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Abstract: The spread of a computer virus among the Internet of Things (IoT) devices can be modeled
as an Epidemic Containment (EC) game, where each owner decides the strategy, e.g., installing
anti-virus software, to maximize his utility against the susceptible-infected-susceptible (SIS) model of
the epidemics on graphs. The EC game’s canonical solution concepts are the Minimum/Maximum
Nash Equilibria (MinNE/MaxNE). However, computing the exact MinNE/MaxNE is NP-hard, and
only several heuristic algorithms are proposed to approximate the MinNE/MaxNE. To calculate
the exact MinNE/MaxNE, we provide a thorough analysis of some special graphs and propose
scalable and exact algorithms for general graphs. Especially, our contributions are four-fold. First,
we analytically give the MinNE/MaxNE for EC on special graphs based on spectral radius. Second,
we provide an integer linear programming formulation (ILP) to determine MinNE/MaxNE for
the general graphs with the small epidemic threshold. Third, we propose a branch-and-bound
(BnB) framework to compute the exact MinNE/MaxNE in the general graphs with several heuristic
methods to branch the variables. Fourth, we adopt NetShiled (NetS) method to approximate the
MinNE to improve the scalability. Extensive experiments demonstrate that our BnB algorithm can
outperform the naive enumeration method in scalability, and the NetS can improve the scalability
significantly and outperform the previous heuristic method in solution quality.

Keywords: cyber-security; epidemic control; game theory; complex network

1. Introduction

Diffusion processes in small networks can model the explosive spread of computer
viruses (e.g., WananCry ransomware 2017 [1]) in an IoT network or Cyber–Physical Systems
(CPS) network. Efficient investment (secure firewall, etc.) can contain the spread of
such adverse events, which involves a specific cost for individuals. Most owners of a
device prefer to benefit from their neighbors as their security depends on the strategies
of the entire population. These dilemmas with the following properties can be modeled
as Interdependent Security (IDS) games: (1) a bad event happens suddenly within a
population of devices, whose security depends on the entire population; (2) individuals
can reduce these risks by the investment [2].

Researches propose many models in this area [3–6]. A large part of models involve
individual utility functions that are difficult to compute, and some models cannot be
extended to heterogeneous networks, which are not close to realistic scenarios. Thus,
Saha et al. [7] used the characterization of spectral radius to simplify the utility function,
and present a general dynamics SIS model for arbitrary graphs as an Epidemic Containment
(EC) game. When an epidemic dies out in an EC game, every individual prefers not to
change its strategy under a Nash Equilibrium (NE).

The study of computing equilibria is challenging. Minimum Nash Equilibria (MinNE)
and Maximum Nash Equilibria (MaxNE) are essential parts of understanding NE. Several
algorithms can be used to find MinNE/MaxNE for the EC game. High Degree (HDG)
and Low Degree (LDG) are heuristic algorithms for MinNE and MaxNE, respectively [7].
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They generate the strategy in a degree order, which will pick a node that does not belong
to any secured node set of MinNE/MaxNE, leading to a big loss with the exact solution.
Neighbors Information (NI) [8] is a heuristic MaxNE algorithm which performs better. NI
decides with too much information: information of nodes, strategy of their neighborhood,
and spectral radius of networks. On the one hand, the algorithms mentioned above
perform poorly, as shown in Section 3. On the other hand, big complex networks are hard
to estimate NE cost. Thus, company managers are interested in the small networks in
which LDG/HDG/NI cannot give the exact MinNE/MaxNE.

To fill this gap, we provide a thorough analysis of some special graphs and propose
exact and scalable algorithms for general graphs, and our contributions are four-fold.
First, we give the MinNE/MaxNE for EC on special graphs based on spectral radius. For
several important classes of network topologies (star-shaped graphs, complete graphs,
and path graphs), MinNE and MaxNE are equal in most cases. Second, we provide an
integer linear programming formulation (ILP) to compute MinNE/MaxNE for the general
graphs with the small epidemic threshold. Third, we propose a Branch-and-Bound (BnB)
framework to compute the exact MinNE/MaxNE in the general graphs with several
heuristic methods to branch the variables. We speed up the search with information
of degree, reduction of spectral radius, and neighborhood of nodes. We also adopt the
NetShiled (NetS) method to approximate the MinNE to improve the scalability. Fourth, we
test our methods empirically by comparing our algorithms with the enumeration method
on a random tree, Erdős–Rényi (ER) random networks, and Barabási–Albert (BA) scale-
free networks, and extensive experiments demonstrate that our algorithm framework can
outperform the naive enumeration method in scalability. The NetS algorithm can improve
the scalability significantly and outperform previous heuristic method in solution quality.

