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Abstract: Physical processes occurring in devices with distributed variables and a turbulent tide
with a dispersion of mass and heat are often modeled using systems of nonlinear equations. Solving
such a system is sometimes impossible in an analytical manner. The iterative methods, such as
Newton’s method, are not always sufficiently effective in such cases. In this article, a combination of
the homotopy method and the parametric continuation method was proposed to solve the system of
nonlinear differential equations. These methods are symmetrical, i.e., the calculations can be made
by increasing or decreasing the value of the parameters. Thanks to this approach, the determination
of all roots of the system does not require any iterative method. Moreover, when the solutions of the
system are close to each other, the proposed method easily determines all of them. As an example
of the method use a mathematical model of a non-adiabatic catalytic pseudohomogeneous tubular
chemical reactor with longitudinal dispersion was chosen.

Keywords: pseudohomogeneous catalytic tubular chemical reactor; dispersion; multiple stationary
states; homotopy method; parametric continuation method

1. Introduction

Physical processes and phenomena occurring in devices with distributed variables
and a turbulent tide with a dispersion of mass and heat are modeled using systems of
differential equations. For stationary states, these are Ordinary Differential Equations
(ODE’s). Examples of such apparatuses are tubular chemical reactors with longitudinal
dispersion. Systems of ordinary differential equations of the second order are used to
describe them [1]. The analytical solution of these equations is impossible due to their non-
linearity. Therefore, various types of numerical methods are used to determine stationary
solutions of such systems [2,3]. However, not every numerical method is useful and
effective; for example, Newton’s iterative method is completely useless when there are so-
called multiple stationary states [1]. Determining all states (all solutions) using Newton’s
method is practically impossible, especially when these states are located close to each
other and there are many of them.

One of the numerical methods that allow for easy determination of all stationary
solutions of the system of nonlinear equations is the parametric continuation method.
This method does not require any iteration procedures. Moreover, this method allows
obtaining a solution by increasing or decreasing the parameter value. For this reason, it
can be considered a symmetrical method. It was used, among others, in [1], where the
stationary states of the reactor were determined in the given range of the variability of
selected control parameters of the apparatus.

If the task is not to determine the stationary states of the reactor in a given range
of variability of the control parameter, but the task is to determine these states for the
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set values of all parameters of the apparatus, then the combination of the parametric
continuation method with the homotopy method is perfect. Its idea is to construct a special
function dependent on an additional parameter p in such a way that with a continuous
change of the value of this parameter from p = 0, we get all the solutions for p = 1. In
the event that these solutions are ambiguous, the homotopy curve must pass through
p = 1 many times. This means that the curve is then a hysteresis loop, as shown in the
corresponding graphs in this paper.

Studies using the homotopy method can be found in the scientific literature, for
example, articles [4–14]. However, the parametric continuation method, as used in this
paper, was not used there. The method used in the cited literature consists of changing
the homotopy parameter p by the assumed increase in ∆p. Then, at each step, the system
of equations is solved iteratively using Newton’s method. This is quite inconvenient for
two reasons. The first is that iterating the equations at each step significantly increases
the computation time. The second, more important, reason is that this method is useless
when the system of equations has an ambiguous solution, i.e., it has many roots [11]. The
search for each of them is associated with a change of initial values. The homotopy curve
must then turn around several times. This means that the increment of ∆p must change the
sign. However, it is difficult to predict when this sign should be changed. The parametric
continuation method used in this work is devoid of all these drawbacks. This method has
also been described and used in [1,15]. This is described in detail later in this paper.

As an example of the application of the described method, the mathematical model of
a non-adiabatic catalytic pseudohomogeneous tubular chemical reactor with longitudinal
dispersion was taken. Such a reactor is described by a system of second-order ordinary
differential equations with appropriate boundary conditions.

This article is structured as follows. The subject of the work was outlined in the first
part. The second part describes the mathematical foundations of the discussed methods.
The following sections describe the chemical reactor model and present the results. The
last part is the Conclusions.

2. Mathematical Foundations of the Method

The problem concerns the determination of solutions to the following system of
equations:

f (x) = 0. (1)

Assuming that for p = 0 x = x∗, then the homotopy function takes the form:

F(x, p) = f (x) + (p− 1) f (x∗) = 0, (2)

where x∗ is any vector, it is obvious that the searched solutions of Equation (1) are found
only on the p = 1 line. To get to this line, Equation (2) should be carried out from point x∗

for p = 0 to point x for p = 1, which are solutions of the system of Equations (1).
The following parametric continuation method can be used for this purpose:

xk+1 = xk − J−1
k wk∆p sign(det Jk), (3)

pk+1 = pk + ∆p sign(det Jk), (4)

where:

x =
{

xj
}

, (5)

J =

{
∂ fi
∂xj

}
, (6)

w = { fi(x∗)} = const. (7)
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The sign of the determinant of the Jacobi matrix, sign(det Jk), indicates the direction
of changes in the homotopy parameter p.

