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1. Introduction

The injectivity theorem was first developed in [1,2] on a (compact) projective man-
ifold X for an ample line bundle L. Then, it is generalized by a series of articles, such
as [3–9], eventually to a compact Kähler manifold X with pseudo-effective line bundle L.
After that, it is natural to seek the similar result on a non-compact manifold. To my best
acknowledgement, there are only a few results, such as [10,11], in this aspect.

In this paper, we are interested in the manifolds with convexity. More precisely, let
(X, ω) be a weakly pseudoconvex Kähler manifold. By this, we mean a Kähler manifold X
such that there exists a smooth plurisubharmonic exhaustion function ψ on X (ψ is said to
be an exhaustion if for every c > 0 the upperlevel set Xc = ψ−1(c) is relatively compact,
i.e., ψ(z) tends to +∞ when z is taken outside larger and larger compact subsets of X). We
prove that

Theorem 1. Let (X, ω) be a weakly pseudoconvex Kähler manifold such that the sectional curvature

sec 6 −K (see Definition 3)

for some positive constant K. Let (L, ϕL) and (H, ϕH) be two (singular) Hermitian line bundles on
X. Assume the following conditions:

1. There exists a closed subvariety Z on X such that ϕL and ϕH are smooth on X \ Z;
2. iΘL,ϕL > 0 and iΘH,ϕH > 0 on X;
3. iΘL,ϕL > δiΘH,ϕH for some positive number δ.

For a (non-zero) section s of H with supX |s|2e−ϕH < ∞, the multiplication map induced by the
tensor product with s

Φ : Hq(X, KX ⊗ L⊗I (ϕL))→ Hq(X, KX ⊗ L⊗ H ⊗I (ϕL + ϕH))

is (well-defined and) injective for any q > 0.

Remark 1. The assumption (1) can be immediately removed if Demailly’s approximation tech-
nique [12] is valid in this situation. However, it seems to me that the compactness of the base
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manifold is of crucial importance in his original proof. Thus, it is hard to directly apply his argument
here. We are interested to know whether such an approximation exists on a non-compact manifold.

We will recall the definition of singular metric and multiplier ideal sheaf I (ϕL) in
Section 2, and the elementary properties of manifolds with negative sectional curvature in
Section 3.

Theorem 1 implies the following L2-extension theorem concerning the subvariety that
is not necessary to be reduced. Such type of extension problem was studied in [10] before.

Corollary 1. Let (X, ω) be a weakly pseudoconvex Kähler manifold such that

sec 6 −K

for some positive constant K. Let (L, ϕL) be a (singular) Hermitian line bundle on X, and let ϕ be a
quasi-plurisubharmonic function on X. Assume the following conditions:

1. There exists a closed subvariety Z on X such that ϕL is smooth on X \ Z;
2. iΘL,ϕL > 0;
3. iΘL,ϕL + (1 + δ)i∂∂̄ϕ > 0 for all non-negative number δ ∈ [0, ε) with 0 < ε� 1.

Then, the natural morphism

H0(X, KX ⊗ L⊗I (ϕL))→ H0(X, KX ⊗ L⊗I (ϕL)/I (ϕL + ϕ))

is surjective.

Remark 2. If ϕL is smooth, we have I (ϕL) = OX and

I (ϕL)/I (ϕL + ϕ) = OX/I (ϕ) =: OY,

where Y is the subvariety defined by the ideal sheaf I (ϕ). In particular, Y is not necessary to
be reduced. Then, the surjectivity statement can interpret an extension theorem for holomorphic
sections, with respect to the restriction morphism

H0(X, KX ⊗ L)→ H0(Y, (KX ⊗ L)|Y).

In order to prove Theorem 1, we improve the L2-Hodge theory introduced in [13],
such that it is suitable for the forms taking value in a line bundle. The crucial thing is the
Hodge decomposition [14,15] on a non-compact manifold. Since the base manifold has
negative sectional curvature, it is Kähler hyperbolic by [13]. We then apply the Kähler
hyperbolicity to establish the Hodge decomposition. We leave all the details in the text.

Remark 3. The Kähler hyperbolic manifold was deeply studied in [13]. In particular, Ref. [13]
provides many examples for Kähler hyperbolic manifolds, such as symmetric spaces, bounded
symmetric domains in Cn, hyperconvex bounded domains, and so on. Certainly, Theorem 1 is valid
on these manifolds.

Remark 4. All the results are still valid if L is twisted by a Nakano semi-positive [16] vector
bundle E. The proof involves nothing new hence we omit it.

The plan of this paper is as follows: we will first recall the background materials
in Section 2. The Kähler hyperbolicity is discussed in Section 3. Then, we discuss the
Hodge decomposition on a non-compact manifold in Section 4. In Section 5, we prove the
injectivity theorem and the extension theorem.
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2. Preliminarily
2.1. Singular Metric

Recall that a smooth Hermitian metric h on a line bundle L is given in any trivialization
θ : L|U ' U ×C by

‖α‖2
h = |θ(α)|2e−2ϕ(x), x ∈ U, α ∈ Lx

where ϕ ∈ C∞(U) is an arbitrary function, called the weight of the metric with respect to
the trivialization θ. Then, the singular Hermitian metric is defined in [16] as follows:

Definition 1 (Singular metric). A singular Hermitian metric h on a line bundle L is given in any
trivialization θ : L|U ' U ×C by

‖α‖2
h = |θ(α)|2e−2ϕ(x), x ∈ U, α ∈ Lx

where ϕ ∈ L1(U) is an arbitrary function, called the weight of the metric with respect to the
trivialization θ.

