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Abstract: The inspection of wave motion and propagation of diffusion, convection, dispersion, and
dissipation is a key research area in mathematics, physics, engineering, and real-time application
fields. This article addresses the generalized dimensional Hirota–Maccari equation by using two
different methods: the exp(−ϕ(ζ)) expansion method and Addendum to Kudryashov’s method to
obtain the optical traveling wave solutions. By utilizing suitable transformations, the nonlinear PDEs
are transformed into ODEs. The traveling wave solutions are expressed in terms of rational functions.
For certain parameter values, the obtained optical solutions are described graphically with the aid of
Maple 15 software.
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1. Introduction

The study of the traveling wave solutions plays a significant role in understanding
and describing the characters of nonlinear problems in physical science. The elements
of physical systems usually operate on multiple time scales [1]. Although closed form
descriptions for nonlinear partial differential equations (NLPDEs) of physical significance
exist, we cannot obtain these forms explicitly. Such problems occur especially in various re-
alistic problems in physical systems. In this scenario, we aim to investigate exact physically
significant solutions, which are so important and useful due to their very wide application
of NLPDEs in fluid mechanics, fluid dynamics, quantum mechanics, bio-science, physics,
chemistry, and other areas of engineering.

Modeling of wave motion has attracted many researchers due to its crucial role in
ocean, coastal, naval and marine engineering. In addition, waves are considered to be the
major source of environmental actions on beaches or floating structures for most geograph-
ical areas. Most problems of practical interest create physical phenomena in nature that
are often nonlinear and can be described by fractional differential equations. For example,
heat conduction systems, nonlinear chaotic systems, plasma waves, and diffusion pro-
cesses are modeled by fractional mathematics and equations [2–4]. Therefore, numerous
investigations have been conducted to develop new methods to solve such equations.
For example, Choucha et al. [5] investigated problems of a nonlinear viscoelastic wave
equation in the presence of distributed delay, strong damping and source terms. By con-
sidering suitable conditions, they obtained a blow-up result of solutions. The improved
sub-equation method has been used by Zhong et al. [6] to obtain exact solutions for a wide
range of nonlinear problems of fractional equations. By converting nonlinear problems
of fractional and integer order equations with the modified Riemann–Liouville derivative
into Riccati equations, they obtained exact solutions, including wave solutions, soliton
solutions, and complex solutions. Simbanefayi et al. [7] obtained traveling wave solu-
tions for the Korteweg–de Vries–Benjamin–Bona–Mahony equation using Lie symmetry
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and Jacobi elliptic function expansion methods. The main objective of the Lie symmetry
method is to transform the governing equations to a simpler equation while maintaining
the invariance of the original equation. Others have previously used different methods
to find the traveling wave solutions for nonlinear evolution equations (NEEs) (see, for
example, [8–20]).

Over the past few years, many researchers have explored several direct methods
to solve nonlinear evolution equations. One of the popular examples of such methods
is the Kudryashov method, which typically only performs the calculation without the
need for the form of a specific function. Examples of Kudryashov methods include the
extended Kudryashov method [21], the generalized Kudryashov method [22], and the new
extended generalized Kudryashov method [23]. The generalized Kudryashov method
by Kaplan et al. [22] does usefully apply to the nonlinear Jaulent–Miodek hierarchy and
(2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation. This method has success-
fully provided exact solutions to the nonlinear evolution equations. The Addendum to
Kudryashov’s method is also among the Kudryashov methods and was introduced by [24].
This method is the general form of previous Kudryashov methods because the trial equation
is proposed as the general form of the trial equations in other Kudryashov methods.

In this article, we construct the exact significant solutions for different types of cases
of the exp(−ϕ(ζ))-expansion method and AKM. Both methods are used as powerful math-
ematical tools for constructing traveling wave solutions of nonlinear partial differential
equations (see, for example, [20–26]).

For the purposes of discussion, we consider the nonlinear (2 + 1) dimensional Hirota–
Maccari equation [27]. Let x and y be the independent spatial variables and t be the time
variable. Consider the complex and the real scalar fields u = u(x, y, t) and v = v(x, y, t),
respectively, satisfying the (2 + 1)-dimensional Hirota–Maccari equation

iut + uxy + iuxxx + uv− i|u|2ux = 0,

3vx +
(
|u|2

)
y
= 0.

(1)

Assuming that x = y , then the system (1) reduces to the (1 + 1)-dimensional Hirota
equation [28].

