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Abstract: This paper studies a Cournot duopoly game in which firms produce homogeneous goods
and adopt a bounded rationality rule for updating productions. The firms are characterized by an
isoelastic demand that is derived from a simple quadratic utility function with linear total costs. The
two competing firms in this game seek the optimal quantities of their production by maximizing their
relative profits. The model describing the game’s evolution is a two-dimensional nonlinear discrete
map and has only one equilibrium point, which is a Nash point. The stability of this point is discussed
and it is found that it loses its stability by two different ways, through flip and Neimark–Sacker
bifurcations. Because of the asymmetric structure of the map due to different parameters, we show by
means of global analysis and numerical simulation that the nonlinear, noninvertible map describing
the game’s evolution can give rise to many important coexisting stable attractors (multistability).
Analytically, some investigations are performed and prove the existence of areas known in literature
with lobes.

Keywords: Cournot duopoly game; isoelastic demand; flip bifurcation; Neimark–Sacker bifurcation;
noninvertible map; lobes

1. Introduction

Oligopoly market structure has been characterized by a few interdependent firms
that collectively dominate the market. It has been thoroughly studied and analyzed in
economic dynamics and game theory. The duopoly one on which the current manuscript
focuses on has been considered a particular case from oligopoly, but with only two firms (or
competitors). In duopoly, each firm simultaneously chooses its decision or strategy based
on its own actions and those taken by its competitor. Literature has reported several studies
in duopoly games focusing either in static and dynamic cases. There have been many
studies in handling dynamic cases because they have possessed several dynamic behaviors,
which have attracted many researchers. Such dynamic behaviors have included different
types of bifurcations, peculiar basins of attraction for chaotic attractors and multistability
phenomena. In addition, there were different utility functions that were the core of many
studies in such games. For instance, there was the most popular utility function, known
Cobb–Douglas utility. It is a particular functional form of production function that has been
widely adopted to represent the technological relationship between the amounts of two or
more inputs and the amount of output that can be produced by those inputs. Furthermore,
there was the constant elasticity of substitution (CES) utility, Singh and Vives utility, and
others. These utilities and their properties can be found in the literature ([1–10]).

The current paper adopts a nonlinear utility function that can be considered as a
particular case of the Singh and Vives utility. Applying Lagrange first-order conditions
on the adopted utility gives rise to isoelastic demand functions for both firms, and they
are the same as those given by Cobb–Douglas utility [1]. Due to the complex dynamic
characteristics of duopoly models literature has reported many interesting results about
Nash equilibrium point of these games and consequently many researchers have been
attracted. We report here some related works and results in this direction. For instance,
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a game of differentiated products with two competitors whose decision variables are
different, known as Cournot–Bertrand duopoly game, has been investigated in [11]. More
studies on seeking the optimality of production by competing firms have been introduced
and discussed in ([12–14]). In [15], Tremblay and Tremblay studied a Cournot–Bertrand
duopoly game with differentiated products and their studies were concentrated on Nash
equilibrium and its stability in static phase. A Cournot–Bertrand game depending on
a theoretical framework has been introduced in [16]. In [17], Naimzada et al. have
introduced a Cournot–Bertrand model that is described by a two-dimensional discrete
linear map. Their focus was on the dynamic characteristics of Nash equilibrium points and
the bifurcation types by which it became unstable. Conversely, studying and modeling
the evolution of such games require some rules of adjustments by which competing firms
can adjust their updating productions. Indeed, the literature has reported several studies
that adopted many adjustment approaches used for that purpose. Bounded rationality
mechanism has been ranked first in such studies and has been deeply adopted in the
modeling process. It has been considered as a gradient-rule mechanism as it depends on
the marginal profit and requires competing firms to carry out an estimation on it whether
it increases or decreases, so firms can update their output production next time period.
Besides this mechanism, there were other useful approaches adopted in many studies in the
literature like, for example, the tit-for-tat rule and the approximation of local monopolistic
mechanism ([18–27]).

