : X → X and x0 ∈ X, O(x0) =
{x0, Tx0, T2x0, T3x0, . . . } represents the orbit of x0.

The operator T is a contraction if k ∈ [0, 1) exists such that d( f (x), f (y)) ≤ kd(x, y),
for all x, y ∈ X.

In the following, the concepts of convergence, Cauchy sequence, and completeness
are introduced in the framework of an extended b-metric space.

Definition 4. Let (X, dθ) be an extended b-metric space. Then, a sequence {xn} in X is said to be

(i) Convergent if and only if x ∈ X exists such that dθ(xn, x) → 0 as n → ∞ we write
lim

n→∞
xn = x.

(ii) Cauchy if and only if dθ(xn, xm)→ 0 as n, m→ ∞.

The extended b-metric space (X, dθ) is complete if every Cauchy sequence converges
in X. We note that the extended b-metric dθ is not in general a continuous function.

Lemma 1. Let (X, dθ) be an extended b-metric space. Then, every convergent sequence has a
unique limit.

2. Fixed Point Results

We begin this section with the following main results:

Theorem 1. Let (X, dθ) be a complete extended b-metric space with dθ , a continuous functional.
Let {Ai}

p
i=1, where p is a positive integer, be nonempty closed subsets of X, and suppose T :

p⋃
i=1

Ai →
p⋃

i=1
Ai, is a cyclic operator that satisfies the following conditions:

(i) T(Ai) ⊆ Ai+1, for all i ∈ {1, 2, . . . , p};
(ii) d(Tx, Ty) ≤ λd(x, y) for all x ∈ Ai, y ∈ Ai+1 where λ ∈ [0, 1) be such that for each

x ∈ X, lim
n,m→∞

θ(xn, xm) <
1
λ where xn = Tn(x), n = 1, 2, . . . .

Thus, T has a fixed point x∗. Moreover, for each y ∈ X, Tny→ x∗.

Proof. Let x0 ∈
p⋃

i=1
Ai if i ∈ {1, 2, . . . , p} exists such that x0 ∈ Ai.

From hypothesis, (i) we have x1 = T(x0) ∈ Ai+1.
Thus, we define a sequence {xn} by xn+1 = Txn for all n ≥ 0. We can show that {xn}

is a Cauchy sequence.
If xn = xn+1, then xn is a fixed point of T. We suppose that xn 6= xn+1 for all n ≥ 0.
From (ii), it follows that

d(xn, xn+1) = d(Txn+1, Txn) ≤ λd(xn−1, xn).

If we repeat the process we obtain

d(xn, xn+1) ≤ λnd(x0, x1). (1)

Additionally, we assume that x0 is a nonperiodic point of T. If x0 = xn using (1),
for any n ≥ 2, we obtain

d(x0, T(x0)) = d(xn, Txn).

Thus, d(x0, x1) = d(xn, Txn+1) and d(x0, x1) ≤ λnd(x0, x1), a contradiction.
Therefore, d(x0, x1) = 0, i.e., x0 = x1, and x0 is a fixed point of T. Thus, we assume

that xn 6= xm for all n, m ∈ N with m 6= n.
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For any m, n with m > n we obtain

d(xn, xm) ≤ θ(xn, xm)λ
ndθ(x0, x1) + θ(xn, xm)θ(xn+1, xm)λ

n+1dθ(x0, x1)+

+ θ(xn, xm)θ(xn+1, xm) · · · θ(xm−1, xm)λ
m−1dθ(x0, x1)

≤ dθ(x0, x1)[θ(x1, xm)θ(x2, xm · · · θ(xn−1, xm)θ(xn, xm)λ
n+

+ θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)θ(xn+1, xm)λ
n+1 + · · ·

+ θ(x1, xm)θ(x2, xm) · · · θ(xn−1, xm)θ(xn, xm)θ(xn+1, xm) · · · θ(xm−1, xm)λ
m−1].

Since lim
n,m→∞

θ(xn+1, xm)λ < 1, the series
∞
∑

n=1
λn

n
∏

r=1
θ(xr, xm) converges by ratio test

for each m ∈ N.

Let S =
∞
∑

n=1
λn

n
∏

r=1
θ(xr, xm), Sn =

n
∑

j=1
λj

j
∏

r=1
θ(xr, xm).

Thus, for m > n we have dθ(xn, xm) ≤ dθ(x0, x1)[Sm−1, Sn].