2. Related Work

Security game is a game-theoretic model that captures essential characteristics of
decision making to protect and self-insure resources within a network [9]. Kumar et al. [10]
limit the amount of graph information needed in the utility function, and consider decisions
restricted to the graph induced by nodes within a distance. Jiang et al. [11] consider a
network security game where the utility function determine by a weighted topology
which represents the positive externality between players. The utility function in the EC
game also involves a global quantity in the form of the spectral radius, which can be a
good proxy for estimating this cost from the characterization of Ganesh et al. [6]. Secure
problems (infection, computer virus, etc.) with interdependent actions can formulate as
Interdependent Security (IDS) games [12,13]. Kunreuther et al. [14] mainly focus on the
IDS game limited to the simple case of two agents. Moreover, general IDS model makes
decisions on the one-hop strategy limiting the information as a system. Aspnes et al. [5]
give an inoculation game model, which is a propagation-based IDS assuming a restricted
network topology. In this study, the infected individual will infect all its neighbors. In
the EC game, the individual is cured with a fixed rate. It is more closely to the spread of
epidemics in real life.

In the domain of immunization algorithm, Briesemeister et al. [15] give the random
wiring immunization, which is typically overwhelmed on power-law graphs. Madar et al. [16]
present an “acquaintance” immunization policy that picks a random person and immunizes
one random neighbor. The analytical result shows that it is better than several immunization
policies for scale-free graphs. Chen et al. [17] give an approximate algorithm (NetShiled)
to immunize the top k node, using matrix perturbation theory to approximate the drop of
the spectral radius. Some similar works also focus on an efficient vaccination algorithm
without considering NE structure [18,19]. To find NE in EC game, High Degree (HDG)
and Low Degree (LDG) [7] give a rough approximation for MinNE and MaxNE by picking
nodes in degree orders and checking in reverse degree orders, respectively. Xu et al. [8]
find that LDG performs poorly with small network scope, and gives a heuristic algorithm
with neighbors’ degree and strategy. Saha et al. [20] propose GreedyWalk, which reduces
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the spectral radius by reducing the number of closed walks of length k. It spends too
much time to determine the closed walks. However, all the works cannot give exact
MinNE/MaxNE even in small networks.

3. Preliminaries

The Epidemic Containment (EC) game [7] is based on an undirected graph G(V, E)
with the node set V and the edges set E. We use i as the index of the node, i = 0, . . . , N − 1,
N = |V|. The neighbor set is denoted by N(i) and A(G) denotes the the adjacency matrix
of G. An example of an Epidemic Containment (EC) game can be shown in Figure 1.

Figure 1. An Example of an Epidemic Containment (EC) game λ1 = 3.23, T = 2. (a) One kind
of non-Nash Equilibria (NE) where λ1 = 1 < T but when some nodes change their strategies it
still has λ1 < T, aa = (0, 1, 0, 0, 1, 0, 1, 0, 1, 0), Sa = {1, 4, 6, 8}. The spectral radius is determined
by G3[V − S(aa)] and λ1(G3[V − Sa]) = 1 < T, c0(aa) = C0, c(aa) = 6C0 + 4C1 = 4. If node 8
switches its strategy from a8 = 1 to a′8 = 0, reducing cost from C1 to C0, we get a′a and S′a. Now
that λ1(G8[V − S′a]) =

√
2 < T and epidemic still dies out, aa is not NE. (b) Another kind of

non-Nash Equilibria in which λ1 = 2.3 > T epidemic will spread around. (c) A Minimum Nash
Equilibria with c(ac) = 2, λ1 = 1.618. If nodes 1 or 6 change their strategy, the epidemic spreads
out. In addition, it is safe for the rest graph immunized from the secured node. We cannot find
another NE strategy with a cost lower than c(ac). (d) A Maximum Nash Equilibria with c(ad) = 4,
λ1(G1[V − S(ad)]) = 1.902 < T. No node can benefit from changing its strategy and there is no
strategy with a cost bigger than ad.

Epidemic Model. We choose a spectral characterized susceptible-infected-susceptible
(SIS, developed by Ganesh et al. [6]) model as epidemic model. In the SIS model, nodes
are in states susceptible (S) or infected (I). Initially, some source nodes get infected, and all
other nodes are susceptible. Each infected node i infects each of its neighbors j currently
in state S at a transmission rate β; if neighbor j gets infected, it switches to state I. Each
infected node i switches back to state S at rate δ. An epidemic dies out soon if λ1(G) < δ/β,
where λ1(G) is the spectral radius of the contact graph G or the largest eigenvalue of the
A(G). We define T = δ/β as the threshold which is smaller than λ1(G), and λ1(G) > T
implies the epidemic lasts long [7,21].