Sometimes, we will directly say that ϕ is a (singular) metric on L if nothing is confused.

2.2. Multiplier Ideal Sheaf

The multiplier ideal sheaf is an important tool in modern complex geometry, which
was originally introduced in [16,17].

Definition 2 (Multiplier ideal sheaf). Let L be a line bundle. Let ϕ be a singular metric on
L such that iΘL,ϕ > γ for a smooth real (1, 1)-form γ on X. Then, the multiplier ideal sheaf is
defined as

I (ϕ)x :={ f ∈ OX,x; there exists a small neighborhood Ux of

x such that
∫

Ux
| f |2e−2ϕ < ∞}.

Note that X is non-compact, and f ∈ Γ(X, I (ϕ)) in general will not imply that∫
X
| f |2e−2ϕ < ∞.

However, when X is furthermore assumed to be weakly pseudoconvex, we could substi-
tute ϕ + χ ◦ ψ for ϕ. Here, χ is a convex increasing function of arbitrary fast growth at
infinity and ψ is the smooth plurisubharmonic exhaustion function provided by the weak
pseudoconvexity of X. This factor can be used to ensure the convergence of integrals at
infinity. Moreover, we have

I (ϕ + χ ◦ ψ) = I (ϕ)

and iΘL,ϕ+χ◦ψ > γ. Therefore, we can always assume without loss of generality that, for
every f ∈ Γ(X, I (ϕ)), ∫

X
| f |2e−2ϕ < ∞.

3. The Kähler Manifold with Negative Curvature
3.1. Negative Curvature

Firstly, let us recall the definition for a manifold with negative sectional curvature.

Definition 3. Let (X, ω) be a Kähler manifold. Let (Θi j̄αβ̄)16i,j,α,β6n be the curvature associated
with ω. Then, X is said to have negative sectional curvature, if there exists a positive constant K
such that, for any non-zero complex vector ξ = (ξ1, ..., ξn),

∑ iΘi j̄αβ̄ξi ξ̄ jξα ξ̄β 6 −K‖ξ‖2.
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It is denoted by sec 6 −K.

A complete Kähler manifold with negative sectional curvature will be Kähler hy-
perbolic (see Proposition 1). The Kähler hyperbolicity was first introduced in [13] for a
compact Kähler manifold. However, there is no obstacle to extend it to the non-compact
case. Firstly, let us recall the d-boundedness of a differential form.

Definition 4. Let α be a differential form on X. Let π : X̃ → X be the universal covering of X.
Then,

(i) α is called bounded (with respect to ω) if the L∞-norm of α is finite,

‖α‖L∞ := sup
x∈X
|α|ω < ∞.

Here, |α|ω is the pointwise norm induced by ω.
(ii) α is called d-bounded if there exists a differential form β on X such that α = dβ and

‖β‖L∞ < ∞.
(iii) α is called d̃-bounded if π∗α is d-bounded on X̃.

Remark 5. When X is compact, these notions bring nothing new. When X is non-compact, it is
easy to verify that d-boundedness implies d̃-boundedness, whereas there is no direct relationship
between boundedness and d-bounxdedness.

The Kähler hyperbolic manifold is then defined as

Definition 5. A Kähler manifold (X, ω) is called Kähler hyperbolic if ω is d̃-bounded.

We list some functionality property of the Kähler hyperbolicity here. They are almost
obvious, and one could refer to [13] for more details.

Proposition 1.

(i) Let X be a Kähler hyperbolic manifold. Then, every complex submanifold of X is still Kähler
hyperbolic. In fact, if Y is a complex manifold which admits a finite morphism Y → X, then
Y is Kähler hyperbolic.

(ii) Cartesian product of Kähler hyperbolic manifolds is Kähler hyperbolic.
(iii) A complete Kähler manifold (X, ω) with negative sectional curvature must be Kähler hyper-

bolic. This fact was pointed out in [13], whose proof can be found in [18]. More precisely, if
sec 6 −K, there exists a 1-form η on X̃ such that π∗ω = dη and

‖η‖L∞ 6 K−
1
2 .

3.2. Notations and Conventions

We make a brief introduction for the basic notations and conventions in Kähler geometry
to finish this section. We recommend readers to see [15] for a sophisticated comprehension.