Adopting the bounded rationality rule and a nonlinear quadratic utility function that
is considered as a particular case form Singh and Vives utility a Cournot duopoly game
that belongs to those discussed above is introduced in the current manuscript. Indeed,
the adopted utility function by firms in this paper is different than that introduced and used
in [28]. Unlike several studies in the literature, the two competing firms in this game want
to maximize their relative profits. Our analysis performed here includes local and global
investigations on the map’s dynamics around Nash equilibrium point in the asymmetric
case. This includes the types of bifurcations by which it can be unstable and routes to chaos
can be raised. Discussion on the coexistence of multiple stable attractors and attracting sets
whose attractive basins structures are peculiar because of the coexistence of the so-called
lobes is analyzed. Our discussion shows that Nash point can be destabilized due to flip and
Neimark–Sacker bifurcations also confirms the coexistence of lobes as the game’s map has
owns a focal point makes both denominator and nominator of the map vanish. Furthermore,
we prove that this map is noninvertible and is of type Z1 − Z3, where the phase plane is
divided by the region Zi, i refers to the number of preimages. The symmetric case when
equal parameters values are adopted does not possess important dynamic characteristics
like those obtained in this manuscript for the asymmetric case. For this reason, our analysis
here is focused on the later case. In addition, one has to highlight that the current studies
in this paper differ from those obtained in [29]. The inverse demand function in this paper
is isoelastic while it is linear in [29]. The relative profits to be maximized is more general
than those adopted in [29]. Furthermore, the current paper analyzes the dynamics with
asymmetric parameters as both competing firms adopt different marginal cost and different
speed of adjustment parameters. Moreover, the current paper considers [30] as a special
case but with the same adjustment mechanism. Interesting readers are advised to see other
similar studies in literature [31].

The summary of the paper can be set as follows. The game’s model and its analytical
structure is given in Section 2. In Section 3, local analysis on the stability of the unique
equilibrium point (Nash point) is studied both analytically and numerically. In Section 4,
the main results in this paper on global analysis which discusses some peculiar basins of
attraction and lobes are presented. Finally, the findings are summarized.

2. The Model

Let us suppose the utility function given by,

U = Q−Q2 = q1 + q2 − (q1 + q2)
2 (1)
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This quadratic utility is concave and Q = q1 + q2 and qi, i = 1, 2 represents total
supply of quantities to market. We study here a game of two competing firms (or players)
that produce the quantity qi, i = 1, 2. Both players adopt the above utility in economic
market. It is easy to see that ∂2U

∂q1q2
= −2 6= 0 and that is to say the marginal utility of

goods does not depend on each, and hence U is homogeneous utility function. Using
p1q1 + p2q2 = 1 as a budget constraint, then one can obtain the optimization problem
given below.

Max U = q1 + q2 − (q1 + q2)
2

s.t p1q1 + p2q2 = 1
(2)

where pi > 0, i = 1, 2 denotes a price for good qi, i = 1, 2. The optimization problem (2)
gives (see Appendix A)

p =
1
Q

(3)

Now, profits can be,

πi(q1, q2) = piqi − C(qi) =

(
1
Q
− ci

)
qi, i = 1, 2 (4)

where Ci(qi) = ciqi, i = 1, 2 denotes quantity’s cost. The marginal cost ( ∂Ci(qi)
∂qi

= ci, i = 12,)
is non-negative constant. Let us assume the two competing firms want to maximize their
relative profits given by

ϕ1 = π1 − α1π2,
ϕ2 = π2 − α2π1

(5)

where πi, i = 1, 2 denotes firm’s i own profit and the parameter αi, i = 1, 2 where
−1 < αi < 1 can be directly interpreted as a measure of altruism. It can also be explained
as firms’ care of relative performance. If αi = 0, i = 1, 2 it means firms give care to their
own profits only. Substituting (4) in (5) one gets,