In the last two decades, scientists have explored the Hirota–Maccari system using
several approaches to efficiently compute and predict exact solutions. The approach
by Painlevé has been applied successfully to construct the general solutions of certain
nonlinear second-order equations [27]. Other methods that have been introduced include
a new unified algebraic method [29], Weierstrass elliptic function expansion method [30]
and extended trial method [31].

Here, we focus attention on using the expansion method and AKM to predict and
derive exact solutions of the Hirota–Maccari system. This paper is organized as follows.
Section 2 presents the methodology of the exp(−ϕ(ζ))-expansion method. Section 3 dis-
cusses the Hirota–Maccari equation. In addition, numerical computations are carried out
by Maple to present the behavior of the optical traveling wave solution through figures.
Section 4 addresses the (2 + 1)-dimensional Hirota–Maccari equation by using Adden-
dum to Kudryashov’s method (AKM) to find the straddled solitary wave solution and the
singular soliton solution and presents them in graphs.

2. Methodology of the Expansion Method

This section presents the procedure of the exp(−ϕ(ζ))-expansion method. In the first
step, we consider a nonlinear partial differential equation in the following form:

F(u, ut, ux, utt, uxx, uxt, . . . ) = 0, (2)
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where u = u(x, t) represents an unknown function, and F is a polynomial function in
u(x, t) and its partial derivatives. We define an appropriate traveling wave transformation
as follows,

u(x, t) = u(ζ), ζ = x− ct, (3)

where c is the velocity of a traveling wave. By utilizing this appropriate traveling wave
transformation (3), the nonlinear partial differential Equation (2) reduces to the ordinary
differential equation (ODE):

Q(u, u
′
, u
′′
, . . . ) = 0, (4)

in which Q is a polynomial in u(ζ) and its total derivatives such that
′
= d

dζ .
We seek traveling wave solutions for a large class of Equation (4) in the following form:

u(ζ) =
N

∑
i=0

ai[exp(−ϕ(ζ))]i, i = 0, . . . , N. (5)

where ai are arbitrary constants, N is a positive integer, and ϕ(ζ) is the elementary function
that satisfies the following ODE:

ϕ
′
= exp(−ϕ(ζ)) + µ exp(ϕ(ζ)) + λ, (6)

where λ and µ are arbitrary constants. By taking the transformation Ψ = exp(ϕ), the non-
linear ODE (6) can be written in the following form

Ψ
′
= µ(Ψ + λ/2µ)2 + 1− λ2/(4µ). (7)

The above Equation (7) is the generalized Riccati first ODE’s. By taking this transforma-
tion η = Ψ + λ/(2µ), the generalized Riccati first ODE’s (7) reduces to the following form

η
′
= µη2 +

4µ− λ2

4µ
, (8)

which can be solved by applying a separation of variables to obtain the following solutions:

• First, when λ2 − 4µ > 0, and µ 6= 0, we have the hyperbolic function solutions:

Ψ = exp(ϕ) =
−
√

λ2 − 4µ tanh(
√

λ2−4µ
2 (ζ + E))− λ

2µ

ϕ(ζ) = ln

−√λ2 − 4µ tanh(
√

λ2−4µ
2 (ζ + E))− λ

2µ

,

(9)

or

Ψ = exp(ϕ) =
−
√

λ2 − 4µ coth(
√

λ2−4µ
2 (ζ + E))− λ

2µ
,

ϕ(ζ) = ln

−√λ2 − 4µ coth(
√

λ2−4µ
2 (ζ + E))− λ

2µ

,

(10)

where E is the integration constant.
• Second, when λ > 0, and µ = 0, we have solutions as:

Ψ = exp(ϕ) =
1
−λ

(exp(−λ(ζ + E))− 1)

ϕ(ζ) = − ln
[

−λ

exp(−λ(ζ + E))− 1

]
.

(11)
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• Third, when λ2 − 4µ < 0, we obtain the periodic solutions as:

Ψ = exp(ϕ) =

√
4µ− λ2 tan(

√
4µ−λ2

2 (ζ + E))− λ

2µ

ϕ(ζ) = ln

√4µ− λ2 tan(
√

4µ−λ2

2 (ζ + E))− λ

2µ

,

(12)

or

Ψ = exp(ϕ) =

√
4µ− λ2 cot(

√
4µ−λ2

2 (ζ + E))− λ

2µ

ϕ(ζ) = ln

√4µ− λ2 cot(
√

4µ−λ2

2 (ζ + E))− λ

2µ

.