Let (X, ω) be a Kähler manifold of dimension n, and let (L, ϕ) be a holomorphic line
bundle on X endowed with a smooth metric ϕ. The standard operators, such as ∂̄, ∗ as well
as L, Λ, etc., in Kähler geometry are defined locally and thus make sense with or without
the compactness or completeness assumptions. For an m-form θ, we define e(θ) := θ ∧ ·.
Let D = ∂ϕ + ∂̄ be the Chern connection on L associated with ϕ. Moreover, for an L-valued
k-form α, we define the operators D∗α := (−1)n+nk+1 ∗ D ∗ α, ∂̄∗α := (−1)n+nk+1 ∗ ∂ϕ ∗ α,
∂∗ϕα := (−1)n+nk+1 ∗ ∂̄ ∗ α and e(θ)∗α := (−1)m(k+1) ∗ e(θ) ∗ α.

Let Ap,q(X, L) be the space of all the smooth L-valued (p, q)-forms on X. The pointwise
inner product < ·, · >ω,ϕ on Ap,q(X, L) is defined by the equation:

< α, β >ω,ϕ dVω := α ∧ ∗β̄e−2ϕ
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for α, β ∈ Ap,q(X, L). The pointwise norm | · |ω,ϕ is then induced by < ·, · >ω,ϕ. The
L2-inner product is defined by

(α, β)ω,ϕ :=
∫

X
< α, β >ω,ϕ dVω

for α, β ∈ Ap,q(X, L), and the norm ‖ · ‖ω,ϕ is induced by (·, ·)ω,ϕ.
Let Lp,q

(2)(X, L) be the space of all the L-valued (not necessary to be smooth) (p, q)-forms

with bounded L2-norm on X, and it equipped with (·, ·)ω,ϕ becomes a Hilbert space. The
operators D∗, ∂̄∗, and ∂∗ϕ are then the adjoint operators of D, ∂̄, and ∂ϕ with respect to
(·, ·)ω,ϕ if X is compact. However, when X is non-compact, the situation would be much
more complicated. We will deal with it in the next section.

4. The Hodge Decomposition

The Hodge decomposition is the ingredient to study the geometry of a compact Kähler
manifold. One can consult [14,15] for a complete survey. In this section, we will discuss
the Hodge decomposition on a non-compact manifold. Let (X, ω) be a complete Kähler
manifold of dimension n with negative sectional curvature, and let (L, ϕ) be a holomorphic
line bundle on X endowed with a smooth metric ϕ.

4.1. Elementary Materials

We collect from [13] some basic properties concerning the Hodge decomposition
here. Remember that the adjoint relationship between ∂̄ and ∂̄∗ in general fails when X
is non-compact. In fact, the compactness becomes important when one takes an integral.
However, since X is complete here, we still have the Stokes formula as follows:

Lemma 1. Let η be an L-valued L1-bounded (2n− 1)-form on X, i.e.,

‖η‖L1 :=
∫

X
|η|ωdVω < ∞,

such that dη is also L1-bounded. Then, ∫
X

dη = 0.

Essentially, this lemma is not a surprise after applying the cut-off function to reduce it
to the case that η has the compact support, while the existence of such a cut-off function is
guaranteed by the completeness of ω. For example, we could use the geodesic distance δω

to construct a function aε on X for every ε > 0 satisfying the following conditions:

1. aε is smooth and takes values in the interval [0, 1] with compact support;
2. The subset a−1

ε (1) ⊂ X exhausts X as ε tends zero, and
3. ‖daε‖L∞ 6 ε.

Now the proof of Lemma 1 is elementary, and we omit it here. With the help of
Lemma 1, most of the canonical identities on compact Kähler manifold extend into this
situation. Remember that the Laplacian operators are defined as

� = DD∗ + D∗D,�∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ and

�∂ = ∂ϕ∂∗ϕ + ∂∗ϕ∂ϕ, respectively.

Proposition 2. Let α be an L-valued L2-bounded form on X. Then,
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1. Integral identities.

(�α, α)ω,ϕ = (Dα, Dα)ω,ϕ + (D∗α, D∗α)ω,ϕ

(�∂̄α, α)ω,ϕ = (∂̄α, ∂̄α)ω,ϕ + (∂̄∗α, ∂̄∗α)ω,ϕ and

(�∂α, α)ω,ϕ = (∂ϕα, ∂ϕα)ω,ϕ + (∂∗ϕα, ∂∗ϕα)ω,ϕ.

2. Bochner–Kodaira–Nakano identity.

�∂̄ = �∂ + [iΘL,ϕ, Λ].

In particular, 1. and 2. together give that

(∂̄α, ∂̄α)ω,ϕ + (∂̄∗α, ∂̄∗α)ω,ϕ

=(∂ϕα, ∂ϕα)ω,ϕ + (∂∗ϕα, ∂∗ϕα)ω,ϕ + ([iΘL,ϕ, Λ]α, α)ω,ϕ.

Proof. We only prove that

(�α, α)ω,ϕ = (Dα, Dα)ω,ϕ + (D∗α, D∗α)ω,ϕ.