Game Model. Let ai denote the discrete strategy selected by the node i indepen-
dently, whether to become secured (denoted by ai = 1) or not (denoted by ai = 0).
a = {a0, a1, . . . , aN−1} denotes the strategy profile of all the nodes. We use a−i to denote
the strategy profile of the players other than node i. S(a) = {i ∈ V : ai = 1} denotes
secured node set with the strategy profile a, and the graph G[V − S(a)] induced by the
set V − S(a) of unsecured nodes called attack graph. Gi[V − S(a)] represents the unique
connected component of G[V − S(a)] that contains node i. A node will incur a cost C1
(the cost for a vaccination), if node i chooses to be secured, i.e., ai = 1. If node i is not
secured, i.e., ai = 0, it probably gets infected, and its cost depends on whether or not the
epidemic dies out quickly in the connected component induced by the unsecured nodes. If
λ1(Gi[V − S(a)]) < T, node i merely bears a cost C0 (the cost of secured by its neighbor);
if λ1(Gi[V − S(a)]) > T, node i in the susceptible state will suffer the cost C2 (the cost
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of recovery, C0 < C1 < C2). Given the strategy profile a, the cost of each node ci(a) is
described as below:

ci(a) =


C0, ai = 0 , λ1(Gi[V − S(a)]) < T;

C1, ai = 1;

C2, ai = 0 , λ1(Gi[V − S(a)]) > T.

(1)

c(a) = ∑i∈V ci(a) is the cost of strategy a. Nash Equilibrium is defined as below:

Definition 1. For a strategy profile a, ∀i ∈ V, we have a′ in which a′i is the alternative strategy
for node i and a′j = aj, ∀i 6= j. The strategy profile a is Nash Equilibrium (NE) in EC game if and
only if ci(a) 6 ci(a′), ∀i ∈ V.

In an NE, node i cannot benefit by changing its strategy, given that a−i is fixed [7].
If a is NE, CMin = min c(a) is the cost of Minimum Nash Equilibria (MinNE), and
CMax = max c(a) is the cost of Maximum Nash Equilibria (MaxNE). There is an exam-
ple of EC game under T = 2.0. An instance of EC game can be defined as a tuple
EC(G, T, C0, C1, C2). For the rest of the paper, we will focus on instances where C0 = 0,
C1 = 1 and C2 = 2. Computing the Minimum Nash Equilibria (MinNE) is NP-complete [7].
We can prove complexity of Maximum Nash Equilibria (MaxNE) is NP-complete in the
same way.

Lemma 1. Finding the Maximum Nash Equilibria of an EC game is NP-complete.

Proof. To prove this statement, we reduce the problem of finding vertex cover to this
problem. Let IVC and IEC be two general instances of the two problems defined as follows:
(1) IVC(G

′
, P
′
): Given a graph G

′
= (V, E), is there a vertex cover set of size P

′
or less?

(2) IEC(G, T, C0, C1, C2, P): Given the EC game (G, T, C0, C1, C2), is there a configuration
with social cost P or less? We reduce IVC to IEC as follows: set G = G

′
, T = ε, where ε is

arbitrarily close to 0, set C0 = 0, C2 = ∞, choose C1 such that 0 < C1 < ∞ and set P = P
′
C.

Clearly, the reduction takes polynomial time. Now we show this is a valid reduction. If
there is a vertex cover set V1 ⊂ V of size |V1| = P, then V1 corresponds to a secured node
set of IEC yielding social cost P = P

′
C1. As a result that removing the vertex cover set, by

definition, leaves no edge in the graph and so, the spectral radius of the attack graph is
0 which is less than ε. Therefore, all the unsecured nodes incur zero cost and NE cost is
P = P

′
C1. On the other hand, if there is a secured node set V1 ⊂ V of cardinality |V1| = P,

and NE cost P
′
C1 in IEC, that means removing V1 from G, leaves no edge in the graph. By

definition, V1 is a vertex cover to G of size P. Therefore, this is a valid polynomial time
reduction and finding the corresponding social cost with P in EC game is NP complete.
Set P = |V| − 1, . . . , 1 in a decreasing order, the first answer for IVC is the MaxNE for the
corresponding IEC.