(13)

• Fourth, when λ2 − 4µ = 0, we obtain the solution as:

Ψ = exp(ϕ) =
2(λζ + λE + 2)

λ2(ζ + E)

ϕ(ζ) = ln
[

2(λζ + λE + 2)
λ2(ζ + E)

]
.

(14)

• Fifth, when µ = λ = 0, we obtain the solution as:

Ψ = exp(ϕ) = ζ + E,

ϕ(ζ) = ln(ζ + E).
(15)

Substituting Equation (5) into Equation (4) and using ODE (6), the left-hand side is
transferred to a polynomial in exp(−ϕ(ζ)). By equating the coefficient of this polynomial
to zero, we obtain a system of algebraic equations that describes the model equations
for aN , . . . , c, λ, and µ. These algebraic system of equations are solved by means of the
Maple software. Substituting the values of the parameters aN , . . . , c, λ, µ, and the general
solution of Equation (6) into Equation (5), we obtain the desired traveling wave solutions,
as shown in Equation (2).

3. Application

The proposed method in the previous section is implemented successfully to the
Hirota–Maccari system (1) to obtain explicit and exact traveling wave solutions. The
traveling wave solutions of the Hirota–Maccari system (1) are expressed in the form [32]

u(x, y, t) = U(ζ)e−i(px+qy+kt), v(x, y, t) = V(ζ), (16)

where U and V are real functions, ζ = x + y + ct and c is the wave velocity, p is the
frequency of the wave, while q and k are arbitrary constants. Using the traveling wave
transformation (16) empowers us to transform the Hirota–Maccari system (1) into the
following system of ODEs:

3(1− 3p)U′′ + 3(p3 − pq− k)U + (3p− 1)U3 = 0,

V = −U2/3,
(17)

where p 6= 1/3. By explicitly taking advantage of the homogeneous balance method [33],
we balance the nonlinear term U3 and the highest order derivative U′′ in Equation (17)
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to obtain the balance constant N = 1. Therefore, the solution of Equation (17) takes the
following form:

U(ζ) = a0 + a1 exp(−ϕ), (18)

where a0, a1 are non-zero constants. Elementary algebra gives U′′ and U3 as:

U′′ = a1

[
2 exp(−3ϕ) + 2µ exp(−ϕ) + λ2 exp(−ϕ) + 3λ exp(−2ϕ) + µλ

]
, (19)

and
U

3
= a3

0 + 3a2
0a1 exp(−ϕ) + 3a2

1a0 exp(−2ϕ) + a3
1 exp(−3ϕ). (20)

Substitute Equations (18)–(20) into Equation (17) and collect all terms with the same
power of exp(−iϕ), for (i = 0, 1, 2, 3). Then, setting the coefficients of exp(−iϕ), for (i =
0, 1, 2, 3) to zero, yields:

exp(−3ϕ) : 6a1(1− 3p) + a3
1(3p− 1) = 0,

exp(−2ϕ) : 6a1λ(1− 3p) + 3a2
1a0(3p− 1) = 0,

exp(0ϕ) : 3µλa1(1− 3p) + 3a0(p3 − pq− k) + a3
0(3p− 1) = 0,

exp(−ϕ) : 6a1µ(1− 3p) + 3a1λ2(1− 3p) + 3a1(p3 − pq− k) + 3a2
0a1(3p− 1) = 0.

(21)

Solving the above algebraic equations gives the values of the constants a0, a1, and µ as:

a0 = ±
√

3
2

λ, a1 = ±
√

6, µ =
λ2

4
−
(

p3 − pq− k
6(1− 3p)

)
. (22)

Therefore, substituting these constants into the solution (18), we obtain

U(ζ) = ±
√

3
2

λ±
√

6 exp[−ϕ(ζ)]. (23)

To obtain the optical traveling wave solutions for the Hirota–Maccari system, we
substitute Equations (9)–(15) into Equation (23) to obtain the following five optical traveling
wave solutions:

• Case 1: when λ2 − 4µ = 4(p3−pq−k)
6(1−3p) > 0, and µ 6= 0, the complex and the real scalar

fields can be expressed respectively as:

u11(x, y, t) = ±
√

6ei(px+qy+kt)

 λ
2 −

2µ√
4(p3−pq−k)

6(1−3p) tanh( 1
2

√
4(p3−pq−k)