Letting n → ∞, we conclude that {xn} is a Cauchy sequence in
p⋃

i=1
Ai, a subspace

of the complete extended b-metric space X. Therefore, there exists x∗ ∈
p⋃

i=1
Ai such that

dθ(xn, x∗)→ 0, as n→ ∞. Then, lim
n→∞

xn = x∗.

The sequence {xn} has an infinite number of terms in each Ai for all i ∈ {1, 2, . . . , p}.

Therefore, x∗ ∈
p⋂

i=1
Ai .

We shall now show that x∗ is a fixed point of T. For any n ∈ N we have

dθ(Tx∗, x∗) ≤ θ(Tx∗, x∗)[dθ(Tx∗, xn) + dθ(xn, x∗)]

≤ θ(Tx∗, x∗)[λdθ(x∗, xn−1) + dθ(xn, x∗)].

We note that dθ(Tx∗, x∗) ≤ 0 as n→ ∞. Hence, dθ(Tx∗, x∗) = 0, which is equivalent
to x∗ = Tx∗. Thus, we proved that x∗ is the fixed point of T.

For the uniqueness, let ν be another fixed point of T.
By hypothesis (ii), we obtain dθ(x∗, ν) = dθ(Tx∗, Tν) ≤ λdθ(x∗, ν) < dθ(x∗, ν),

which is a contradiction.
Then, dθ(x∗, ν) = 0 and x∗ = ν. The fixed point is unique.

In the following theorem, we present a result which assures the well-posedness of the
fixed point problem.

Theorem 2. Let T :
p⋃

i=1
Ai →

p⋃
i=1

Ai be a cyclic operator defined as in Theorem 1. Then, the fixed

point problem for T is well-posed, i.e., a sequence {xn} ∈
p⋃

i=1
Ai with dθ(xn, Txn)→ 0 as n→ ∞

exists; then, xn → x∗ as n→ ∞.

Proof. Applying Theorem 1, for any initial value x0 ∈
p⋃

i=1
Ai, x∗ ∈

p⋂
i=1

Ai exists, which is

the unique fixed point of T. Thus dθ(xn, x∗) is well defined.
We consider the following inequality:

dθ(xn, x∗) ≤ θ(xn, x∗)[dθ(xn, Txn) + dθ(Txn, x∗)]

= θ(xn, x∗)[dθ(xn, Txn) + dθ(Txn, Tx∗)]

≤ θ(xn, x∗)[dθ(xn, Txn) + λdθ(xn, x∗)].

Then, we have [1 − θ(xn, x∗)λ]dθ(xn, x∗) ≤ θ(xn, x∗)dθ(xn, Txn), and we obtain
dθ(xn, x∗) ≤ θ(xn ,x∗)

1−θ(xn ,x∗)λ dθ(xn, Txn).
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Letting n → ∞, the hypothesis that dθ(xn, Txn) → 0 is formed. Hence, dθ(xn, x∗)
= 0. Thus, our conclusion is supported.

The next theorem assures the limit shadowing property of the cyclic operator.

Theorem 3. Let T :
p⋃

i=1
Ai →

p⋃
i=1

Ai, be a cyclic operator defined as in Theorem 1. Then, T has

the limit shadowing property, i.e., if a convergent sequence {yn} ∈
p⋃

i=1
Ai with d(yn+1, Tyn)→ 0,

as n→ ∞ exists, then x ∈
p⋃

i=1
Ai exists such that d(yn, Tnx)→ 0, as n→ ∞.

Proof. As in the proof of Theorem 1, for any initial value x ∈
p⋃

i=1
Ai, x∗ ∈

p⋂
i=1

Ai is the

unique fixed point of T. Thus, d(yn, x∗) and d(yn+1, x∗) are well defined.

Let y ∈ X exist as the limit of the convergent sequence {yn} ∈
p⋃

i=1
Ai.

We consider the following estimation:

dθ(yn+1, x∗) ≤ θ(yn+1, x∗)[dθ(yn+1, Tyn) + dθ(Tyn, x∗)]

= θ(yn+1, x∗)[dθ(yn+1, Tyn) + dθ(Tyn, Tx∗)]

≤ θ(yn+1, x∗)[dθ(yn+1, Tyn) + λ(dθ(yn, x∗)].

Letting n→ ∞, from the hypothesis, we have dθ(yn+1, Tyn)→ 0.
Thus, dθ(y, x∗) ≤ lim

n→∞
θ(yn+1, x∗)λdθ(y, x∗).

