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Abstract: The main aim of this work is to study an extension of the Caputo fractional derivative
operator by use of the two-parameter Mittag-Leffler function given by Wiman. We have studied
some generating relations, Mellin transforms and other relationships with extended hypergeometric
functions in order to derive this extended operator. Due to symmetry in the family of special functions,
it is easy to study their various properties with the extended fractional derivative operators.

Keywords: classical Caputo fractional derivative operator; beta function; gamma function; Gauss
hypergeometric function; confluent hypergeometric function; Mittag-Leffler function

1. Introduction

In the field of mathematics, the theory of fractional calculus (FC) has been successfully
studied to focus on fractal problems, which are real-life problems in engineering math-
ematics. FC has become an interesting topic of research since it offers many application
opportunities to various areas of science and engineering, such as fluid flow, electrical net-
works and probability theory. The Caputo derivative operator plays a vital role in fractional
calculus as well, because of its applications to different branches of science. Fractional
operators and special functions have been receiving renewed attention in recent years, and
a remarkable variety of refinements and generalizations are currently available [1-3].

The classical Caputo fractional derivative operator [4,5] is defined as:

DI (RN = ey o = 1" "

where, m —1 < R(u) <m, m € N.
The theoretical extension and modification of this classical operator has been taking
place since 2000. In 2016, Kiyamaz et al. [6] have extended it as follows:

52

DY) = =y - oo ) ?

where R(r) >0andm —1 < R(u) < m, m € N.
Remark 1. If we set r = 0 in (2), we get the classical Caputo fractional derivative operator (1)
Dz°[f(2)) = DY [f(2))- ®)
In the above extension, Kiyamaz et al. [6] use the exponential function as a regularizer

to extend the classical Caputo fractional derivative operator, and they also discuss various
generating relations, Mellin transforms and additional relationships with other special
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functions. The exponential function is introduced as the kernel in the integral part of the
classical Caputo fractional derivative operator.

The 2-parameter Mittag—Leffler function (known as the Wiman’s function) [7,8] is
defined as follows:

Erl 72 Z

T (nry & 72) R(r1) = 0,R(r2) 20,z € C. @)

The classical Euler beta function [9] is defined as follows:

xl,xz / 1 1 xz 1dt §R(x1),§R(x2) > 0. 5)

Very recently, Goyal et al. [10] have extended the classical beta function using the two-
parameter Mittag-Leffler function E,, ,, [z] given by Wiman [7], studying various properties
of this extended beta function. They have introduced the Wiman'’s function as the kernel in
the integral part of the classical Euler beta function:

u o _ —u
Bguz,uz) (ylryZ) = A j2a 1(1 — i’)yz 1Eu1,u2 <t(1—t>)dt (6)

Here, min{®(y1), R(y2)} > 0, X(u1) > 0,N(u2) > 0, u > 0; and E,, 4, (z) is the
two-parameter Mittag—Leffler function.

The series and integral representations of the Gauss hypergeometric function ,F; [11]
are defined as:

> r1 +n,1rp—11) z"
F — 7
(ro,11,12;2) ; Blr,rs—11) (r0)n L )
where R(r;) > R(r1) > 0and | z |< 1, and
F(ro,r1,12;2) = / =11 — 1211 = zh) g, ®)
B(ry,r2 —11)

respectively.

Jain et al. [12] have extended the Gauss hypergeometric function using the extended
beta function (6) given by Goyal et al. [10], specifically studying many basic properties such
as integral representations and Mellin transforms of this extended hypergeometric function.