6(1−3p) (ζ+E))+λ

, (24a)

v11(x, y, t) = −2

λ

2
− 2µ√

4(p3−pq−k)
6(1−3p) tanh( 1

2

√
4(p3−pq−k)

6(1−3p) (ζ + E)) + λ


2

, (24b)

and

u12(x, y, t) = ±
√

6ei(px+qy+kt)

 λ
2 −

2µ√
4(p3−pq−k)

6(1−3p) coth( 1
2

√
4(p3−pq−k)

6(1−3p) (ζ+E))+λ

, (25a)

v12(x, y, t) = −2

λ

2
− 2µ√

4(p3−pq−k)
6(1−3p) coth( 1

2

√
4(p3−pq−k)

6(1−3p) (ζ + E)) + λ


2

. (25b)

For special values of parameters, Figure 1 represents the real part (1a) and imaginary
part (1b) of (24a) and its projections (1c) and (1d), respectively, while the exact solution
(24b) and its projections are shown in Figure 2.
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(a) (b)

(c) (d)
Figure 1. Periodic wave solution of the real part (a) and imaginary part (b) of (24a) and its projections
(c,d), respectively, when λ = 3, µ = 26/12, y = 2, and c = p = q = k = E = 1.

Figure 2. Bright wave solution (24b) (left) and its projections (right), when λ = 3, µ = 26/12, y = 2,
and c = p = q = k = E = 1.

• Case 2: when λ2 = 4(p3−pq−k)
6(1−3p) > 0, µ = 0, and λ 6= 0 the complex and the real scalar

fields can be expressed, respectively, as:

u22(x, y, t) = ±
√

6
√

p3−pq−k
6(1−3p)

1 + 2

exp[2
√

p3−pq−k
6(1−3p) ζ+E]−1

.ei(px+qy+kt), (26a)

v22(x, y, t) = −2

√
p3 − pq− k
6(1− 3p)

1 +
2

exp[2
√

p3−pq−k
6(1−3p) ζ + E]− 1


2

. (26b)

For special values of parameters, Figure 3 represents the real part (3a) and imagi-
nary part (3b) of (26a) and its projections (3c) and (3d), respectively, while the exact
solution (26b) and its projections are shown in Figure 4.
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(a) (b)

(c) (d)
Figure 3. The singular solitary wave solution of the real part (a) and imaginary part (b) to (26a) and
its projections (c,d), respectively, when λ = 1/

√
3, µ = 0, y = 2, and c = p = q = k = E = 1.

Figure 4. The singular Kink wave solution (26b) (left) and its projections (right), when λ =

1/
√

3, µ = 0, y = 2, and c = p = q = k = E = 1.

• Case 3: when λ2 − 4µ = 4(p3−pq−k)
6(1−3p) < 0, and µ 6= 0, the complex and the real scalar

fields can be expressed respectively as:

u33(x, y, t) = ±
√

6

 λ
2 + 2µ√

− 4(p3−pq−k)
6(1−3p) tan( 1

2

√
− 4(p3−pq−k)

6(1−3p) (ζ+E))−λ

.ei(px+qy+kt) (27a)

v33(x, y, t) = −2

λ

2
+

2µ√
− 4(p3−pq−k)

6(1−3p) tan( 1
2

√
− 4(p3−pq−k)

6(1−3p) (ζ + E))− λ


2

(27b)
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Figure 5 represents the real part (5a) and imaginary part (5b) of (27a) and its projec-
tions (5c) and (5d), respectively, while the exact solution (27b) and its projections are
shown in Figure 6, for special values of parameters.

(a) (b)

(c) (d)
Figure 5. The periodic wave solution of the real part (a) and imaginary part (b) to (27b) and its
projections (c,d), respectively, when λ = 3, µ = 7/3, y = 2, c = p = q = E = 1, and k = −1.

Figure 6. The singular Kink solution of (27a) (left) and its projections (right), when λ = 3, µ =

7/3, y = 2, c = p = q = E = 1, and k = −1.