ϕ1 = q1−α1q2
Q − c1q1 + α1c2q2,

ϕ2 = q2−α2q1
Q − c2q2 + α2c1q1

(6)

So the marginal relative profits
(

∂ϕi
∂qi

, i = 1, 2
)

are

∂ϕ1
∂q1

= (1+α1)q2
Q − c1,

∂ϕ2
∂q2

= (1+α2)q1
Q − c2

(7)

Now, firms want to maximize their relative profits, and this requires them to know
the characteristics of the market where competition is carried out. In order to know
these characteristics, firms should know complete information on the market and their
competitors, but this is impossible. To overcome that, firms estimate their updating
production next period of time based on the sign of the marginal relative profits, ∂ϕi

∂qi
, i = 1, 2.

If ∂ϕi
∂qi

> 0 then firms increase their production next period of time, otherwise they decrease
productions or become naive. The rule by which they estimate production is called bounded
rationality rule and is given by [32]

qi(t + 1) = qi(t) + ki(qi)
∂ϕi
∂qi

; i = 1, 2 (8)

Let us suppose that ki(qi) = νiqi; i = 1, 2 where νi > 0, i = 1, 2 is a speed of adjustment
parameter. Given that one gets qi(t+1)−qi(t)

qi(t)
∝ ∂ϕi

∂qi
and, hence, the relative production is

directly proportional to marginal relative profit. Properties of this rule are studied and
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reported elsewhere ([26–28,30]). Substituting (7) in (8), one obtains a two-dimensional
discrete map describing the game’s repetition as follows.

T(q1, q2):

 q1(t + 1) = q1(t) + ν1q1(t)
(
(1+α1)q2

Q − c1

)
,

q2(t + 1) = q2(t) + ν2q2(t)
(
(1+α2)q1

Q − c2

) (9)

where t = 0, 1, 2, ... refers to time periods. Setting T(q1, q2) = (q1, q2) in (9) one gets a
unique fixed point that is Nash equilibrium and the map is not defined at (0, 0)

e∗ =

(
c2(1 + α2)(1 + α1)

2

[c1(1 + α2) + c2(1 + α1)]
2 ,

c1(1 + α1)(1 + α2)
2

[c1(1 + α2) + c2(1 + α1)]
2

)
(10)

which is positive point.

3. Local Stability

The stability of the above Nash point is given in the following propositions where
their proofs are given in Appendix A.

Proposition 1. The Nash point e∗ is locally asymptotically stable if the following condition is
satisfied,

c1c2ν1ν2 <
4c1c2[(1 + α2)ν2 + (1 + α1)ν1]

c1(1 + α2) + c2(1 + α1)
< 4 + c1c2ν1ν2 (11)

Proposition 2. The Nash point e∗ loses its stability due to flip bifurcation only if the following
condition is satisfies

4c1c2[(1 + α2)ν2 + (1 + α1)ν1]

c1(1 + α2) + c2(1 + α1)
> 4 + c1c2ν1ν2 (12)

Proposition 3. The Nash point e∗ loses its stability due to Neimark–Sacker bifurcation only if the
following condition is satisfied.

4c1c2[(1 + α2)ν2 + (1 + α1)ν1]

c1(1 + α2) + c2(1 + α1)
< 4 + c1c2ν1ν2 (13)