4. Counterexample for HDG/LDG/NI

ITERATIVESECURE (IS) [7] is a method to generate an NE for the EC game with two
nodes permutations π and ρ. HDG/LDG/NI [7,8] is based on ITERATIVESECURE and
designed to obtain approximate MinNE or MaxNE for the EC game. According to nodes
permutation π in V, ITERATIVESECURE produces a secured node set S, and ends with
λ1(Gi[V − S]) < T, i ∈ V − S. Then, ITERATIVESECURE checks every node in set S by a
nodes permutation ρ in V. If node ρ(i) changes its strategy λ1(Gρ(i)[V − (S− ρ(i))]) < T,
delete the node from S. Permutation of nodes π and ρ in HDG are non-increasing and non-
decreasing degree orders. LDG is also based on ITERITERATIVESECURE [7], permutation
π and ρ are non-decreasing and non-increasing degree orders. In NI, permutation π and
ρ are non-decreasing and non-increasing score orders. They have similar disadvantages:
(1) pick a node too early but fail to delete it from the S (e.g., node 4 in Figure 2a); (2) fail
to reach a node in permutation π which is necessary for NE (e.g., node 4 in Figure 2c); (3)
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confuse the nodes with the same property (degree, reduction of spectral radius, etc.). Thus,
previous algorithms cannot give the exact MinNE/MaxNE even in small networks, and we
propose some algorithms to find exact MinNE/MaxNE.

(a) HDG (b) Exact MinNE (c) LDG (d) NI (e) Exact MaxNE

Figure 2. A network for EC game with N = 7, T = 1.0. (a) High Degree (HDG) picks nodes
in non-increasing degree order with permutation {0, 1, 4, 2}, and check nodes with permutation
{2, 4, 1, 0}. (a) HDG gets an NE with c = 4 as MinNE, when exact MinNE (b) is c = 3 with {0, 1, 3}.
(c) Low Degree (LDG) picks nodes in non-decreasing degree order with permutation {6, 2, 3, 5, 0, 1},
and check nodes with permutation {1, 0, 5, 3, 2, 6}. LDG gets an NE with c = 3 as MinNE, NI (d) gets
an NE with c = 4, when exact MaxNE (e) is c = 5 with {0, 3, 4, 5, 6}.

5. Approach to Find Nash Equilibria for Special Networks

In this section, we explore the NE based on characters of spectral radius for three
network typologies: star-shaped graphs, complete graphs, and path graphs. Given the
threshold T and a specific graph, we can give a strategy and find that MinNE/MaxNE are
equal in some cases.

5.1. Star-Shaped Networks

The spreading on a large amount of power-law graphs is often determined by the
spreading on the star-shaped subgraphs [6]. A star-shaped graph SN is a graph with N
nodes where the only edges are (0, i), i = 1, . . . , N − 1. The spectral radius of a star-shaped
graph Sk is λ1(Sk) =

√
N [6]. Node i = 1, · · · , N − 1 has the same structure. When 1 < T

and
√

k < T 6
√

k + 1, |N − k− 1| nodes around node 0 getting secured can reach an NE
and CMin = CMax = N − k− 1. However, for 0 < T 6 1, we have CMin = 1 to immunize
node 0 and CMax = N − 1 to immunize the other nodes, respectively.

5.2. Complete Graph

The complete graph also plays a prominent role in networks. For example, the
BGP routers, belonging to the Internet’s top-level autonomous systems, form an utterly
connected component [6]. A complete graph KN is a connected graph with N vertices
where all vertices are of degree N − 1. When the network is a complete graph, we have
spectral radius λ1(KN) = N − 1 [22]. A complete graph is a homogeneous network, and
every node has the same importance to getting secured. No node needs to be secured
under N − 1 < T. For 0 < T 6 N − 1, we can reach NE by randomly picking N − bTc
nodes to immunize, CMin = CMax = N − bTc.

5.3. Path Graphs

Paths graphs are simple and often crucial in their role as subgraphs of other graphs.
A path graph PN is a graph whose vertices can be listed in the order 0, 1, · · · , N− 1 such that
the edges are (i, i + 1) where i = 0, 1, · · · , N − 2. The spectral radius of a path graph PN is
λ1(PN) = 2 · cos( π

N+1 ) < 2 [23]. A path graph PN has 2 pendant nodes and the other N− 2
nodes of degree 2 which have similar importance. When 2 · cos(π

k ) < T 6 2 · cos( π
k+1 ),

MinNE immunize last node every k+ 1 nodes, CMin = b N
k+1c. Under this threshold, MaxNE

immunize two nodes every k+ 2 nodes in a fixed order, CMax = 2 · b N
k+2c+ b

N mod (k+2)−1
k c.
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6. Approach to Find Nash Equilibria for Small Threshold

We obtain MinNE/MaxNE structure based on the threshold for specific network
topology. We find that it is a minimum vertex cover problem in the case (T 6 1) to finding
MinNE. We extend integer linear programming formulation to finding MinNE/MaxNE in
threshold 0 < T 6 1, and 1 < T 6

√
2.