3. Determination of the Solutions of the Chemical Reactor Model

The method presented above was used to determine the stationary states of a non-
adiabatic catalytic tubular chemical reactor with longitudinal dispersion. The model
assumes that the gas temperature is equal to the catalyst temperature. This means that
we are dealing then with a pseudohomogeneous reactor. Assuming that a single chemical
reaction takes place in the reactor, the mathematical model of such an apparatus is written
in the form of two second-order differential equations:

Mass balance:
dα

dz
=

1
PeM

d2α

dz2 + Φ1(α, Θ), (8)

Heat balance:
dΘ
dz

=
1

PeH

d2Θ
dz2 + Φ2(α, Θ), (9)

where 0 ≤ z ≤ 1.
The following boundary conditions are associated with the above equations:

α(0) =
1

PeM

dα

dz z=0
, (10)

dα

dz z=1
= 0, (11)

Θ(0) =
1

PeH

dΘ
dz z=0

, (12)

dΘ
dz z=1

= 0. (13)

Assuming that a single A→ B type reaction takes place in the reactor, the functions
related to reaction kinetics and heat transfer are as follows:

Φ1 = Da(1− α)n exp
{(

γ
Θ

β + Θ

)}
, (14)

Φ2 = βΦ1 + δ(ΘH −Θ). (15)

By introducing additional variable definitions:

u1 = α, (16)

u2 =
dα

dz
, (17)

and:

v1 = Θ, (18)

v2 =
dΘ
dz

, (19)

a system of four first-order differential equations is obtained:
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du1

dz
= u2, (20)

du2

dz
= PeMu2 −Φ1(u1, v1), (21)

dv1

dz
= v2, (22)

dv2

dz
= PeHv2 −Φ2(u1, v1), (23)

with the appropriate boundary conditions:

PeMu1(0)− u2(0) = 0, (24)

u2(1) = 0, (25)

PeHv1(0)− v2(0) = 0, (26)

v2(1) = 0. (27)

It can be shown that the forward integration of the above equations (i.e., from z = 0
to z = 1) is numerically unstable. The integration, therefore, has to go backwards (from
z = 1 to z = 0). The initial values for this integration will, therefore, be: u1(1) and v1(1), as
well as u2(1) = 0 and v2(1) = 0. According to Equation (2), the individual functions of the
homotopy can be defined based on the boundary conditions in Equations (24) and (26) as
follows:

F1[u1(1), v1(1)] = PeMu1(0)− u2(0) + (p− 1)[PeMu∗1(0)− u∗2(0)] = 0, (28)

F2[u1(1), v1(1)] = PeHv1(0)− v2(0) + (p− 1)[PeHv∗1(0)− v∗2(0)] = 0. (29)

The parametric continuation procedure, therefore, takes the following form:[
u1,k+1(1)
v1,k+1(1)

]
=

[
u1,k(1)
v1,k(1)

]
− J−1

k wk∆p sign(det Jk), (30)

pk+1 = pk + ∆p sign(det Jk), (31)

where:

J =

[
∂F1

∂u1(1)
∂F1

∂v1(1)
∂F2

∂u1(1)
∂F2

∂v1(1)

]
, (32)

w =

[
PeMu∗1(0)− u∗2(0)
PeHv∗1(0)− v∗2(0)

]
= const. (33)

The adopted calculation method is as follows. Any values of u∗1(1) and v∗1(1) and
u∗2(1) = 0 and v∗2(1) = 0 are assumed. As a result of one-time integration of Equations
(20)–(23), u∗1(0) and v∗1(0) are obtained, which are then used in Equations (28) and (29).
These values are constant for the entire calculation process. At the same time, these are the
initial values for the continuation procedure, i.e., u1,0(1) = u∗1(1) and v1,0(1) = v∗1(1). The
searched solutions of the reactor model lie on the p = 1 line. The partial derivatives in the
Jacobi matrix, Equation (32), should be determined numerically.

4. Calculation Results

Depending on the values of the model parameters, the reactor has single or multiple
stationary states. In this study, these parameters were selected so that the reactor was
characterized by more complex solutions, i.e., three states. For example, the following
values of the reactor model parameters were adopted: γ = 14, β = 2, n = 1.7, PeM =
200, PeH = 100, Da = 0.0435, δ = 3, ΘH = −0.05. The results of the calculations are
shown in Figure 1. As this figure shows, the tested reactor model has three different
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solutions, which should be read for p = 1. This means that the reactor has three different
stationary states. It should be noted that for different values of u∗1(1) and v∗1(1), a different
homotopy curve is obtained. However, they must all intersect at the same point on the line
p = 1.