Now, some numerical experiments are performed to validate the above propositions.
Assuming the values, c1 = 2, c2 = 2.5, α1 = 0.5 and α2 = 0.5, Figure 1a presents the
stability region of Nash point and the conditions (12) and (13) where flip and Neimark–
Sacker bifurcations are held. It is clear that the Nash equilibrium point can be destabilized
by means of either flip or Neimark–Sacker bifurcation. Assuming the values, c1 = 2,
c2 = 2.5, α1 = 0.5, α2 = 0.5 and ν2 = 0.3 one can see that the condition (13) is satisfied,
but Nash point loses its stability due to flip bifurcation when ν1 ∈ (0.90566, ∞) as given in
Figure 1b. Fixing the previous values including ν1 = 0.2 Figure 1c shows the flip bifurcation
diagram on varying ν2 and hence Nash point becomes unstable when ν2 ∈ (0.903226, ∞).
Conversely, when selecting the values, c1 = 1, c2 = 2, α1 = 0.5, α2 = 0.5 and ν2 = 1.29
a Neimark–Sacker bifurcation occurs as shown in Figure 1d. Simulation shows that, at
these values of parameters, the Neimark–Sacker takes place when ν1 ∈ (1.379679, 6.461539)
and the condition (12) is non-negative while (13) becomes negative. At ν1 > 6.461539,
both conditions become negative. Figure 1e presents a Neimark–Sacker bifurcation on
varying the parameter ν2 at the set of parameters, c1 = 1, c2 = 2, α1 = 0.5, α2 = 0.5 and
ν1 = 1.35. Extra numerical experiments are carried out for values of the parameter ν1
above its critical point 0.90566 at the set of values, c1 = 2, c2 = 2.5, α1 = 0.5, α2 = 0.5
and ν2 = 0.3. Figure 1f undergoes a period-2 cycle denoted by stars with Nash point
denoted by circle at ν1 = 1.0095. At ν1 = 1.0336, a period-4 cycle is born, and as this
parameter increases to 1.0517881, a two-bands chaotic attractor emerges. Further increasing
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to ν1 = 1.0781457, a one piece chaotic attractor is raised. At another set of values, c1 = 1,
c2 = 2, α1 = 0.5, α2 = 0.5 and ν2 = 1.29, Figure 2a shows quasi-periodic dynamic behavior
with an attracting closed ring at ν1 = 1.4568456. This closed ring is followed by a period-8
cycle at the same set of values, but for ν1 = 1.4725503. The figure also shows a two
different one piece chaotic attractors at the same set of values, but for ν1 = 1.5208725 and
ν1 = 1.5408054, respectively. Simulation shows that different values for α1 and α2 can
affect the stability region in the (ν1, ν2)-plane. For example, at the sets of parameters values
c1 = 2, c2 = 2.5, α1 = 0.5, α2 = 0.3 and c1 = 2, c2 = 2.5, α1 = 0.7, α2 = 0.6 the stability
region in (ν1, ν2)-plane is reduced.
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Figure 1. (a) The region of stability of Nash and the two types of bifurcations diagram at c1 = 2,
c2 = 2.5, α1 = 0.5 and α2 = 0.5. One-dimensional flip bifurcation diagram at c1 = 2, c2 = 2.5, α1 = 0.5,
α2 = 0.5 on varying (b) ν1 and ν2 = 0.3. (c) ν2 and ν1 = 0.2. One-dimensional Neimark–Sacker
bifurcation diagram at c1 = 1, c2 = 2, α1 = 0.5, α2 = 0.5 on varying (d) ν2 and ν1 = 1.35. (e) ν2 and
ν1 = 1.35. (f) The phase plane of some periodic cycles and chaotic attractors at different values of ν1

and c1 = 2, c2 = 2.5, α1 = 0.5, α2 = 0.5.
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Figure 2. (a) The phase plane of closed invariant ring, periodic cycles and chaotic attractors at
different values of ν1 and c1 = 1, c2 = 2, α1 = 0.5, α2 = 0.5. The basin of attraction at c1 = 2, c2 = 2.5,
α1 = 0.5, α2 = 0.5 for (b) Period-2 cycle and ν1 = 1.0095 and ν2 = 0.3. (c) Period-4 cycle and
ν1 = 1.0336 and ν2 = 0.3. (d) Two-bands chaotic attractor and ν1 = 1.0517881 and ν2 = 0.3. (e) One
chaotic attractor and ν1 = 1.0781457 and ν2 = 0.3. (f) The basin of attraction of closed invariant ring
at c1 = 1, c2 = 2, α1 = 0.5, α2 = 0.5, ν1 = 1.4568456 and ν2 = 1.29.