6.1. MinNE/MaxNE for T 6 1

When T 6 1, it is a minimum vertex cover problem to finding MinNE. We can compute
MaxNE by adding a constraint of neighborhood number. Every node is isolated from each
other under this threshold, and spectral radius of graph λ1(G[V − S(a)]) is 0.

Proposition 1. When threshold is small (T 6 1), a strategy profile a is NE that every node is
isolated from each other.

Proof. Every edge with two unsecured nodes (ai = 0) gets λ1 = 1 > T. Strategy a is not an
NE in which epidemic lasts long. In other words, every edge has at least one node ai = 1
immune to decline the λ1 = 0 < T.

For a minimum vertex cover problem, MinNE can be formulated as Equation (2)
according to Proposition 1. 1 6 ai + aj 6 2 ensures Proposition 1 that every edge can
immunize one node or two nodes.

min∑N−1
i=0 ai, (2a)

1 6 ai + aj 6 2, ∀(i, j) ∈ E, ai ∈ {0, 1}. (2b)

To reach the MaxNE, we maximize ∑N−1
i=0 ai. What is different from MinNE is Equa-

tion (3c). This constraint ensures at least one node around i ∈ N(j) including itself not
get secured. Otherwise, it is not an NE that node j can change its strategy to aj = 0. The
MaxNE with threshold 0 < T 6 1 can be formulated as Equations (3a)–(3c).

max ∑N−1
i=0 ai, (3a)

1 6 ai + aj 6 2, ∀(i, j) ∈ E, (3b)

aj + ∑i∈N(j) ai 6 |N(j)|, ai ∈ {0, 1}. (3c)

6.2. MinNE/MaxNE for 1 < T 6
√

2

For 1 < T 6
√

2, we extend the integer linear programming formulation for
MinNE/MaxNE from T < 1. The maximum connected component in the graph is an
edge with two nodes, and spectral radius of graph λ1(G[V − S(a)]) is 1 in this situation.

Proposition 2. When a strategy profile a is an NE under 1 < T 6
√

2, the maximum connected
component in G[V − S(a)] is a line with two unsecured nodes assuming G has at least one edge.

Proof. Edge with two unsecured nodes (ai = 0) gets λ1 = 1.0. For 1 < T 6 1.414,
maximum connected component in G[V − S(a)] is three nodes with two edges λ1 = 1.414,
and epidemic lasts long. Hence, a has maximum connected component containing no more
than three nodes. On the other hand, G[V − S(a)] has a edge (i, j) with one secured end
node i, ai = 1, aj = 0, λ1(G[V − S(a)]) = 0. Node i can change its strategy x′i = 0 that
λ1(G[V − S(a′)]) = 1.0 < T. Therefore, a is NE, the maximum connected component in
G[V − S(a)] is a edge.

Secured nodes consider to minimize the cost for MinNE. Every susceptible node i
has at most one susceptible neighbor node j, aj = 0, j ∈ N(i). Equation (4b) ensures
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the maximum connected component in the graph is one edge with two unsecured nodes
according to Proposition 2.

min ∑N−1
i=0 ai, (4a)

(1− ai) + (1− ai) ·∑j∈N(i)(1− aj) 6 2, ai ∈ {0, 1}. (4b)

We reformulate Equations (4a) and (4b) to find MinNE by maximizing ∑N−1
i=0 zi, where

zi = 1− ai,i = 0, . . . , N − 1. To solve the problem as ILP, we introduce wij to describe the
relationship between ai and aj, (i, j) ∈ E.

max ∑N−1
i=0 zi, (5a)

zi + ∑j∈N(i) wij 6 2, zi + zj − wij 6 1, (5b)

wij 6 zi, wij 6 zj, zi ∈ {0, 1}, wij ∈ {0, 1}. (5c)

We can find MaxNE by minimizing ∑N−1
i=0 zi with Equations (6a)–(6c). Equation (6b)

makes sure every node, whether secured or not, at least has one unsecured neighbor.
Equations (6c) and (6d) satisfy Proposition 2.

min ∑N−1
i=0 zi, (6a)