Recall that, for any differential forms α, β with proper degree, we always have

Dα ∧ ∗β̄e−2ϕ − α ∧ ∗D∗βe−2ϕ = ±d(α ∧ ∗β̄e−2ϕ),

where the sign on the right-hand side is determined by the degree of α. Therefore,

(�α, α)ω,ϕ = lim
ε→0

(�α, aεα)ω,ϕ

= lim
ε→0

((Dα, D(aεα))ω,ϕ + (D∗α, D∗(aεα))ω,ϕ

±
∫

X
d(D∗α ∧ ∗aεᾱe−2ϕ)±

∫
X

d(∗Dα ∧ aεαe−2ϕ)

=(Dα, Dα)ω,ϕ + (D∗α, D∗α)ω,ϕ + lim
ε→0

(Dα, e(daε)α)ω,ϕ

+ lim
ε→0

(D∗α, e(daε)
∗α)ω,ϕ.

We apply Lemma 1 to obtain the third equality. Obviously,

Iε :=|(Dα, e(daε)α)ω,ϕ|+ |(D∗α, e(daε)
∗α)ω,ϕ|

6
∫

X
|daε|ω |α|ω,ϕ(|Dα|ω,ϕ + |D∗α|ω,ϕ).

Then, we choose aε such that |daε|2ω 6 εaε on X and estimate Iε by Schwarz inequality.
This yields

Iε 6 2ε‖α‖ω,ϕ(
∫

X
|aε|(|Dα|2ω,ϕ + |D∗α|2ω,ϕ))

1/2.

Hence, Iε → 0 as ε tends to zero. As a result, we obtain the desired equality.
The other identities are similar.

There are various quick consequences of this proposition. For example, α is �-
harmonic, i.e., �α = 0, if and only if Dα = 0 and D∗α = 0. The similar conclusion
holds for the operators �∂̄ and �∂.

Moreover, with Lemma 1 and Proposition 2, one concludes that the L2-space Lk
(2)(X, L)

of the L-valued k-forms on X admits Hodge decomposition as follows:



Symmetry 2021, 13, 2222 7 of 15

Definition 6 (Hodge decomposition, I). For the L2-space Lk
(2)(X, L), we have the following

orthogonal decomposition:

Lk
(2)(X, L) = ImD⊕Hk(L)⊕ ImD∗ (1)

where

ImD = Im(D : Lk−1
(2) (X, L)→ Lk

(2)(X, L)),

Hk(L) = {α ∈ Lk
(2)(X, L); Dα = 0, D∗α = 0},

and
ImD∗ = Im(D∗ : Lk+1

(2) (X, L)→ Lk
(2)(X, L)).

Similarly, for the L2-space Lp,q
(2)(X, L) of the L-valued (p, q)-forms, we have

Definition 7 (Hodge decomposition, II).

Lp,q
(2)(X, L) = Im∂̄⊕Hp,q(L)⊕ Im∂̄∗ (2)

where

Im∂̄ = Im(∂̄ : Lp,q−1
(2) (X, L)→ Lp,q

(2)(X, L)),

Hp,q(L) = {α ∈ Lp,q
(2)(X, L); ∂̄α = 0, ∂̄∗α = 0},

and
Im∂̄∗ = Im(∂̄∗ : Lp,q+1

(2) (X, L)→ Lp,q
(2)(X, L)).

4.2. Lower Bound on the Spectrum

In this section, we will show that ImD and ImD∗ in the decomposition (1), Im∂̄, and
Im∂̄∗ in the decomposition (2) are actually closed, in which the negative sectional curvature
really comes into effect. Remembering that (X, ω) is Kähler hyperbolic by Proposition 1,
we have π∗ω = dη, where π : X̃ → X is the universal covering and η is a bounded form
on X̃.

Let ω̃ = π∗ω, L̃ = π∗L and Φ = π∗ϕ. The L2-spaces

(Lk
(2)(X̃, L̃), (·, ·)ω̃,Φ) and (Lp,q

(2)(X̃, L̃), (·, ·)ω̃,Φ)

and the related subsets such as ImD, ImD∗ are defined in an obvious way.

Proposition 3. Every α ∈ Lk
(2)(X̃, L̃) with k 6= m satisfies that

(�α, α)ω̃,Φ > λ2(α, α)ω̃,Φ, (3)

where λ is a strictly positive constant which depends only on k, m = dim X̃ and ‖η‖L∞ . Fur-
thermore, when k = m inequality (3) is satisfied by α ∈ Lm

(2)(X̃, L̃), which is orthogonal to

Hm(L̃).

Proof. When k 6= m, inequality (3) was proved in [19]. According to Proposition 2, it shows
that the D-closed L̃-valued k-form α (k 6= m) satisfies

‖α‖2
ω̃,Φ 6 λ−2‖D∗α‖2

ω̃,Φ
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and the D∗-closed L̃-valued k-form α (k 6= m) satisfies

‖α‖2
ω̃,Φ 6 λ−2‖Dα‖2

ω̃,Φ.