The extended Gauss hypergeometric function [12] is defined as:

© B (@14 m0 - p1)

o (0 1,0252) = 1 =25

i ©)
=0 B(q1,92 — q1) (1)

Here, R(q2) > R(g1) > 0, min{R(s1), R(s2)} > 0,5 > 0, |z < 1, and ngj ) (@1, )
is the extended beta function.
The integral representation of the extended Gauss hypergeometric function [12] is

defined as:

/—\,\
Hv

ovsa) (90, 01,92;7) =

1 (10)

1
— [ Y- nl (1 —z4)"DE, <_S)dt‘
B(‘h/ﬁlz—ﬂh)/o =9 ( ) " Ess t(1—t)
Here, R(g2) > R(g1) > 0, min{R(s1), R(s2)} >0,s >0, and |z]| < 1.

2. Extension of the Hypergeometric Function

We know a variety of problems in classical mechanics and mathematical physics lead
to Picard-Fuchs equations and these equations are solvable in terms of generalised hyper-
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geometric functions, and the monodromy of generalized hypergeometric functions plays
important role in describing properties of the solutions. Many combinatorial identities,
especially ones involving binomial and related coefficients, are special cases of hyperge-
ometric identities. Also, generalized hypergeometric functions appear in the evaluation
of the Watson-integrals which characterized the simplest possible lattice walks and they
are potentially useful for the solution of more complicated restricted lattice walk problems.
Motivated by the above work in this section, we define a further new extension of the Gauss
hypergeometric function by use of the extended beta function (6) given by Goyal et al. [10].

Definition 1.

(s)
00 B (m—m4n,qgy—q1+m) n

(s) oy Z (90)n(q1)n ®(s1.52) z 11
2F1,(S1,Sz)(q0’q1’q2’z) o = (g1 —m)y B(gy — m,q2 — q1 +m) n!’ b

Here, R(q2) > R(q1) > m, s > 0, |z| < 1; and Bgzi 52)(w1,w2) is the extended beta

function.

3. Extension of the Caputo Fractional Derivative Operator

In literature point of view, many fractional derivative operators proved their im-
portance. Many researchers still are working on introducing new fractional derivative
operators and applying these new operators in certain real world problems like fractal
space time, fractional derivatives for heat conduction in a fractal medium arising in silk-
worm cocoon hierarchy, asymptotic perturbation for a linear oscillator of free damped
vibrations in fractal medium describe by local fractional derivatives and modelling growths
of populations. By the inspiring above work in this section, we define a new extension of
the classical Caputo fractional derivative operator using the two-parameter Mittag—Leffler
function. We have introduced the Wiman'’s function as the kernel in the integral part of the
classical Caputo fractional derivative operator; as a result, the integral part reduces to the
extended beta function defined in [10] after some calculations. We have also established
some interesting results for this extended operator.

Definition 2.

u,(r) — 1 z m—u— _722 an
D, ()] = T —w) /O (z—1t) YErir (t(z_t)> T f (Dt (12)

Here, min{®(r1), R(r2)} >0, R(r) >0,m—1 < R(u) <m, m e N, and E;, r,(z) is the
2-parameter Mittag—Leffler function.

Remark 2.
(i) Ifwesetry =ry =1in(12), we get the extended Caputo fractional derivative operator (2)

D0, [f(2)] = DY [f(2)]. (13)

(ii) Ifwetaker) = ry = 1and r = 0in (12), we get the classical Caputo fractional derivative
operator (1)

DZ,'((S,)l)[f(Z)] = D7 [f(z)]. (14)
Theorem 1. Consider m —1 < R(u) < m, R(u) < R(k). Then

(r) _ —
u,(r) [Zk] — r(k + 1) B(’lﬂ'z) <k m+1,m u) Zk—u
z(ryr2) I'(k—u+1) B(k—m+1,m—u) )