Since lim
n→∞

θ(yn+1, x∗)λ < 1, this inequality is true only for the case of dθ(y, x∗) = 0.

Thus, y = x∗ and we have dθ(yn, Tnx)→ d(y, x∗) = 0 as n→ ∞.

In order to support our results, let us present the following example:

Example 2. Let X = R+ endowed with dθ : X × X → R+ defined by dθ = |x − y|3, and let
θ : X× X → [1, ∞) defined by θ(x, y) = x + y + 2. It is easy to check that (X, dθ) is a complete
extended b-metric space.

Let A1 = [0, 1], A2 = [0, 1
2 ], A3 = [0, 1

3 ] be three subsets of X = R+.

Define T :
3⋃

i=1
Ai →

3⋃
i=1

Ai by Tx = x
2 . Obviously, T(A1) ⊆ A2, T(A2) ⊆ A3, T(A3)

⊆ A1. Thus,
3⋃

i=1
Ai is a cyclic representation with respect to T.

The contraction condition is also verified.

dθ(Tx, Ty) = | x
2
− y

2
|3 = |1

2
(x− y)|3 ≤ 1

8
|x− y|3 =

1
8

dθ(x, y).

Taking into account for each x ∈
3⋃

i=1
Ai, Tnx = x

2n , we obtain

lim
n,m→∞

θ(xn, xm) = lim
n,m→∞

θ(
x
2n ,

x
2m )

= lim
n,m→∞

(
x
2n +

x
2m + 2) = 2 < 8.

Therefore, all conditions of Theorem 1 are satisfied, meaning that 0 ∈
3⋂

i=1
Ai is the unique fixed

point of T.
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3. Applications to Nonlinear Fractional Differential Equations

Our first application of this section is devoted to the existence of a solution of a
boundary value problem. Thus, we recall the following problem given by Nieto and Lopez
in [21]. {

u′(t) = f (t, u(t))
u(0) = u(a),

(2)

where a > 0 and f : [0, a]×R→ R is a continuous function. A solution to (2) is the function
u ∈ C1([0, a],R) satisfying (2), where C1([0, a],R) is the set of all continuous differentiable
functions on [0, a]. We suggest that (2) has a lower solution if function u ∈ C1([0, a],R)
exists, satisfying {

u′(t) ≤ f (t, u(t))
u(0) ≤ u(a).

It is well known [22] that the existence of a lower solution a and an upper solution b
with a ≤ b implies the existence of a solution of the boundary value problem between a
and b.

In [21], we find the following results:

Theorem 4. Let a > 0. Let f : [0, a]×R → R be a continuous mapping. Assume that α > 0,
β > 0 with β < α exist such that for any x, y ∈ R,

0 ≤ f (t, x) + αx− ( f (t, y) + αy) ≤ β(x− y).

Thus, the existence of a lower solution of (2) provides the existence of a unique solution of (2).

Furthermore, let us provide a generalisation of Theorem 4 using cyclic operators for
the case of extended b-metric spaces.

Theorem 5. Let a > 0. Let f : [0, a]×R → R be a continuous mapping. Assume that α > 0,
β > 0 with β < α exsit such that for any x, y ∈ R,

0 ≤ f (t, x) + αx− ( f (t, y) + αy) ≤ β(x− y).

Thus, problem (2) has a unique solution.

Proof. We can rewrite problem (2) as follows:{
u′(t) + αu(t) = f (t, u(t)) + αu(t)
u(0) = u(a).

This problem is equivalent to the following integral equation:

u(t) =
a∫

0

Q(t, s)( f (s, u(s)) + αu(s))ds,

where

Q(t, s) =

{
eα(a+s−t)

eαa−1 , 0 ≤ s ≤ t ≤ a
eα(s−t)

eαa−1 , 0 ≤ t ≤ s ≤ a.

and u ∈ C1([0, 1],R).
Let X = C([0, a],R). Then, X is a complete extended b-metric space considering

dθ(x, y) = sup
t∈[a,b]

|x(t)− y(t)|2, with θ(x, y) = 2|x(t)|+ |y(t)|+ 1, where θ : X×X → [1, ∞).