Therefore, ImD as well as ImD∗ is itself closed.
In particular, applying the conclusion above to the L̃-valued D∗-closed (m− 1)-form

and L̃-valued D-closed (m + 1)-form respectively, we obtain that

ImD = Im(D : Lm−1
(2) (X̃, L̃)→ Lm

(2)(X̃, L̃))

and
ImD∗ = Im(D∗ : Lm+1

(2) (X̃, L̃)→ Lm
(2)(X̃, L̃))

are both closed. Therefore, Hodge decomposition is improved as

Lm
(2)(X̃, L̃) = ImD⊕Hm(L̃)⊕ ImD∗

for k = m.
Now we are able to prove the proposition for the form α of degree m orthogonal to

Hm(L̃). We have α = Dβ + D∗γ, where Dβ is orthogonal to D∗γ, and the L2-forms β and
γ of degrees m− 1 and m + 1 correspondingly satisfy D∗β = 0, Dγ = 0. This implies

(α, α)ω̃,Φ = (Dβ, Dβ)ω̃,Φ + (D∗γ, D∗γ)ω̃,Φ = (�β, β)ω̃,Φ + (�γ, γ)ω̃,Φ,

as well as �β = D∗α and �γ = Dα. On the other hand, apply inequality (3) to β and γ
yields, as a consequence of Schwarz inequality that

(�β, β)ω̃,Φ 6 λ−2(�β,�β)ω̃,Φ

and
(�γ, γ)ω̃,Φ 6 λ−2(�γ,�γ)ω̃,Φ.

Thus,

(α, α)ω̃,Φ 6 λ−2((D∗α, D∗α)ω̃,Φ + (Dα, Dα)ω̃,Φ)

= λ−2(�α, α)ω̃,Φ.

If the curvature of L is bounded from below, we will have a similar estimate for �∂̄.

Corollary 2. Assume that iΘL,ϕ > kω for a constant k. Then, α ∈ Lp,q
(2)(X̃, L̃) with p + q 6= m

satisfies that

(�∂̄α, α)ω̃,Φ >
λ2 + k(p + q−m)

2
(α, α)ω̃,Φ, (4)

where λ is the same constant in (3). Furthermore, when p + q = m, inequality (4) is satisfied by
α ∈ Lp,q

(2)(X̃, L̃), which is orthogonal toHp,q(L̃).

Proof. Since π is locally isometric, iΘL̃,Φ > kω̃. By Proposition 2, we have

� = �∂ +�∂̄ = 2�∂̄ − [iΘL̃,Φ, Λ].

Therefore, when p + q 6= m,

(�∂̄α, α)ω̃,Φ =
1
2
((�α, α)ω̃,Φ + ([iΘL̃,Φ, Λ]α, α)ω̃,Φ)

>
λ2 + k(p + q−m)

2
(α, α)ω̃,Φ.
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The last inequality is due to Proposition 3 and elementary computation. Then, we apply
the same argument as Proposition 3 to obtain the desired conclusion for p + q = m. The
proof is complete.

In particular, if λ2 + k(p+ q−m) > 0 and p+ q 6= m, the ∂̄-closed L̃-valued (p, q)-form
α satisfies

‖α‖2
ω̃,Φ 6 constk,m,η‖∂̄∗α‖2

ω̃,Φ

and the ∂̄∗-closed L̃-valued (p, q)-form α satisfies

‖α‖2
ω̃,Φ 6 constk,m,η‖∂̄α‖2

ω̃,Φ.

Here, constk,m,η is a positive constant. Therefore, Im∂̄ as well as Im∂̄∗ is itself closed.
Therefore, we see that, when λ2 + k(p + q − m) > 0 and p + q 6= m − 1 or m + 1,

Hodge decomposition (2) can be improved on X̃ as:

Lp,q
(2)(X̃, L̃) = Im∂̄⊕Hp,q(L̃)⊕ Im∂̄∗. (5)

Thus, we have Hodge’s theorem on X as follows.

Proposition 4. Assuming that iΘL,ϕ > −εω for some ε small enough, then

Hp,q(L) '
Ker(∂̄ : Lp,q

(2)(X, L)→ Lp,q+1
(2) (X, L))

Im(∂̄ : Lp,q−1
(2) (X, L)→ Lp,q

(2)(X, L))
.

Proof. Firstly, we claim that

Im∂̄1 = Im(∂̄ : Lp,q
(2)(X, L)→ Lp,q+1

(2) (X, L))

is closed provided that

Im∂̄2 = Im(∂̄ : Lp,q
(2)(X̃, L̃)→ Lp,q+1

(2) (X̃, L̃))

is closed. In order to prove this claim, let us review the relationship between the L2-spaces
Lp,q
(2)(X, L) and Lp,q

(2)(X̃, L̃) shown in [20]. Remember an open subset U ⊂ X̃ is called a

fundamental domain of the action of the fundamental group π1(X) on X̃ if the following
conditions are satisfied:

1. X̃ = ∪γ∈π1(X)γ(Ū);
2. γ1(U) ∩ γ2(U) = ∅ for γ1, γ2 ∈ π1(X), γ1 6= γ2 and
3. Ū \U has zero measure.

We construct a fundamental domain in the following way. Let {Uk} be a locally finite
cover of X with open balls having the property that, for each k, there exists an open set
Ũk ⊂ X̃ such that π : Ũk → Uk is biholomorphic with inverse φk : Uk → Ũk. Define
Wk = Uk \ (∪j<kŪj ∩Uk). Then, U := ∪kφk(Wk) is a fundamental domain.