1 6 ∑j∈N(i) zj, ∀1 ≤ |N(i)|, (6b)

zi + ∑j∈N(i) wij 6 2, zi + zj − wij 6 1, (6c)

wij 6 zi, wij 6 zj, zi ∈ {0, 1}, wij ∈ {0, 1}. (6d)

7. Approach to Find Nash Equilibria for General Networks

To solve MinNE/MaxNE for the general networks, we first propose an enumeration
method to solve the problem. Enumeration becomes time-consuming as node number
increasing. We propose a Branch-and-Bound (BnB) algorithm to tackle it with several ways
to improve searching speed and scalability. Our BnB speed up the search in degree order,
reduction of spectral radius, and neighborhood information. Finally, NetS improves the
scalability of our algorithm framework for approximation.

7.1. Enumeration

Enumeration (Enum) is brute force algorithm to find all the MaxNE/MinNE and
helps visualizing the structure when the network is small. Let aB denote strategy with the
strategy index B, which satisfies that B = ∑N−1

i=0 2i · aB
i , |X| = 2N .

Here we merely give the Enum (Algorithm 1) to find all MaxNE. In step 1, Enum
calculates all the a ∈ X, index of B, and corresponding spectral radius λ1(G[V − S(aB)])
and cost c(aB). In steps 2–4, Enum finds all the MaxNE with specific threshold T according
to the definition of NE. Finding MinNE is to change the judging criterion in step 2 and
record the cost of MinNE C∗Min instead.

Algorithm 1: Enum.
Input: Graph G(V, E), threshold of epidemic T
Output: A set SX of strategies for MaxNE

1 ∀a ∈ X, we get B to calculate λ1(aB) and c(aB), SX = ∅, C∗Max = 0;
2 foreach aB ∈ X, λ1(aB) < T and aB is NE do
3 if c(aB) > C∗Max then SX = {aB}, C∗Max = c(aB);
4 if c(aB) = C∗Max then SX = SX + {aB} ;
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7.2. Branch-and-Bound

We develop an efficient Branch-and-Bound (BnB) algorithm (Algorithm 2) to search
the exact MinNE/MaxNE in strategy profile space X (|X| = 2N).

Branch. For every node at level i (according to nodes permutation π) of the search
tree, we have a corresponding pair (a−πi

, a+πi
), a−πi

= 0, a+πi
= 1. At every node πi, the tree is

expanded by performing a branching operation. Two nodes are introduced: a left node
where a∗ = a∗ + {a−πi

} and a right node where a∗ = a∗ + {a+πi
}. The check of NE in leaves

is irreplaceable, and original BnB uses a random nodes permutation π. We can choose an
order to search the tree (node permutation π). In this way, it is possible to find a MinNE
earlier. We proposed BnB-D/BnB-E/BnB-N from three different perspectives and speed up
the pruning.

Algorithm 2: Branch-and-Bound for MinNE.
Input: Graph G(V, E), threshold T, permutation π
Output: Set of secure nodes S(a)

1 get MinNE upper bound cost C∗Min from HDG; i = 0, a∗ = {a−π0}, isSearch = true;
2 while πi ∈ V do
3 if πi is the last node then
4 if c(a∗) < C∗Min and a∗ is NE then a = a∗, C∗Min = c(a∗) ;
5 if a∗πi

= a−πi then
6 a∗πi

= a+πi ;
7 if c(a∗) < C∗Min and λ1(G[V − S(a∗)]) < T then a = a∗, C∗Min = c(a∗) ;

8 a∗ = a∗ − {aπi}, i = i− 1, isSearch = f alse;
9 else

10 if isSearch then
11 a = a∗ + {a+πi+1 , · · · , a+πN−1}, a = a∗ + {a−πi+1 , · · · , a−πN−1};
12 if c(a) < C∗Min and λ1(G[V − S(a)] < T then i = i + 1, a∗ = a∗ + {a−πi} ;
13 else isSearch = f alse;
14 else
15 if a∗πi

= a−πi then a∗πi
= a+πi , isSearch = true;

16 else a∗ = a∗ − {aπi}, i = i− 1;

(i) Degree order: Immunizing large degree nodes helps BnB find MinNE more quickly.
For BnB-D, we use a non-increasing degree order permutation {π0, π1, π2, . . . , πN−1},
d(π0) > d(π1) > · · · > d(πN−1).