(15)
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Proof of Theorem 1. From the definition of the extended Caputo fractional derivative
operator (12), we have:

u,(r) k1 _ 1 z _ pym—u—1 —rz? i k
el F(m—u)/o (-1 Erl’”(t(z—t))dt’”t at
_ 1 _ _ _ z _ g\ym—u-—1 _722 k—m
= F o kD=2 (k m+1)]/0 (z— 1) E,1,r2<t()t dt (16)

z—t)
_ r(k+ 1) z m—u— —rz? —m
- T(k—m+1)T(m—u) /o (z=1) 1Er1'72<t(z—t)>tk o

On putting t = xz in (16), we get:

u,(r) [ k] _

z,(r1,12) )
r(k + 1) k—u ! k—m m—u—1 -7
Tk —m+ 1T (m—1)° A a—x )
Now, entering the definition of the extended beta function (6) in the above Equation (17),
we have:
u,(r) k1 F(k + 1) k—un(r) B B
D B = Fa s Dt m =y > Bl kMLm= ). (18)

Further exploiting the relationship between the Gamma and beta functions, B(x,y) =

rlfgc,zi(yy)) , in Equation (18), we get our desired result of Theorem 1.
(r) _ _
wn M= Lk+1) Bpyepk=mtlm—w (19)
z,(r1,12) Ik—u+1) Bk—m+1,m—u) ’
O
Remark 3. Ifk=0,1,2......,m—1,then D) /(2] =0.

Theorem 2. Assume that f(z) is a holomorphic function in the disc | z |< 8, with the Taylor series
expansion f(z) = Y o> buz". Then

DY (@) = L baD o e (20)

wherem —1 < R(u) < m.

Proof of Theorem 2. From the definition of the extended Caputo fractional derivative
operator (12), we have:

1,(r) . 1 z I —yz2 am
D, (8] “Tm—w /O (z—t) 1E”’r2(t(z—t)>dtm (t)dt. (21)

Applying the Taylor series expansion of f, we derive:

) S e TN Gl A (B
DZ,(rler)V(t)] = m/o (z—1t) Erl,;'z(t(z t)> Fp <Z byt )dt. (22)

n=0
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Since the power series converges uniformly and the integral converges absolutely,
when interchanging the order of integration and summation, we are left with:

u,(r) .- z m—u—1 —rz? "
Dzl(rl 72) ; |: M) /0 (Z - t) Erl,rz <t()> thdt (23)

Then, from the definition of the extended Caputo fractional derivative operator, the
desired result of Theorem 2 is recovered.

u,(r)
b z,(r1, fz) Z buD z, (r1 rz) 2| (24)
]

Theorem 3. Assume that f(z) is a holomorphic function in the disc | z | < J, with the Taylor series
expansion f(z) =Y oo buz". Then

B (B—m+n,m—u)

u(r) [ p-1 T(B) _p-u- B)n B n
D, o by z", (25)
el = g L =
wherem —1 < R(u) < m < R(P).
Proof of Theorem 3. By application of Theorem 2, we have:
R (O) Z bD2) P, (26)

Further, using Theorem 1, we get:

DM [B1f 2 p LB+ 71 ) (B — A m,m — u)z‘Bfufl+n. 27)
z,(r1,rz) "T(B+n—u) B(B—m+nm—u)
Th . . _ TI'(a+n) X
en, using the relation (a), = we get:

Ta) 7

Du,r [ B— 1f( )] = I'(B) Lpu—1 i ’ (B)n r1 72) (,B m+n,m— M)Zn' (28)

z,(r1,r2) T'(B—u) n:ob (B—u)n B(B—m+n,m—u)

Applying the identities B(x,y) = Fr(x)r(y ) and (a)y = r(r”(:)” ) we get the desired result
of Theorem 3.