Then, it is easy to see that

Lp,q
(2)(X̃, L̃) ' L(2)π1(X)⊗ Lp,q

(2)(U, L̃) ' L(2)π1(X)⊗ Lp,q
(2)(X, L).

A basis of L(2)π1(X) is formed by the functions

δγ(γ
′) =

{
1 if γ = γ′,
0 if γ 6= γ′.
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Then, for α ∈ Lp,q
(2)(X̃, L̃), the above identification is given by

α ' (α|γ(U))γ '∑
γ

δγ ⊗ γ−1 · (α|γ(U)).

Now let {∂̄αl} be a sequence in Im∂̄1 that is convergent in Lp,q+1
(2) (X, L). Fix a γ ∈

π1(X). Then, {∂̄α̃l := δγ ⊗ γ · ∂̄αl} is a sequence in Im∂̄2 that is convergent in Lp,q+1
(2) (X̃, L̃).

Hence, the limit is ∂̄α̃ for some α̃ ∈ Lp,q
(2)(X̃, L̃) due to the closeness of Im∂̄2. We define an

L2-bounded form α on X by

(α, µ)ω,ϕ := (α̃, δγ ⊗ γ · µ)ω̃,Φ

for any test form µ with proper degree on X. Consequently, we have

lim(∂̄αl − ∂̄α, µ)ω,ϕ = lim(∂̄α̃l − ∂̄α̃, δγ ⊗ γ · µ)ω̃,Φ = 0.

It exactly means that lim ∂̄αl = ∂̄α, hence Im∂̄1 is closed. The claim is proved. Remember
the fact that Im∂̄ is closed if and only if Im∂̄∗ is closed; we have a similar conclusion
between Im∂̄∗1 and Im∂̄∗2 .

Due to this claim and the discussions after Corollary 2, we only need to prove that

Im(∂̄ : Lp,q
(2)(X̃, L̃)→ Lp,q+1

(2) (X̃, L̃))

and
Im(∂̄∗ : Lp,q

(2)(X̃, L̃)→ Lp,q−1
(2) (X̃, L̃))

are both closed with p + q = m. However, it is respectively equivalent to the closeness of

Im(∂̄∗ : Lp,q+2
(2) (X̃, L̃)→ Lp,q+1

(2) (X̃, L̃))

and
Im(∂̄ : Lp,q−2

(2) (X̃, L̃)→ Lp,q−1
(2) (X̃, L̃)),

which has been verified. The proof is complete.

5. The Injectivity Theorem

Let (X, ω) be a weakly pseudoconvex Kähler manifold with negative sectional curva-
ture. Let (L, ϕ) be a (singular) Hermitian line bundle on X such that iΘL,ϕ > 0. Moreover,
ϕ is smooth on Y := X \ Z with Z a closed subvariety of X. Firstly, we specify Hodge’s
theorem (Proposition 4) in this situation.

Since X is weakly pseudoconvex, so will be Y. Then, there exists a smooth plurisub-
harmonic exhaustion function ψ on Y. Set

ωl = ω +
i
l
∂∂̄ψ2,

which is a complete Kähler metric on Y for every l > 0. Obviously,

ωl2 > ωl1 > ω

on Y when l1 > l2 > 0. Moreover, when we take large enough l, the sectional curvature of
(Y, ωl) approximates the sectional curvature of (Y, ω) and hence is negative. Therefore,
(Y, ωl) is a complete Kähler hyperbolic manifold by Proposition 1.
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Now, we apply Proposition 4 to (Y, ωl), and obtain that

Hn,q
l (L) ' Ker∂̄

Im∂̄
,

where

Hn,q
l (L) = {α ∈ Ln,q

(2)(Y, L); ∂̄α = 0, ∂̄∗l α = 0},

Ker∂̄ = Ker(∂̄ : Ln,q
(2)(Y, L)→ Ln,q+1

(2) (X, L)),

and
Im∂̄ = Im(∂̄ : Ln,q−1

(2) (Y, L)→ Ln,q
(2)(Y, L)).

We use ∂̄∗l to denote the adjoint operator of ∂̄ on Y defined through ϕ and ωl . Let

Hn,q(L, ϕ) := {α ∈ Ln,q
(2)(X, L); for every l, there exists an αl ∈ H

n,q
l (L) such that

α|Y = αl + ∂̄βl for some βl ∈ Ln,q−1
(2) (Y, L) and lim αl = α|Y}.

Under this circumstance, Hodge’s theorem is formulated as

Proposition 5.
Hn,q(L, ϕ) ' Hq(X, KX ⊗ L⊗I (ϕ)).

Proof. Let α ∈ Hn,q(L, ϕ). Applying Proposition 2 to each αl , we have

0 = (∂∗ϕαl , ∂∗ϕαl)ωl ,ϕ + ([iΘL,ϕ, Λ]αl , αl)ωl ,ϕ.

Since iΘL,ϕ > 0, ([iΘL,ϕ, Λ]αl , αl)ωl ,ϕ > 0. Therefore,

∂∗ϕαl = 0, ([iΘL,ϕ, Λ]αl , αl)ωl ,ϕ = 0.