(ii) Reduction of spectral radius: In our model, we compare spectral radius with
threshold to determine epidemic dies out or not. Therefore, reducing spectral radius seems
to be efficient to control epidemic. We adopt BnB-E based on drop of spectral radius orders,
∆λ1(i) = λ1(G)− λ1(G[V − Sa]), node i is only node secured in a. We have permutation
{π0, π1, π2, . . . , πN−1}, ∆λ1(π0) > ∆λ1(π1) > · · · > ∆λ1(πN−1).

(iii) Neighborhood information: We find that secured node i will bring benefit for
its neighborhood, i.e., its neighbor is more likely to not vaccinate. The BnB-N searches in
nodes permutation that there are node πi and its adjacent node πj, πj /∈ N(πi). We have
permutation {π0, π1, π2, . . . , πN−1} that edge (πi, πi+1) /∈ E,i = 0, · · · , N − 2.

Bound. BnB keeps track of bounds by two constraints. One is lower bound: the
cost c(a) of current a∗ should be less than C∗Min, assuming all the rest nodes choose a−,
a = a∗ + {a−πi+1

, · · · , a−πN−1
}. The other is upper bound: epidemic should not spread

out even all the rest nodes choose to immunize themselves a+, λ1(G[V − S(a)] > T,
a = a∗ + {a+πi+1

, · · · , a+πN−1
}. Only if the search reaches the leaves (all nodes have their

strategy) can we check the strategy a∗ is an NE with less cost c(a∗) < C∗Min.
In step 1, BnB (Algorithm 2) uses HDG [7] to get the upper bound of MinNE based

on the breadth-first search (BFS). In steps 4–8, as every node has its strategy, BnB checks
if a∗ is a MinNE. In 10–13, BnB checks the upper bound a and lower bound a of node i
and decides to bound it or not. In 15–16, BnB changes searching nodes from left nodes to
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the right nodes and right nodes to its parent node. When the searching process finished,
strategy a is a MinNE.

7.3. NetShiled (NetS)

Finding a MinNE in the EC game can be divided into two steps:(1) finding an optimal
set or permutation of nodes whose removal would maximally reduce the spectral radius of
the network; (2) checking the set of the immunized nodes to NE for EC game.

For the first step, we can find the key nodes by circulating the drop of eigenvalue ∆λ1
when deleting the set of nodes S from the original graph G, ∆λ1 = λ1(G)− λ1(G[V − S]).
As the size of nodes increases, computing the drop of eigenvalue ∆λ1 is more difficult.

The NetShield [17] uses Shield-value score Sv(S) to precisely approximate the drop
of eigenvalue ∆λ1 by matrix perturbation theory. The original NetShield merely finds k
nodes to immunize without taking equilibria into consideration. Therefore, we extend
NetShield with ITERATIVESECURE to change strategy generated into equilibrium, called
NetS (Algorithm 3). Let bold upper cases represent matrices, e.g., A, C. Bold lower cases
stand for column vectors respectively, e.g., u, w. Let ui denotes the ith eigenvector for
matrix A. Let A(i; :) denotes the ith row of matrix A, and A(:; j) the jth column of matrix A.
A(:; S) denotes the matrix of A which contains columns in node set S. Shield-value score
Sv(S) is defined as:

Sv(S) = ∑i∈S 2λ1u(i)2 −∑i,j∈S A(i, j)u(i)u(j) (7a)

∆λ1 = Sv(S) + O(∑j∈S ||A(; : j)||2) (7b)

We also have Equation (7b) justifying the precision of Sv(S). Algorithm 3 computes
the largest eigenvalue λ1 and the corresponding eigenvector u in steps 1–2. In step 4, the
value w = {w0, · · · , wN−1}measures the Shield-value score of each individual node. Then,
in each iteration of steps 6–11, NetS greedily select one more node and add it into set S
according to score(i) (step 10), generating the permutation π until λ1(G[V − S]) < T. Note
that steps 11–12 are to exclude those nodes that are already in the selected set S. Step
11 makes sure that strategy with immunization of S is an NE. The time complexity of
Algorithm 3 is O(N3 + |E|).