Figure 1. For the assumed parameters, the reactor has three different stationary states.

5. Discussion

Various known numerical methods can be used to solve systems of equations in the
form of Equation (1). The simplest of them are iterative methods, which include, e.g.,
Newton’s method or the Chun-Hui He method [16]. However, these methods require a
lot of iterations and thus use a lot of computer time to get the final solutions. Thus, their
use becomes ineffective. Moreover, iterative methods cannot cope when the system has
ambiguous (multiple) solutions (see Figure 3 in [17]). The approach proposed in this paper
is devoid of the above drawbacks.

As for the homotope method, it requires a series of calculations for each value of
the p parameter separately. Iterative methods are also used for these calculations, the
same as described in the previous paragraph. This approach is, therefore, also numeri-
cally time-consuming. It requires many iterative calculations to obtain the final solution.
Modifications of the homotope method known from the literature, such as the perturbative
homotopy method [18], do not solve this problem. Only using the homotopy method
in conjunction with the parametric continuation method causes the final solution to be
obtained immediately, regardless of the number of multiple stationary states. Instead of
looking for solutions for Equation (2) for successive values of the p parameter, the solution
is obtained step by step from Equations (3) and (4). Thus, there is no need to perform any
additional iterative calculations.

6. Conclusions

The presented work presents the homotopy method for determining the solutions of
the mathematical model of a non-adiabatic catalytic pseudohomogeneous tubular chemical
reactor with longitudinal dispersion. Such a model is written by means of second-order
differential equations with boundary conditions. The solutions sought are the stationary
states of the reactor. The proposed method consists of carrying out homotopy F functions
from the homotopy parameter p = 0 and further along the lines determining the zeroing
of these functions. These lines can be obtained using the parametric continuation method.
The advantage of this approach is that the determination of the partial derivatives of the
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function F with respect to the parameter takes place only once for the entire computational
process. These derivatives are stored permanently in the vector w (Formula (33)). The
whole computational process does not require any iteration, and all the searched elements
are found in one computational process. All this significantly speeds up the calculations
and, above all, makes it possible to determine all the elements easily.

According to the homotopy principle, the searched solutions lie only on the p = 1
line. As a result of the exemplary calculations, the graphs in Figure 1 were obtained. These
graphs show that the tested reactor has three different stationary states.

Author Contributions: Conceptualization, M.B. and M.L.; methodology, M.B. and M.L.; formal
analysis, M.B.; writing—original draft preparation, M.B. and M.L.; writing—review and editing, M.B
and M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

The following abbreviations are used in this manuscript:

Symbols
cp heat capacity, kJ/(kg K)
CA concentration of component A, kmol/m3

Da Damköhler number
(
= Vr(−r0)

ḞC0

)
E activation energy, kJ/kmol
F homotopy funcion
Ḟ volumetric flow rate, m3/s
(−∆H) heat of reaction, kJ/kmol
k reaction rate constant, 1/[s (m3/kmol)n−1]
n order of reaction
p homotopic parameter
PeM peclet number of mass
PeH peclet number of heat
(−r) rate of reaction, (= kCn), kmol/(m3 s)
R gas constant, kJ/(kmol K)
T temperature, K
V volume, m3

z dimensionless position along the reactor
Greek letters
α degree of conversion

(
= CA0−CA

CA0

)
β dimensionless number related to adiabatic temperature increase

(
= (−∆H)CA0

T0ρcp

)
γ dimensionless number related to activation energy

(
= E

RT0

)
δ dimensionless heat exchange coefficient

(
=

Aqkq

ρcp Ḟ

)
Θ dimensionless temperature

(
= T−T0

T0

)
ρ density, kg/m3

Subscripts
0 refers to feed
H refers to temperature of cooling medium
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3. Younis, M.; Fabiano, N.; Fadail, Z.M.; Mitrović, Z.D.; Radenović, S. Some new observations on fixed point results in rectangular

metric spaces with applications to chemical sciences. Vojnoteh. Glas./Mil. Tech. Cour. 2021, 69, 8–30. [CrossRef]

http://doi.org/10.1016/j.ces.2010.07.003
http://dx.doi.org/10.3390/fractalfract5040211
http://dx.doi.org/10.5937/vojtehg69-29517