In particular, ∂̄ ∗ αl = 0. It means that ∗αl is a holomorphic L-valued (n− q, 0)-form on Y.
On the other hand,

‖ ∗ αl‖2
ωl ,ϕ = ‖αl‖2

ωl ,ϕ 6 ‖α|Y‖
2
ωl ,ϕ 6 ‖α‖

2
ω,ϕ < ∞.

The first inequality is due to the fact that α|Y = αl + ∂̄βl and αl ∈ H
n,q
l (L). By canonical

L2-extension theorem [21], ∗αl extends to a holomorphic L-valued (n− q, 0)-form on X,
which is denoted by γl . Fix l0. Then, for l > l0,

‖γl‖2
ωl0

,ϕ 6 ‖ ∗ αl‖2
ωl ,ϕ 6 ‖α‖

2
ω,ϕ < ∞,

hence {γl} is uniformly bounded in L2-norm ‖ · ‖ωl0
,ϕ. Consequently, it converges to a

holomorphic L-valued (n− q, 0)-form, say γ. Furthermore, as l0 tends to ∞, we obtain that
‖γ‖2

ω,ϕ 6 ‖α‖2
ω,ϕ < ∞. Now, it is easy to verify that

[ωq ∧ γ] ∈ Hq(X, KX ⊗ L⊗I (ϕ)).

We denote this morphism by i(α) = [ωq ∧ γ].
Conversely, let [α] ∈ Hq(X, KX ⊗ L⊗I (ϕ)). Let Lq be the sheaf of germs of (n, q)-

forms β on X with values in L and with measurable coefficients, such that both |β|2ω,ϕ and
|∂̄β|2ω,ϕ are locally integrable. The ∂̄ operator defines a complex of sheaves (L•, ∂̄), and it is
easy to verify that (L•, ∂̄) is a resolution of KX ⊗ L⊗I (ϕ). Each sheaf Lq is a C∞-module,
so L• is a resolution by acyclic sheaves.
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Then, we can find a representative α ∈ Γ(X,Lq) of

[α] ∈ Hq(X, KX ⊗ L⊗I (ϕ))

through this resolution by acyclic sheaves. In other words, α is a ∂̄-closed L-valued (n, q)-
form on X such that |α|2ω,ϕ and |∂̄α|2ω,ϕ are locally integrable. Moreover, through the
discussions in Section 2.2, we could arrange the things so that

‖α‖2
ω,ϕ < ∞ and ‖∂̄α‖2

ω,ϕ < ∞.

In particular, α|Y ∈ Ln,q
(2)(Y, L). Now let αl be the harmonic representative of α|Y in

Ln,q
(2)(Y, L). Equivalently, ∂̄αl = ∂̄∗l αl = 0. Applying the same argument of the first part, we

will eventually obtain a sequence of holomorphic L-valued (n− q, 0)-forms {γl} and its
limit γ on X. On the other hand,

‖αl‖2
ωl ,ϕ 6 ‖α|Y‖

2
ωl ,ϕ 6 ‖α‖

2
ω,ϕ < ∞,

the sequence {αl} is convergent to, say α̂. Since ω
q
l ∧ γl = αl ,

α̂ = lim
l→∞

αl = lim
l→∞

(ω
q
l ∧ γl) = ωq ∧ γ.

Therefore, α̂ ∈ Hn,q(L, ϕ) by definition. We denote this morphism by j([α]) = α̂.
It is easy to verify that i ◦ j = Id and j ◦ i = Id. The proof is finished.

Now, we are ready to prove the injectivity theorem on a non-compact manifold. One
could consult [3,5,7,8] for a sophisticated comprehension for the injectivity theorem on a
compact manifold.

Theorem 2 (=Theorem 1). Let (X, ω) be a weakly pseudoconvex Kähler manifold such that

sec 6 −K

for some positive constant K. Let (L, ϕL) and (H, ϕH) be two (singular) Hermitian line bundles on
X. Assume the following conditions:

1. There exists a closed subvariety Z on X such that ϕL and ϕH are both smooth on X \ Z;
2. iΘL,ϕL > 0 and iΘH,ϕH > 0 on X;
3. iΘL,ϕL > δiΘH,ϕH for some positive number δ.

For a (non-zero) section s of H with supX |s|2e−ϕH < ∞, the multiplication map induced by the
tensor product with s

Φ : Hq(X, KX ⊗ L⊗I (ϕL))→ Hq(X, KX ⊗ L⊗ H ⊗I (ϕL + ϕH))

is (well-defined and) injective for any q > 0.

Proof. By Proposition 5, it is enough to prove that

⊗s : Hn,q(L, ϕL)→ Hn,q(L⊗ H, ϕL + ϕH)

is well-defined, hence injective. In other words, let α ∈ Hn,q(L, ϕL), and we should prove
that sα ∈ Hn,q(L⊗ H, ϕL + ϕH).

In fact, since α ∈ Hn,q(L, ϕL), there exists αl ∈ H
n,q
l (L) and

βl ∈ Ln,q−1
(2) (Y, L)
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with α = αl + ∂̄βl . Applying Proposition 2, we obtain that

0 = (∂∗ϕL
αl , ∂∗ϕL

αl)ωl ,ϕL + ([iΘL,ϕL , Λ]αl , αl)ωl ,ϕL .