• Case 4: when λ2 − 4µ = 4(p3−pq−k)
6(1−3p) = 0, µ 6= 0, and λ 6= 0, the complex and the real

scalar fields can be expressed, respectively, as:

u44(x, y, t) = ±
√

6

√ 6µ(1−3p)+p3−pq−k
6(1−3p) +

(2
√

6µ(1−3p)+p3−pq−k
6(1−3p) (ζ+E)+2)

2 6µ(1−3p)+p3−pq−k
6(1−3p) (ζ+E)

.ei(px+qy+kt) (28a)

v44(x, y, t) = −2

√ 6µ(1−3p)+p3−pq−k
6(1−3p) +

(2
√

6µ(1−3p)+p3−pq−k
6(1−3p) (ζ+E)+2)

2 6µ(1−3p)+p3−pq−k
6(1−3p) (ζ+E)

2

. (28b)
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• Case 5: when λ2 = 4(p3−pq−k)
6(1−3p) = 0, µ = 0, and λ = 0, the complex and the real scalar

fields can be expressed, respectively, as:

u55(x, y, t) =
±
√

6
(ζ + E)

.ei(px+qy+p3t−pqt), (29a)

v55(x, y, t) =
−2

(ζ + E)2 . (29b)

Figure 7 represents the singular Kink wave solution of the real part (7a) and imaginary
part (7b) of (29a) and its projections (7c) and (7d), respectively, while the singular
Kink wave solution (29b) and its projections are shown in Figure 8, for special values
of parameters.

(a) (b)

(c) (d)
Figure 7. The singular Kink solution of the real part (a) and imaginary part (b) to (29a) and its
projections (c,d), respectively, when λ = µ = 0, y = 2, c = p = E = 1, and q = k = 1/2.

Figure 8. The singular Kink solution of (29b) (left) and its projections (right), when λ = µ = 0, y =

2, c = p = E = 1, and q = k = 1/2.
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4. Addendum to Kudryashov’s Method (AKM) for (2 + 1)-Dimensional
Hirota–Maccari Equation

For nonlinear evolution equations (NLEEs), Kudryashov [34] introduced a new ap-
proach to find highly dispersive optical solitons. This method is intended to be used to
perform the calculation without the need for the form of a specific function. Inspired
by the work of Kudryashov [34], Zayed et al. [24] recently introduced the Addendum to
Kudryashov’s method AKM. One aim of this section is to apply this method to find the strad-
dled solitary wave solutions and the singular soliton solutions of the (2 + 1)-dimensional
Hirota–Maccari equation.

For convenience, we start by presenting the main steps of the AKM as follows:

• Step 1: Assuming that (17) has a solution in the following form

φ(ξ) =
N

∑
g=0

σg [R(ξ)]g, (30)

where σg 6= 0 for (g = 0, 1, 2, . . . , N) are constants can be determined, and R(ξ)
satisfies the NODE so that

R
′2(ξ) = R2(ξ)[1− χR2T(ξ)][ln K]2, 0 < K 6= 1, (31)

where χ is an arbitrary constant. We can verify that Equation (31) can be written in
the form:

R(ξ) =
[

4A
4A2 expK(Tξ) + χ expK(−Tξ)

]1/T
, (32)

where A represents a non- zero real number, T is a natural number, and expK(Tξ) = KTξ .
• Step 2: The relation between N and T can be calculated as follows: Setting D[φ(ξ)] =

N then D[φ
′
(ξ)] = N + T, D[φ

′′
(ξ)] = N + 2T, hence D[φ(r)(ξ)] = N + rT and

D[φ(r)(ξ)φs(ξ)] = (s + 1)N + Tr.
• Step 3: Substituting Equations (30) and (31) into Equation (17), then setting the

coefficients of [R(ξ)] f [R
′
(ξ)]i, for ( f = 0, 1, 2, . . . , i = 0, 1) to zero, we obtain a

system of equations in σg for(g = 0, 1, 2, . . . , N). To evaluate the values of σg for
(g = 0, 1, 2, . . . , N) and c, we must solve this system of equations. Consequently, we
will obtain the analytical solutions of Equation (17).

Here we apply the AKM in the class of nonlinear PDE. Balancing U
′′

and U3, in
Equation (17), we obtain

N + 2T = 3N ⇒ N = T. (33)

In the following, we present two cases to find the straddled solitary wave solutions
and the singular soliton solutions of Equation (17):

• Case 1. Setting T = 1, hence N = 1. Then, we deduce from Equation (33) that

U(ξ) = σ0 + σ1R(ξ), (34)

where σ0, and σ1 are constants and σ1 6= 0. Substituting Equations (34) and (31)
into Equation (17) and collecting all the transactions of this term [R(ξ)]l [R

′
(ξ)] f ,

for (l = 0, 1, 2, . . . , 12, and f = 0, 1), and setting them to zero, leads to a system of
equations that can be solved to obtain:

σ0 = 0, σ1 = ln(K)
√
−6χ, (35)

and
k = −3p ln2(K) + p3 + ln2(K)− pq, (36)
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provided χ < 0. Substituting Equations (35) and (32) into Equation (34), and calculat-
ing the straddled solitary solution of Equation (17) gives:

u(x, y, t) =
{

4A ln(K)
√
−6χ

4A2 expK[ζ] + χ expK[−ζ]

}
ei−(px+qy+kt), (37)

and

v(x, y, t) = −1
3

{
4A ln(K)

√
−6χ

4A2 expK[ζ] + χ expK[−ζ]

}3

, (38)

provide χ < 0. In particular, setting χ = −4A2 in Equation (38), we obtain the singular
soliton solution to Equation (17) as

u(x, y, t) =
{

ln(K)
√

6csch[ζ ln K]
}

ei−(px+qy+kt), (39)

and
v(x, y, t) = −1

3

{
ln(K)

√
6csch[ζ ln K]

}3
. (40)

• Case 2. Setting T = 2, hence N = 2. Then, we deduce from Equation (30) that
Equation (17) has solutions in following form:

U(ξ) = σ0 + σ1R(ξ) + σ2R2(ξ), (41)

where σ0, σ1, and σ2 are constants, and σ2 6= 0. Substituting Equations (41) and (12)
into Equation (17) and collecting all the transactions of this term [R(ξ)]l [R

′
(ξ)] f ,

for (l = 0, 1, 2, . . . , 20, and f = 0, 1), and setting them to zero, we obtain a system of
equations that can be solved to obtain the following results:

σ0 = σ1 = 0, σ2 = 2 ln(K)
√
−6χ, (42)

and
k = −12p ln2(K) + p3 + 4 ln2(K)− pq, (43)

provided χ < 0. Substituting Equations (42) and (43) into Equation (41), and calculat-
ing the straddled solitary solution of Equation (17) leads to

u(x, y, t) =
{

8A ln(K)
√
−6χ

4A2 expK[2ζ] + χ expK[2ζ]

}
ei−(px+qy+kt), (44)

and

v(x, y, t) = −1
3

{
8A ln(K)

√
−6χ

4A2 expK[2ζ] + χ expK[2ζ]

}3

, (45)

providing χ < 0. In particular, setting χ = −4A2 in Equation (38), we obtain the
singular soliton solution to Equation (17) as

u(x, y, t) =
{

2 ln(K)
√

6csch[2ζ ln K]
}

ei−(px+qy+kt), (46)

and
v(x, y, t) = −1

3

{
2 ln(K)

√
6csch[2ζ ln K]

}3
. (47)

Note that by choosing different values for the parameters T and N, we can obtain
several solitary wave solutions of Equation (17).

Figure 9 shows the straddled solitary solution (37) when the velocity of the soliton
is c = 4 and the frequency is A = 3 when y = 2. Figure 9c,d shows the straddled solitary
solution, which is a singular solution at x = 2.5. In addition, Figure 10 shows the straddled
solitary solution (38), and Figure 10c,d shows the singular solutions at x = 2.
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(a) (b)

(c) (d)
Figure 9. The solutions (37) (a,b) and its projection when K = 5, A = 3, y = 2, and c = 4. (c,d) shows
the straddled solitary solution, which is a singular solution at x = 2.5.

(a) (b)

(c) (d)
Figure 10. The solutions (38) (a,b) and its projection when K = 5, A = 3, y = 2, and c = 4. (c,d)
shows the singular solutions at x = 2.

5. Conclusions

The search for exact solutions for NEEs has attracted the attention of many scien-
tists in physics and mathematics. In this paper, I investigate the optical traveling wave
solutions to a nonlinear evolution equation in mathematical physics, namely for the (2+ 1)-
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dimensional Hirota–Maccari equation by means of the expansion method. Additionally,
by following the method of the Addendum to Kudryashov’s method AKM, introduced
by Zayed et al. [24], Section 4 analogously derives the straddled solitary wave solution
and the singular soliton solution of the (2 + 1)-dimensional Hirota–Maccari Equation (1),
which is presented with the support of graphs. The resulting solutions indicate that the
proposed approach promises to empower us to address a wide class of nonlinear evolution
equations arising in mathematical physics. The optical wave solutions obtained in this
paper is just one important example of solutions that can have the potential to empower
systematic analysis and understanding of the nonlinear evolution equation in many fields
used widely in engineering and science.
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