Symmetry 2021, 13, 2324 7 of 7

4. Baayen, J.; Becker, B.; van Heeringen, K.J.; Miltenburg, I.; Piovesan, T.; Rauw, J.; den Toom, M.; VanderWees, J. An overview of
continuation methods for non-linear model predictive control of water systems. IFAC-PapersOnLine 2019, 52, 73–80. [CrossRef]

5. Brown, D.A.; Zingg, D.W. Monolithic homotopy continuation with predictor based on higher derivatives. J. Comput. Appl. Math.
2019, 346, 26–41. [CrossRef]

6. Gallardo-Alvarado, J. An Application of the Newton–Homotopy Continuation Method for Solving the Forward Kinematic
Problem of the 3-<u>R</u>RS Parallel Manipulator. Math. Probl. Eng. 2019, 2019, 3123808. [CrossRef]

7. Gritton, K.S.; Seader, J.; Lin, W.J. Global homotopy continuation procedures for seeking all roots of a nonlinear equation. Comput.
Chem. Eng. 2001, 25, 1003–1019. [CrossRef]

8. Jiménez-Islas, H.; Martínez-González, G.M.; Navarrete-Bolaños, J.L.; Botello-Álvarez, J.E.; Oliveros-Muñoz, J.M. Nonlinear
Homotopic Continuation Methods: A Chemical Engineering Perspective Review. Ind. Eng. Chem. Res. 2013, 52, 14729–14742.
[CrossRef]

9. Jiménez-Islas, H.; Calderón-Ramírez, M.; Martínez-González, G.M.; Calderón-Álvarado, M.P.; Oliveros-Muñoz, J.M. Multiple
solutions for steady differential equations via hyperspherical path-tracking of homotopy curves. Comput. Math. Appl. 2020,
79, 2216–2239. [CrossRef]

10. Pan, B.; Ma, Y.; Ni, Y. A new fractional homotopy method for solving nonlinear optimal control problems. Acta Astronaut. 2019,
161, 12–23. [CrossRef]

11. Rahimian, S.K.; Jalali, F.; Seader, J.; White, R. A new homotopy for seeking all real roots of a nonlinear equation. Comput. Chem.
Eng. 2011, 35, 403–411. [CrossRef]

12. Słota, D.; Chmielowska, A.; Brociek, R.; Szczygieł, M. Application of the Homotopy Method for Fractional Inverse Stefan Problem.
Energies 2020, 13, 5474. [CrossRef]

13. Wang, Y.; Topputo, F. A Homotopy Method Based on Theory of Functional Connections. 2020. Available online: https:
//arxiv.org/pdf/1911.04899.pdf (accessed on 27 November 2021).

14. Wayburn, T.; Seader, J. Homotopy continuation methods for computer-aided process design. Comput. Chem. Eng. 1987, 11, 7–25.
[CrossRef]

15. Berezowski, M. Determination of catastrophic sets of a tubular chemical reactor by two-parameter continuation method. Int. J.
Chem. React. Eng. 2020, 18, 20200135. [CrossRef]

16. Khan, W.A. Numerical simulation of Chun-Hui He’s iteration method with applications in engineering. Int. J. Numer. Methods
Heat & Fluid Flow 2021, ahead-of-print. [CrossRef]

17. Berezowski, M. Method of determination of steady-state diagrams of chemical reactors. Chem. Eng. Sci. 2000, 55, 4291–4295.
[CrossRef]

18. He, J.H. Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 2004, 156, 527–539.
[CrossRef]

http://dx.doi.org/10.1016/j.ifacol.2019.11.012
http://dx.doi.org/10.1016/j.cam.2018.06.036
http://dx.doi.org/10.1155/2019/3123808
http://dx.doi.org/10.1016/S0098-1354(01)00675-5
http://dx.doi.org/10.1021/ie402418e
http://dx.doi.org/10.1016/j.camwa.2019.10.023
http://dx.doi.org/10.1016/j.actaastro.2019.05.005
http://dx.doi.org/10.1016/j.compchemeng.2010.04.007
http://dx.doi.org/10.3390/en13205474
https://arxiv.org/pdf/1911.04899.pdf
https://arxiv.org/pdf/1911.04899.pdf
http://dx.doi.org/10.1016/0098-1354(87)80002-9
http://dx.doi.org/10.1515/ijcre-2020-0135
http://dx.doi.org/10.1108/HFF-04-2021-0245
http://dx.doi.org/10.1016/S0009-2509(00)00058-0
http://dx.doi.org/10.1016/j.amc.2003.08.008

	Introduction
	Mathematical Foundations of the Method
	Determination of the Solutions of the Chemical Reactor Model
	Calculation Results
	Discussion
	Conclusions
	References