Notice that iΘL,ϕL > 0, ([iΘL,ϕL , Λ]αl , αl)ωl ,ϕL > 0. Hence,

(∂∗ϕL
αl , ∂∗ϕL

αl)ωl ,ϕL = ([iΘL,ϕL , Λ]αl , αl)ωl ,ϕL = 0.

In particular, ∂∗ϕL
αl = 0.

Now, apply Proposition 2 again on sαl and observe that ∂̄(sαl) = 0, we obtain that

0 6(∂̄∗l (sαl), ∂̄∗l (sαl))ωl ,ϕL+ϕH

=(∂∗ϕL+ϕH
(sαl), ∂∗ϕL+ϕH

(sαl))ωl ,ϕL+ϕH + ([iΘL⊗H,ϕL+ϕH , Λ](sαl), sαl)ωl ,ϕL+ϕH .

Since ∂∗ϕL+ϕH
(sαl) = s∂∗ϕL

αl = 0, and

0 6([iΘL⊗H,ϕL+ϕH , Λ](sαl), sαl)ωl ,ϕL+ϕH

6 sup
X
|s|2e−ϕH ([iΘL⊗H,ϕL+ϕH , Λ]αl , αl)ωl ,ϕL

6(1 +
1
δ
) sup

X
|s|2e−ϕH ([iΘL,ϕL , Λ]αl , αl)ωl ,ϕL

=0,

it is easy to see that
(∂̄∗l (sαl), ∂̄∗l (sαl))ωl ,ϕL+ϕH = 0.

In particular, ∂̄∗l (sαl) = 0, hence sαl ∈ H
n,q
l (L ⊗ H). Obviously, sα = sαl + ∂̄(sβl) and

sβl ∈ Ln,q−1
(2) (Y, L⊗ H). Therefore,

sα ∈ Hn,q(L⊗ H, ϕL + ϕH)

by definition. The injectivity is now obvious.

Proof of Corollary 1. Consider the short exact sequence

0→KX ⊗ L⊗I (ϕL + ϕ)→ KX ⊗ L⊗I (ϕL)→
KX ⊗ L⊗I (ϕL)/I (ϕL + ϕ)→ 0.

The associated cohomology long exact sequence implies that the surjectivity of

H0(X, KX ⊗ L⊗I (ϕL))→ H0(X, KX ⊗ L⊗I (ϕL)/I (ϕL + ϕ))

is equivalent to the injectivity of

H1(X, KX ⊗ L⊗I (ϕL + ϕ))→ H1(X, KX ⊗ L⊗I (ϕL)). (6)

Applying Proposition 5, it reduces to prove that

Hn,1(L, ϕL + ϕ)→ Hn,1(L, ϕL)

α 7→ α

is well-defined.
In fact, let αl ∈ Hn,1

l (L, ϕL + ϕ) and βl ∈ Ln,0
(2)(Y, L)ϕL+ϕ such that

α = αl + ∂̄βl .
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Obviously, βl ∈ Ln,0
(2)(Y, L)ϕL . Here, Hn,1

l (L, ϕL + ϕ), Ln,0
(2)(Y, L)ϕL+ϕ and Ln,0

(2)(Y, L)ϕL are
understood in an obvious way. Moreover, applying Proposition 2 with ϕL + ϕ, we ob-
tain that

∂∗ϕL+ϕαl = 0 and ([iΘL,ϕL+ϕ, Λ]αl , αl)ωl ,ϕL+ϕ = 0.

Applying Proposition 2 one more time with ϕL, then

0 6(∂̄∗ϕL
αl , ∂̄∗ϕL

αl)ωl ,ϕL

=(∂∗ϕL
αl , ∂∗ϕL

αl)ωl ,ϕL + ([iΘL,ϕL , Λ]αl , αl)ωl ,ϕL .

Since ∂∗ϕL+ϕ = (−1)n(n+2)+1 ∗ ∂̄∗ = ∂∗ϕL
, we also have ∂∗ϕL

αl = 0. On the other hand,

0 6([iΘL,ϕL , Λ]αl , αl)ωl ,ϕL

6([iΘL,ϕL , Λ]αl , αl)ωl ,ϕL+ϕ

6(1 +
1
δ
)([iΘL,ϕL+ϕ, Λ]αl , αl)ωl ,ϕL+ϕ

=0,

The last inequality comes from the assumption that for δ ∈ (0, ε),

iΘL,ϕL + (1 + δ)i∂∂̄ϕ > 0.

In summary, ∂̄∗ϕL
αl = 0. Therefore, αl ∈ Hn,1

l (L, ϕL). α ∈ Hn,1(L, ϕL) by definition. The
proof is complete.

6. Conclusions

We establish an injectivity theorem on a weakly pseudoconvex Kähler manifold X
with negative sectional curvature. In particular, X is not necessary to be compact. As
an application, we obtain an L2-extension theorem concerning the subvariety that is not
necessary to be reduced. Such type of extension theorem is of crucial importance in
complex geometry.
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