Algorithm 3: NetS.
Input: Graph G(V, E), threshold of epidemic T
Output: A set of secure nodes S

1 compute the largest eigenvalue λ1 of A;
2 let u be the corresponding eigenvector of λ1, u(i)(i = 0, · · · , N − 1) the ith value

of u;
3 S = ∅, permutation π = ∅ ;
4 for i = 0 to N − 1 do
5 w(i) = (2 · λ1 − A(i, i)) · u(i)2;

6 while λ1(G[V − S]) ≥ T do
7 let C = A(:; S) , b = C · u(S);
8 for i = 0 to N − 1 do
9 if i ∈ S then let score(i) = −1;

10 else let score(i) = w(i)− 2 · b(i) · u(i) ;

11 let j = argmaxiscore(i), π = π + {j}, S = S ∪ {j} ;

12 let ρ = reverse π, i = 0 ;
13 foreach λ1(G[V − (S− {ρ(i)}]) < T do
14 S = S− {ρ(i)} ;
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8. Empirical Results

We evaluate the performance of our approach through extensive experiments. We
use CPLEX (version 12.9) to solve all integer linear programs (ILP). All computations are
performed on a PC with a 2.60 GHz quad-core CPU and 16.00 GB memory. All values
averaged over 40 instances unless otherwise specified. We conduct experiments on three
types of graph structures which widely used to model connections between population:
(i) Random trees (RT), where every new node is attached to a randomly picked incumbent;
(ii) Barabási–Albert scale-free model, which is denoted by BA(m) where m represents the
average node degree; (iii) Erdős–Rényi random graphs, which is denoted by ER(p) where p
represents the existence probability of an edge between any pair of nodes [24]. We use BA
scale-free networks with parameters m = 4, 6, and use ER random graphs with parameters
p = 0.1, 0.2.

We compare the scalability and optimality of four versions of algorithms: (i) ILP:
integer linear programming for small threshold (T 6

√
2); (ii) BnB: branch and bound

algorithm with random searching permutation; (iii) BnB-D/BnB-E/BnB-N: BnB algorithm
which searches with permutation base on the degree of nodes, eigenvalues drop of nodes
and neighborhood information of nodes; (iv) NetS: heuristic algorithm which generates NE
by a node permutation according to the drop of eigenvalue. We use Enum as a benchmark
for exact solution, HDG as benchmark for approximation. The HDG algorithm is a heuristic
algorithm that obtained MinNE by running the IS procedure with π and ρ permutations of
nodes in non-increasing and non-decreasing degree orders.

Runtime. In Figure 3a–e,f–j, we compare the scalability of the proposed algorithms
on 5 types of networks under T = 1.0 and T = 0.5λ1, respectively. For small threshold
(T 6

√
2), ILP performs as fast as the heuristic algorithms. BnB-D/BnB-E/BnB-N are

shown to improve the searching speed. BnB-D is better than BnB-E/BnB-N in BA scale-free
network, and degree heterogeneity turns out to be extremely useful in searching. NetS
extends the scalability of the algorithm as node size is increasing.

Solution Quality. We compare the cost of MinNE with HDG as the benchmark. The
results are illustrated in Figure 3k–t, Enum/ILP/BnB give the exact NE. BnB-D works well
under the small threshold and sparse network structure like the TR graph. NetS gives a
near-optimal performance and outperforms HDG, especially under the larger threshold.

Figure 3. Cont.
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Figure 3. Scalability: (a–e), T = 1.0; (f–j), T = 0.5λ1. Optimality: (k–o), T = 1.0; (p–t), T = 0.5λ1.

9. Conclusions and Future Research

This paper focuses on exploring the Nash Equilibria in Epidemic Containment game,
representing the spread of epidemics among interdependent users. As the most practical
EC game application scenarios are IoT networks, we find that the previous algorithms
(HDG/LDG/NI) cannot give exact MinNE/MaxNE in small networks.

To study the structure of exact NE, this paper first explores the network typologies’
spectral radius. We can give the strategy directly for star-shaped graphs, complete graphs,
and path graphs. By observing a single node’s degree information, we propose linear
programming formulations to finding the exact MinNE/MaxNE in threshold 0 < T 6

√
2

as quick as heuristic algorithms. Secondly, we develop an efficient Branch-and-Bound
(BnB) algorithm branching with the degree information to speed up the research. To extend
the algorithm’s scalability, we propose the NetS which approximates the spectral radius’s
drop. This algorithm extremely outperforms HDG to find MinNE in larger Barabási–Albert
and Erdős–Rényi random graphs. The following inspirations can be obtained from the
experiment results: heterogeneity of degree and spectral radius turn out to be extremely
useful for extracting information from nodes. However, our research is limited to artificial
networks, and we get more information on the real-world networks, e.g., AS (Oregon-1),
P2P (Gnutella-6) [19,25], which can help us extend our experiments to more realistic
scenarios in the following researches.

In the future work, we would consider Stackelberg strategies to reduce MaxNE, a
more realistic scenario. Combining IDS gaming security and data security concepts, we
can also extend EC game on the relevant relationship networks with different granularity
levels [26,27].
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