Let A1 = A2 = A3 = X = C([0, a],R) three closed subsets of the space (X, dθ).
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Let us define the operator T :
⋃3

i=1 Ai →
3⋃

i=1
Ai as follows:

Tu(t) =
a∫

0

Q(t, s)( f (s, u(s)) + αu(s))ds

for u ∈ C([0, a],R) and t ∈ [0, a).
For x, y ∈ C([0, a],R) and t ∈ [0, a] we have

| f (t, x(t)) + αx(t)− f (t, y(t))− αy(t)| ≤
√

β|x(t)− y(t)|. (3)

Clearly, T(A1) ⊆ A2, T(A2) ⊆ A3, T(A3) ⊆ A1. Thus, T is a cyclic operator on
3⋃

i=1
Ai.

For any x, y ∈
3⋃

i=1
Ai we have the following estimation:

|Tx(t)− Ty(t)|2 ≤
a∫

0

Q(t, s)| f (s, x(s)) + αx(s)− f (t, y(s))− αy(s)|2ds

≤
a∫

0

Q(t, s)β|x(s)− y(s)|2ds

≤ βdθ(x, y) sup
0≤t≤a

a∫
0

Q(t, s)ds

=
β

α
dθ(x, y).

Thus, for x, y ∈ C([0, a],R), we have dθ(Tx, Ty) ≤ β
α dθ(x, y).

Since lim
n,m→∞

θ(xn(t), xm(t)) = 1 < α
β , we fulfilled all of the conditions of Theorem 3.

Hence, using Theorem 3, we obtained the existence and uniqueness of fixed points of T.

Remark 1. Theorem 5 still holds (with the reverse inequality) if we replace the existence of a lower
solution of the boundary value problem by the existence of an upper solution of the same problem.

In the last part of this section, we present an application of our main theorem for
nonlinear fractional differential equations. Some results concerning the fixed point tech-
nique for determining the solutions of fractional differential equations can also be found
in [19,23].

In [24,25], the definition of the Caputo derivative of functional g : [0, ∞)→ R of order
β > 0 is given, where g is a continuous function as follows:

CDβ(g(t)) :=
1

Γ(n− β)

t∫
0

(t− s)n−β−1g(n)(s)ds (n− 1 < β < n, n = [β] + 1), (4)

where [β] represents the integer part of the positive real number β, and Γ is a gamma
function. Let us recall the Caputo type nonlinear fractional differential equation

CDβ(x(t)) = f (t, x(t)) (5)

with the integral boundary conditions:

x(0) = 0, x(1) =

η∫
0

x(s)ds,
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where 1 < β ≤ 2, 0 < η < 1, x ∈ C[0, 1] and T : [0, 1] × R → R is a continuous
given function (see [26]). Since f is continuous, Equation (5) is inverted as the following
integral equation:

x(t) = 1
Γ(β)

t∫
0
(t− s)β−1 f (s, x(s))ds

− 2t
(2−η2)(Γ(β))

1∫
0
(1− s)β−1 f (s, x(s))ds

+ 2t
(2−η2)(Γ(β))

η∫
0

(
s∫

0
(s− p)β−1 f (p, x(p))dp

)
ds.

(6)

In addition, we provide an existence theorem.

Theorem 6. Taking into account the nonlinear fractional differential Equation (5), for every
x, y ∈ C[0, 1] and M : [0, 1]×R→ R a given continuous mapping, we obtain

|M(s, x(s))−M(s, y(s))| ≤ Γ(β + 1)√
50
|x(s)− y(s)|, f or all s ∈ [0, 1].

Thus, the Caputo type nonlinear fractional differential Equation (5) has a unique solution.
Moreover, for each x0 ∈ C[0, 1], the sequence of the successive approximation {xn} defined by

xn(t) =
1

Γ(β)

t∫
0

(t− s)β−1M(s, xn−1(s))ds

− 2t
(2− η2)(Γ(β))

1∫
0

(1− s)β−1M(s, xn−1(s))ds

+
2t

(2− η2)(Γ(β))

η∫
0

 s∫
0

(s− p)β−1M(p, xn−1(p))dp

ds.

for all n ∈ N, converges to a unique solution of the nonlinear fractional differential equation of
Caputo type (5).

Proof. Let X = C[0, 1]. The operator is defined as follows: T :
3⋃

i=1
Ai →

3⋃
i=1

Ai as follows

Tx(t) =
1

Γ(β)

t∫
0

(t− s)β−1M(s, x(s))ds

− 2t
(2− η2)(Γ(β))

1∫
0

(1− s)β−1M(s, x(s))ds

+
2t

(2− η2)(Γ(β))

η∫
0

 s∫
0

(s− p)β−1M(p, x(p))dp

ds.