4. Global Analysis

In this section, global analysis about the map’s trajectories are performed. This
includes the basins of attraction on some attracting sets and chaotic attractors. Figure 2b
shows the basin of attraction for a period-2 cycle with Nash point. This periodic cycle is
born at the parameters values, c1 = 2, c2 = 2.5, α1 = 0.5, α2 = 0.5, ν1 = 1.0095 and ν2 = 0.3.
The attracting domain is plotted by white color, while the dark gray refers to the escaping
domain (divergence). The other colors refer to the basin of attraction for Nash and this
cycle. It is clear that there are some lobes that are created from the origin point. The reason
for creating these lobes is discussed later. Keeping the other parameter values fixed and
increasing ν1 to 1.0336 one gets a period-4 cycle. It is depicted on Figure 2c with Nash
and their basins of attraction and is noted that the number of lobes is increased. One can
also see that the escaping domain forms a disconnecting set. At ν1 = 1.0517881, while the
other values are fixed, a two-bands chaotic attractor is raised. Its basin of attraction given
in Figure 2d has an attracting domain that contains many lobes from the divergent one
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(or unfeasible trajectories). Further increasing of ν1 to 1.0781457 gives rise to a one piece
chaotic attractor with lobes form the escaping domain. Conversely, assuming the set of
values, c1 = 1, c2 = 2, α1 = 0.5, α2 = 0.5, ν1 = 1.4568456 and ν2 = 1.29, Figure 2f shows a
dynamic situation of an attracting invariant closed ring with Nash point. One can see that
this attractive basin is peculiar and the attracting domain contains lobes and holes from the
infeasible one. At these parameters value but for ν1 = 1.4725503 a successive period-8 cycle
is emerged. Its basin of attraction is given in Figure 3a with Nash point. In Figure 2b,c,
there are two different chaotic attractors whose attractive basins contain lobes and holes
for the same set of parameters values, but for ν1 = 1.5208725 and ν1 = 1.5408054.

Figure 3. The basin of attraction at c1 = 1, c2 = 2, α1 = 0.5, α2 = 0.5 and ν2 = 1.29 for (a) Period-8
cycle and ν1 = 1.4725503. (b) One chaotic attractor and ν1 = 1.5208725. (c) One chaotic attractor and
ν1 = 1.5408054. (d) The main and secondary lobes for the chaotic attractor given in (c).

4.1. Noninvertible Map

Setting (q1(t + 1), q2(t + 1)) = (0, 0) in T given in (9), one finds

0 = q1(t) + ν1q1(t)
(
(1+α1)q2

Q − c1

)
,

0 = q2(t) + ν2q2(t)
(
(1+α2)q1

Q − c2

) (14)

The algebraic system (14) has only one solution given by, ,

O−1 = (q̊1, q̊2),

q̊1 = − (1+α1)
2(1+α2)(1−c2ν2)ν

2
1 ν2

[ν1(1+α1)(1−c2ν2)+ν2(1+α2)(1−c1ν1)]
2

q̊2 = − (1+α2)
2(1+α1)(1−c1ν1)ν1ν2

2
[ν1(1+α1)(1−c2ν2)+ν2(1+α2)(1−c1ν1)]

2

(15)

This means that the origin point possesses only one preimage point and hence it
belongs to Z1 zone. This zone is characterized by only one preimage point. Let us calculate
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the preimages of any point lies on the vertical axis (q1(t + 1) = 0, q2(t + 1) = q̄ 6= 0). So
one has the following algebraic system.

0 = q1(t) + ν1q1(t)
(
(1 + α1)q2

Q
− c1

)
, (16)

q̄ = q2(t) + ν2q2(t)
(
(1 + α2)q1

Q
− c2

)
(17)

From (16) one gets, q1 = 0 or 0 = 1− c1ν1 +
(1+α1)ν1q2

Q and then the following two
cases are raised.