B (ﬁ m+n,m—u)
DZ ,(r) [ B— lf( )] (ﬁ(ﬁ)u)zﬁ u—1 2 b, ‘8 ﬁ)m) (r1,12) Z". (29)

(r1r2) B(p—m,m—u)

O

Theorem 4. Consider m —1 < R(k—u) <m < R(k)and | z |< 1. Then

- TR |
D) 2 (1= 2) 7] = 2 Ry (W32, (30)
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Proof of Theorem 4. By application of the identity (1 —z)~! = Y3 (1), and Theorem 1,
we get:

k—u,(r) 1 _k—1 _l k—u,(r) [ k-1 0 N
DZI(’LVZ) [ (1-2)7] Dz,(m,rz) {Z (E(l)nniﬂ
)
D

o (! k—u,(r) _k—1+n
= Z n z,(r1,r2) [Z i ] (31)
n=0 ""*
= (1), Tkt ) By b —mtmm —ktu)
; ' T(u+n) Blk—m+nm—k+u) z '
Then, using identities B(x,y) = %i(yy)) and (a), = F(F”(;)” ), we have:
o (r) _ _
DESO A - o)1) = T © Bl BRI ZEE ) 2
z,(r,m) T(u) = (k—m)y B(k—m,m —k+u) n!’

From the definition of the extended Gauss hypergeometric function (11), we get our
desired result of Theorem (4).

Dk*”/(”) [Zk_1(1 _ Z)_l] — ll:(k) u—le

z,(r1,12)

2) (I k,u;z). (33)

O

Theorem 5. Consider m —1 < R(k —u) < m < R(k). Then, the following generating relation
for the extended hypergeometric function holds true:

z

3 ) ) — (1— 1)~ ED
; n' 21(”)(A+n,k,u,z)t =1-t)""2F )(/\ku(l_t)>, (34)

provided that | z |< min(1, |1 —1¢ |).
Proof of Theorem 5. Consider the series identity:

—A
(1—z)— 1] = (1—t)/\(1— (12)) .

After re-arranging its terms, we recover:

(1—2))‘<1— 1tZ>A: (1—t))‘[<1— (120){

Performing the binomial expansion of (1 — %) ~ we get:

1-2)"" i (2" (1;)" - (1—t)—A(1_ (1it))_A. (35)

n=0

Now, by multiplication of both sides by zF—1, we get:

A-1(1 = 5) i (/;\1)!11 (1:2)” _Zk—1(1—t)—/\<1— (1it)>A. (36)

n=0

(1) to both sides of the

z,(r1,12)

Then, applying the Caputo fractional derivative operator D",
above equation, the following expression is found:
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e [ g2 Mg oa( t Y k1] 2 poapte) [ z \7' ;
D () Y - (1—2z) ) ? =(1-1t) DZ,WZ) z 1—(1_t) ) (37)

If the order of summation and operator D 21 (r )) is interchanged, we are left with:

5> nprun L oo = g pf e [ (1o 20) 7 e

n=0

Finally, applying Theorem 4, we get our desired result of Theorem 5.

= (M () ) = ~A,F) -
Lt 2P Akt = (A= 079R G (M gy ) (69)

Theorem 6. Consider R(A) > m —1and s > 0. Then, the Mellin transform for the extended
Caputo fractional derivative operator defined as (12) is given by the following expression:

T(A+ 1)1 (s)

u,(r) Aol — B B e 10
(D0 27 Ti8] F(A—m+1)r(m_u)B(m u4s,A—m+s+1)z"4  (40)

Proof of Theorem 6. From the definition of Mellin transform, we have:

w(r) AL = [ s-1pw() A
MDY [s] = /0 P 1M dr. (41)
Upon applying Theorem 1, we recover:
(r) _ _
M[Du’(r) [Z/\]'S} _ /.oo o1 T(A+1) B(71/72)<m u,A—m+ 1>ZA—u dr:  (42)
z(rir) Y Jo rA—u+1) Bm—uA—m+1) ’
and, after some calculation:
M [D;‘,'((jl{rz) )] =

_ 43)

I’(A + 1)2/\ u ® 1 (r) (

T —ut )Bm—mA—m+1) '/0 r B(rllrz)(m—u,/\—erl)dr.