Thus, (X, dθ) is a complete extended b-metric space with respect to dθ(x, y) = ‖x−
y‖∞ = sup

t∈[a,b]
|x(t) − y(t)|2, where θ : X × X → [1, ∞) is defined by θ(x, y) = |x(t)| +

|y(t)|+ 1.
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Let A1 = A2 = A3 = X = C[0, 1] three nonempty subsets of X. Obviously, A1, A2, A3
are closed subsets of (X, dθ). Clearly, T(A1) ⊂ A2, T(A2) ⊂ A3 and T(A3) ⊂ A1. Thus, T

is a cyclic operator on
3⋃

i=1
Ai.

Assuming x, y ∈
3⋃

i=1
Ai and t ∈ [0, 1], we obtain

dθ(Tx, Ty) = |Tx(t)− Ty(t)|2

= | 1
Γ(β)

t∫
0

(t− s)β−1M(s, x(s))ds

− 2t
(2− η2)Γ(β)

1∫
0

(1− s)β−1M(s, x(s))ds

+
2t

(2− η2)Γ(β)

η∫
0

 s∫
0

(s− p)β−1M(p, x(p))dp

ds

− 1
Γ(β)

t∫
0

(t− s)β−1M(s, y(s))ds

+
2t

(2− η2)Γ(β)

1∫
0

(1− s)β−1M(s, y(s))ds

− 2t
(2− η2)Γ(β)

η∫
0

 s∫
0

(s− p)β−1M(p, y(p))dp

ds|2.

Using the properties of the module, we obtain

dθ(Tx, Ty) ≤ | 1
Γ(β)

t∫
0

(t− s)β−1[M(s, x(s))−M(s, y(s))]ds

− 2t
(2− η2)Γ(β)

1∫
0

(1− s)β−1[M(s, x(s))−M(s, y(s))]ds

+
2t

(2− η2)Γ(β)

η∫
0

 s∫
0

(s− p)β−1[M(p, x(p))−M(p, y(p)]dp

ds|2

≤ 1
Γ2(β)

t∫
0

|t− s|2(β−1)|M(s, x(s))−M(s, y(s))|2ds

+
4t2

(2− η2)2Γ2(β)

1∫
0

(1− s)2(β−1)|M(s, x(s))−M(s, y(s))|2ds

+
4t2

(2− η2)2(Γ2(β))

η∫
0

 s∫
0

(s− p)2(β−1)|M(p, x(p))−M(p, y(p)|2dp

ds.
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Taking the supremum over s ∈ [0, 1], we obtain

dθ(Tx, Ty) ≤ 1
Γ2(β)

t∫
0

|t− s|2(β−1) Γ2(β + 1)
50

sup
s∈[0,1]

|x(s)− y(s)|2ds

+
4t2

(2− η2)2(Γ2(β))

1∫
0

(1− s)2(β−1) Γ2(β + 1)
50

sup
s∈[0,1]

|x(s)− y(s)|2ds

+
4t2

(2− η2)2(Γ2(β))

η∫
0

 s∫
0

(s− p)2(β−1) Γ2(β + 1)
50

sup
s∈[0,1]

|x(s)− y(s)|2dp

ds

≤ Γ2(β + 1)
50

dθ(x, y)× sup
s∈[0,1]

[
1

Γ2(β)

t∫
0

|t− s|2(β−1)ds

+
4t2

(2− η2)2(Γ2(β))

1∫
0

(1− s)2(β−1)ds +
4t2

(2− η2)2(Γ2(β))

η∫
0

s∫
0

(s− p)2(β−1)dp ds]

≤ 1
2

dθ(x, y).

Since lim
n,m→∞

θ(xn, xm) = 1 < 2, we fulfilled all of the conditions of

Theorem 1. Thus, a unique solution of the Caputo-type nonlinear fractional differential
Equation exists (5).

4. Conclusions

Fixed point theory is a powerful tool for proving the existence and uniqueness of
different types of equations. Recently, there has been an increase in papers that use the
concept of the cyclic operator. This notion has many projections in physics and astrophysics.
We also know that one of the most researched areas of mathematics is partial differential
calculus. It is used in modeling many real world phenomena. This paper unifies both
fields. First, a fixed point result translating the Banach contraction principle for the case
of cyclic operators in extended b-metric spaces is given. Then, it is proved that one can
obtain fixed point results in extended b-metric spaces for the case of this type of operator.
The Application Section 3 is devoted to the study of the existence and uniqueness of
a boundary value problem given by Nieto and Lopez in [21]. Then, an application to
fractional differential equations is presented.
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