Case 1. Substituting q1 = 0 in (17) gives q2 = q̄
1−c2ν2

and so the point (0, q̄) has one

preimage point that is O(1)
−1 =

(
0, q̄

1−c2ν2

)
.

Case 2. Let 0 = 1− c1ν1 +
(1+α1)ν1q2

Q that can be combined with (17) to find

q1 =
(1 + α1)ν1

ν2(1 + α2)(c2ν2 − 1)
[q̄− (1− c2ν2)q2] (18)

Substituting (18) in (17) and solve for q2 one finds

q2 = q̄
1−c2ν2

,

q2 = (1+α1)ν1 q̄
(1+α1)ν1[1−c2ν2+(1+α2)ν2]+(1+α2)(1−c2ν2)ν2

(19)

Substituting (19) in (18) one can get the following two preimages.

O(2)
−1 =

(
0, q̄

1−c2ν2

)
,

O(3)
−1 = (q̃1, q̃2),

q̃1 = − (1+α1)ν1 q̄[1−c2ν2+(1+α1)ν1]
(1+α1)ν1[1−c2ν2+(1+α2)ν2]+(1+α2)(1−c2ν2)ν2

q̃2 = (1+α1)ν1 q̄
(1+α1)ν1[1−c2ν2+(1+α2)ν2]+(1+α2)(1−c2ν2)ν2

(20)

This means the point (0, q̄) has three preimages and hence it belongs to Z3 zone. It
is the zone that is characterized by three preimage point. Similarly, one can see that any
point in the form ( p̄, 0) has also three preimages. Therefore, any points belonging to the
invariant axes q1 or q2 will have three preimages except the origin point that has only one
preimage point. Furthermore, Nash point belongs to Z3 zone and Figure 3d shows that the
main lobe is also belongs to Z3 zone and its points has three preimages used to form points
of the secondary lobe. Therefore, one can conclude that the phase plane of any attracting
set will be divided into Z1 and Z3 and hence the game’s map is of type Z1 − Z3.

4.2. Focal Point and Lobes

The map (9) can be rewritten as follows.

T(q1, q2):

 q1(t + 1) = q1(t) + ν1q1(t)
(

N1(q1,q2)
D(q1,q2)

)
,

q2(t + 1) = q2(t) + ν2q2(t)
(

N2(q1,q2)
D(q1,q2)

) (21)

where, N1(q1, q2) = (1 + α1 − c2)q2 − c1q1, N2(q1, q2) = (1 + α2 − c2)q1 − c2q2 and
D(q1, q2) = Q. As one can see, this map is defined in R2 except the points satisfying
the line δS : q2 = −q1 and its preimages of any order. Moreover, for (q1, q2) ∈ δS one gets
only D(q1, q2) = 0 and both N1(q1, q2) 6= 0 and N2(q1, q2) 6= 0. Following to [30] this map
takes the form 0/0 at Q = (0, 0) which is called a focal point. The Q = (xo, yo) is called
a focal point ([30]) if at least one component of the map T becomes in the form 0/0 in Q
and there exists smooth simple arcs γ(t) with γ(0) = Q such that limτ→0 T(γ(τ)) is finite.
Additionally, it is cited in ([30]) that for a focal point Q there exists an associated prefocal
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curve, δQ that is constructed by all the points mapped into Q by at least one of the inverses
of map (21). For the map (21), the prefocal set is defined the prefocal line, δQ : q2 = 0 or
q1 = 0. At the focal point Q one gets the following,

N̄1,q1 = ∂N1
∂q1

= −c1, N̄1,q2 = ∂N1
∂q2

= (1 + α1 − c2)