Now, using the result from [10], we get our desired result of Theorem 6. Indeed, since

/ooo (s— 1>B§r) ) (Y1, X2)dr = B(x1 +5,%2 + STy (s), (44

where, r > 0,R(x1 +5) >0, R(x2 +5s) > 0,R(r1) > 0,R(rp) > 0and R(s) > 0, then:

T(A+ 1T (s)

B(m — A— 1)zA e (4D)
TA =+ 1) (m — ) (m—u-+s, m+s+1)z

MDY 28] =

Zr(rl 12

O

Theorem 7. Assume that s > 0and | z |< 1. Then, another Mellin transform for the extended
Caputo fractional derivative operator is defined by the following expression:

1"(71/2) (S)meu ) M
ol U i _ il
T — ) Y B(m u+s,n+s+1)(o¢)n+mn!.

MDY 11— 2)7s] =
n=0

z,(r1,12

(46)
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Proof of Theorem 7. Using the identity (1 —z)™% = Y2 («),%; and taking A = n in

Theorem 6, we have:
D" (r o
Z T] 1’2 Z

= i (“)"M[D”'(r) 2"]; 5] (47)

z,(r1,12)

5§ I(n+ DI (s)
= ! [ T(n—m+1)T(m—u)

B(m—u+s,n—m+s+1)z”_”1.

After some calculation, we recover:

F(()rl’”)(s)z_“ i B(m—u+sn—m+s+1)

u,(r) —al.o] —
M[D () (1= 2) i8] = == [(n—m+1)

Z,(rllz

(DC)nZn. (48)

n=m

By substituting n = n + m, we get our desired result of Theorem 7:

(1) Iy ()2 & 2"
’ —a. _ -0 \v)= _ z
M[DZ/(Vlfrz)[(l —2)"s] = ['(m—u) n;OB(m uts,n+s+1)(@)nim TR (49)
O
Theorem 8. The following result holds true:
u(r) .z AR z"
DZ/(rlﬂ’z) {e ] - r(m Z (1’1 1’2 m —un + 1)7[ (50)

n=0

forallz € C.

Proof of Theorem 8. By application of the power series of e* = }° %': and Theorems 1
and 2, we get:
u,(r) [eZ] _ i lDu,(V) [Zn _ i l F(n + 1) Bg;),rz) (n —m+1,m—u)
z,(r1,r2) - z(rr) mT(n—u+1) Bnrn—m+1,m—u)

n=0 n=m

Z"H, (51)

By substituting n = n + m, we have:

(r)
u,(r) [EZ} _ i 1 F(n+m—|—1) B(71,7’z)(n+1’m — u)
z,(r,r2) = (n+m)!T(n+m—u+1) Bn+1,m—u)

grtm—u o (52)

Further applying some known identities, we get the desired result of Theorem (8).

DY) E T N g nZ
Z/(Vl,rz)[e ] o F(m — u) 7;) (Tl,fz)(m —unAt )7| (53)
O
Theorem 9. For the Prabhakar-type function, the following result holds true:
1,(r) - = Y)ntm (r) z"
DZ"(71/72) |: 06/3( ):| ; na_f_ma_’_ﬁ) r1 7’2 (m_u n+1)7| (54)

where E;’,ﬁ(z) is the Prabhakar-type function given in [13].
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Proof of Theorem 9. Using the three-parameter Mittag—Leffler function (Prabhakar-type
function) defined in [13]:
Z}’l

= L T+ na) )

and reasoning along the same lines as the proof of Theorem 8, we get our desired result of
Theorem 9:

m—u oo o
Dg,’((rrl),rz) [Ez'ﬁ(z)] - 1"(?41 rg I'(na + rrlrjocm—i— B) ( (2 r2) (m —u,n+ 1)71 (56)
O
Corollary 1. The following result holds true:
D) | [Ea,/g(z)] _ i m”++m";)+ 55 B! (m—un+1) i, (57)
where E, g(z) is the Wiman's function Qiven in [7].
Proof. Taking v = 1in Theorem 9, we get our desired result. O
Corollary 2. The following result holds true:
p {Elx(z)] = r(; - i Wn:mn;)Jr 5 B (m =+ 1)%, (58)
where Ey(z) is the Mittag—Leffler function given in [8,14].
Proof. By substituting o = 1 and B = 1 in Theorem 9, we get our desired result. [
Remark 4. If we take v =1, &« = 1 and B = 1 in Theorem 9, we retrieve Theorem 8.
Theorem 10. For the generalized hypergeometric function, the following result holds true:
DZ,((;),rz) pFo(x1, %2 . xp;y1, Y2 Ygs2) | =
(59)