D̄q1 = ∂D
∂q1

= 1, D̄q2 = ∂D
∂q2

= 1

N̄2,q1 = ∂N2
∂q1

= (1 + α2 − c2), N̄2,q2 = ∂N2
∂q2

= −c2

(22)

and then we have N̄1,q2 D̄q1 − N̄1,q1 D̄q2 = 1 + α1 + c1 − c2, N̄2,q2 D̄q1 − N̄2,q1 D̄q2 = 1 + α2
that means Q is simple. A simple focal point satisfies, N̄1,q2 D̄q1 − N̄1,q1 D̄q2 6= 0, N̄2,q2 D̄q1 −
N̄2,q1 D̄q2 6= 0 and this means that there exists a correspondence among arcs through the
focal Q and points of the prefocal line δQ and such correspondence is one-to-one.

4.3. Lobes Construction

Though the obtained results above, one can see that some basins of attraction are
peculiar due to the emergence of lobes and holes. Figures 2 and 3 present the basins of
attraction for some attracting sets and chaotic attractors and as one can see there are lobes
and holes that are corresponded to the diverging trajectories that is denoted by B(∞). There
are also some peculiar shapes in these basins which require us to focus on the construction
of these lobes. As shown above the game’s map possesses two invariant axes q1 and q2 .
That is to say,

T(0, q2) = (0, (1− c2ν2)q2),
T(q1, 0) = ((1− c1ν1)q1, 0)

(23)

The two invariant axes are denoted by ω1 and ω2 while their preimages are denoted
by ω−1

1 and ω−1
2 . Figure 4a shows the basin of attraction for Nash equilibrium only and

as one can see that there are no lobes or holes. It can be noted that ω−1
1 separates the

basin of attraction of feasible trajectories colored by light gray and infeasible trajectories
denoted by red color. In Figure 4b, where the basin of attraction of the chaotic attractor
given in Figure 3d is depicted one can see that both this chaotic becomes tangent to both
ω−1

1 that intersects ω−1
2 in the preimage point of focal point (0, 0). Furthermore, simulation

experiments show that the main lobe whose points belong to Z3 is formed by real rank-1
preimages of the portions of B(∞) above the prefocal line δQ : q2 = 0 or q1 = 0 issuing
from the focal point (0, 0). While the points of secondary lobe issuing from O−1 is formed
by points of the main lobe.

0 1
0

0.5

ω−1
1

ω
2

ω
1

q
1

q
2

(a)
c

1
=1,c

2
=2,ν

1
=1.49,ν

2
=0.3,α

1
=α

2
=0.5

Figure 4. (a) The attractive basin for Nash point and ω−1
1 at the parameters values, c1 = 1, c2 = 2,

α1 = 0.5, α2 = 0.5, ν1 = 1.49 and ν2 = 0.3. (b) The preimage point of origin and both ω−1
1 and ω−1

2
for the attractive basin for the chaotic attractor given in Figure 3d.

5. Conclusions

In this paper, a Cournot duopoly game whose players produce homogeneous goods
and are rational has been introduced. The target for those competing firms was to updating
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their output productions based on maximization of their relative profits. The unique
equilibrium point of this game coincides with Nash point and its stability conditions
have been obtained. Using local analysis, it has been proved that this point loses its
stability through two types of bifurcations, flip and Neimark–Sacker. Because of the
structure of game’s map both types of bifurcation have been resulted in for high values of
speed reactivity parameters. The map possesses a structure containing components whose
nominator and denominator vanish at the origin point (that is characterized as a focal
point) that is the reason for creating peculiar shapes of basin of attraction of some attracting
sets and chaotic attractors. Discussion of such lobes has shown that they are simple lobes,
however, that give rise to such peculiar shapes. These peculiar shapes may be raised due to
many reasons such as nonlinearity, noninvertible case, and asymmetric structure of the map
or because of adopting the same bounded rationality rule. Furthermore, some numerical
experiments have been carried out in the symmetric case and the map’s dynamics was
poor in comparison with asymmetric one.

For future studies, heterogeneous players will be studied and the local monopolistic
rule will be adopted. This will be applied on economic markets with more than two firms,
for example the triopoly case.
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Appendix A

The Lagrange function is given by

L(q1, q2, λ) = U(q1, q2) + λ(1− p1q1 − p2q2) (A1)

whose first-order conditions become

∂L
∂q1

= ∂U
∂q1
− λp1 = 0,

∂L
∂q2

= ∂U
∂q2
− λp2 = 0,

∂L
∂λ = 1−

2
∑

i=1
piqi

(A2)

Substituting in the first two equations of (A2) one can get (3).

Proof of Proposition 1. For the map (9), the Jacobian matrix becomes

J(q1, q2) =

 1 + ν1

(
(1+α1)q2(q2−q1)

(q1+q2)3 − c1

)
(1+α1)q1(q1−q2)ν1

(q1+q2)3

(1+α2)q2(q2−q2)ν2
(q1+q2)3 1 + ν2

(
(1+α2)q2(q1−q2)

(q1+q2)3 − c2

)  (A3)

that at e∗ takes the form

Je∗ =

 1− 2c1c2(1+α1)ν1
c1(1+α2)+c2(1+α1)

c2(1+α1)[c2(1+α1)−c1(1+α2)]ν1
(1+α2)[c1(1+α2)+c2(1+α1)]

− c1(1+α2)[c2(1+α1)−c1(1+α2)]ν2
(1+α1)[c1(1+α2)+c2(1+α1)]

1− 2c1c2(1+α2)ν2
c1(1+α2)+c2(1+α1)

 (A4)

The stability of e∗ is governed by Jury’s conditions

1− T(Je∗) + det(Je∗) > 0,
1 + T(Je∗) + det(Je∗) > 0,
1− det(Je∗) > 0,

(A5)
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where,
T(Je∗) = 2− 2c1c2[(1+α1)ν1+(1+α2)ν2]

c1(1+α2)+c2(1+α1)
,

det(Je∗) = 1 + c1c2ν1ν2 − 2c1c2[(1+α1)ν1+(1+α2)ν2]
c1(1+α2)+c2(1+α1)

(A6)

Substituting (A6) in (A5) we obtain

1− T(Je∗) + det(Je∗) = c1c2ν1ν2

1 + T(Je∗) + det(Je∗) = 4 + c1c2[(c1(1+α2)+c2(1+α1))ν1ν2−4(1+α2)ν2−4(1+α1)ν1]
c1(1+α2)+c2(1+α1)

1− det(Je∗) = −
c1c2[(c1(1+α2)+c2(1+α1))ν1ν2−2(1+α2)ν2−2(1+α1)ν1]

c1(1+α2)+c2(1+α1)

(A7)

Since ci, νi, i = 1, 2 are positive, the first condition in (A7) is always nonnegative. Now,
letting the other two conditions be nonnegative and then combining them, one obtains

c1c2ν1ν2 <
4c1c2[(1 + α2)ν2 + (1 + α1)ν1]

c1(1 + α2) + c2(1 + α1)
< 4 + c1c2ν1ν2 (A8)

This completes the proof of Proposition 1.

Proof of Proposition 2. Let us suppose that 1+ T(Je∗)+det(Je∗) < 0 and 1−det(Je∗) > 0.
Simple calculations show that

4c1c2[(1 + α2)ν2 + (1 + α1)ν1]

c1(1 + α2) + c2(1 + α1)
> 4 + c1c2ν1ν2 (A9)

and then the proof is completed.

Proof of Proposition 3. Let us suppose that 1+ T(Je∗) + det(Je∗) > 0 and 1− det(Je∗) < 0.
Simple calculations show that

4c1c2[(1 + α2)ν2 + (1 + α1)ν1]

c1(1 + α2) + c2(1 + α1)
< 4 + c1c2ν1ν2 (A10)

and then the proof is completed.
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