ZMmH H7 1Ty, )Z
T(m —u) Hizl I'(x;) =0 H]':1 (yj+n+m) (rr2)

Here, pFy(x1,X2..Xp;Y1,Y2.Yq; z) is the generalized hypergeometric function given in [11].

[T T+ m) p (m—un+1)"

Proof of Theorem 10. Using the definition of the generalized hypergeometric function and
reasoning along the same lines as Theorem 8, we obtain our desired result of Theorem 10. [

Corollary 3. For the Gauss hypergeometric function, the following result holds true:

Dg’,((:l),rz) |:2F1 (xl, X2, Y1, Z):| —

zm— F i (x1 +n+m)F(x2+n+m)B(r)
I'(m—u)T(x I'(y1+n+m) (r1,12)

i (60)
(m—u,n+ 1);,

n=0

provided that | z |< 1.

Proof. Take p =2 and g = 1 in Theorem 10; then, the desired result is obtained. [
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Corollary 4. For the confluent hypergeometric function, the following result holds true:

DZ,,((:l),rz) {11?1(9(1/}/1;2)} =

- (61)
2" T(y1) o= Ty +n+m) o) z"
T'(m—u)T(x) Eor(yl +n+m) Brira) (1 u,n+1)n!,
forallz € C.
Proof. Take p =1 and g = 1 in Theorem 10; then, the desired result is obtained. [
Theorem 11. For the Wright—Fox function, the following result holds true:
u,(r) (x1,a1) ... (xp/ap) _
DZr(T],T2) |:qu |:Z (yllbl) ce (Xq, bq) |
A g Hle F(xi + IZ,‘(H + m)) (r) n (62)
Y = B, oy (m—un+1)—.
F(Wl - Ll) n=0 H]-:1 F(y] + 11]'(71 + m) "2 n!

Here, qu [z

((;1’6;71)) " E;C” ’ Z” )) } is the Wright—Fox function given in [15].
v1)---\Yq,Yg

Proof of Theorem 11. Using the definition of the Wright-Fox function and reasoning along
the same lines as Theorem 8, we obtain our desired result of Theorem 11. O

Theorem 12. For the Le Roy-type function, the following result holds true:

(1) . o gm 0 (n+m)! (r) _ i
Dz/(}’l,I’Z) |:F1x,‘3(z):| - r(m _ 1/[) n:o [F(Tlﬁ( + me + ‘B)]'YB(rlﬂ’z) (m u,n + 1) n! ’ (63)

where FZ,ﬁ (z) is the Le Roy-type function given in [16].

Proof of Theorem 12. Using the definition of the Le Roy-type function and reasoning
along the same lines as Theorem 8, we obtain our desired result of Theorem 12. [

Remark 5. If we take v = 1 in the above Theorem 12, then we get Corollary 1.

4. Conclusions

We conclude our investigation by remarking that the results presented in this paper
are easily retrieved by extension of the classical Caputo fractional derivative operator and
some other special functions. Such results are new and very useful for the additional
extension of other special functions in the field of the fractional calculus. It is easy to reduce
extended hypergeometric functions into trigonometric functions, exponential function,
beta function, and Gamma function, it will increase the rate to find out the solution of
differential equations symmetrically. At present, we are trying to find possible applications
of these results with other research areas. In the future, we will work on the computer
algebra of these extended functions by using mathematical software.
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