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Abstract: This research paper is dedicated to the study of a class of boundary value problems for a
nonlinear, implicit, hybrid, fractional, differential equation, supplemented with boundary conditions
involving general fractional derivatives, known as the #-Hilfer and ¢#-Riemann-Liouville fractional
operators. The existence of solutions to the mentioned problem is obtained by some auxiliary
conditions and applied Dhage’s fixed point theorem on Banach algebras. The considered problem
covers some symmetry cases, with respect to a ¥ function. Moreover, we present a pertinent example
to corroborate the reported results.

Keywords: ¢-Hilfer fractional operator; implicit; Dhage fixed point theorem; Banach algebras

1. Introduction

Fractional calculus theory is an extension and expansion of integer calculus theory.
Because of its good heritability and memory, it has received wide attention from more and
more scholars. It is used in optical and thermal systems, rheology and material mechanics
systems, signal processing and system identification, as well as control and robotics and
has a wide range of applications [1-5]. Fractional theory concepts are used in modern
studies to describe the state of complex physical systems with self-similarity properties,
complex scaling, and heredity. The methods of fractal and multifractal analysis of images
and time series are presented as mathematical tools, allowing the specification of irregular
objects and dynamic properties of processes. As a fractal formalism (or independent
scientific theory), fractional calculus is one of the recent analytical directions. The most
used fractional operators are the Riemann-Liouville and Caputo types [1,2]. Recently, many
generalizations of these fractional operators have appeared, one such general category is the
class of fractional operators involving analytic kernels, introduced by Fernandez et al. [6].
Another, more broad, class of fractional operators, sometimes referred to as y-fractional
calculus, is described by fractional differentiation and the integration of one function,
regarding another function. These generalizations are a useful method for generalizing
many kinds of fractional calculus, which have been intensely considered over the most
recent few years. We mention here a simple survey within this class, which will be a
significant subject of this paper, namely developed fractional calculus, which has likewise
been called p-fractional calculus. The thought previously emerged in a 1964 research paper
by Erdelyi [7], in which he examined the fractional calculus regarding a power function x";
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a similar operator was proposed by Katugampola in 2011 [8]. Generality, this category was
first proposed and inspired by Osler in 1970 [9], and it was mentioned briefly in the 1974
textbook [10]; it was then taken up extensively in the monograph of Kilbas et al. 2006 [1].
As of late, Almeida [11] and Sousa et al. [12] have used fractional operators to generalize
Caputo and Hilfer types, respectively, with respect to another function. Additionally, Jarad
and Thabet, in [13], presented fascinating properties of this generalized operator, including
the generalized Laplace transform.

On the other hand, there has been a great deal of interest in the field of the qualitative
analysis of fractional differential equations (FDEs), with multiple boundary conditions
involving the generalized Hilfer operator. For more details, see [14-18]. For the recent
works regarding to proposed problem, see [19-24].

Wang and Zhang [22] investigated some existence results of the following IVP, for a
nonlocal FDE under the Hilfer derivative:

D¥Pu() = F(se,u(x)), » € (a,b],
(1)
7,7 u(a) = T cju(), T € (a,b).

Derbazi et al. [23] proved the existence and uniqueness results of the following BVP,
for a hybrid FDE under Caputo derivatives:

D () = Henut), x0T

u(0)—F(0,u(0)) u(T)—F(Tu(T))\ _
m () + b () = o )

) cDg+ (u(n)gzﬁ%l;)(n))) + bchbq (u(T)*]:(T,u(T))> =cy, 1€(0,T).
Salim et al. [24] established the existence results of the following IVP for a nonlocal
implicit hybrid FDE under the Katugampola Hilfer derivative:

PD%(¢¢£@&@):H(mwwa%C@%%%§@»,%GWJL

®)

1-y (u(@)-Fau@)\ _ vm . (um)-F(guly))
°Z (W)‘&zl%W)

Motivated by recent developments in the topic of generalized fractional calculus
(and according to the available ideas in the above studies), in the present study, we
intend to address a general extension of these works by performing existence analysis on
the following BVPs for a nonlinear implicit hybrid FDE with mixed integro-derivative
boundary conditions:

DI (ML) 3y (), DB (MG, e [z [,

10 [ u(a) ~ Flap(a)) u(b)— Fou(t)\ _
mZy " (™) + o () = e )

o.B:8 ((u(y)—F (n,u(n)) o,B:8 ((u(b)—F(bu®)\ _
D, (W)”ﬂ) (W) =cy, 1€ (ab),

where DSf ? and DZJF " are the 8-Hilfer fractional derivatives (9-Hilfer FDs for short) of

order ¢ € (1,2) and ¢ € (0,1), respectively; type B € (0,1), Il+ 7 is the #-Riemann—
Liouville (9-RL for short) fractional integral of order 1 — v, v = 0+ B(2 — 0); and the
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non-linear functions G : ] x R — R\{0}, F: xR — R,and H : | x Rx R — R are
continuous, such that F(a,u(a)) = 0.

Observe that the problem (4) is new to the literature on implicit hybrid FDEs and
includes a hybrid FDE (2) fora = 0, B = 1, and &(5¢) = 3. Moreover, our current problem
generates many problems associated with different values of 5 and ¢ as special cases.
The proposed problem covers some symmetry cases, with respect to the ¢ function and
parameter B. For instance, in the case of #(3c) = s and 9(s) = log », our problem (4)
symmetries the Hilfer type hybrid problem and Hilfer-Hadamard type hybrid problem.

Besides, if a1 = ay =1, b1 = b = —1, and c; = ¢, = 0, then the conditions of Equation (4)
become the symmetry conditions (%) = (W) for the values of a,b
withy = 1and DZ’E;& (W) = Ds’f;ﬁ (%) for the fractional derivative

()=F(u())

of order (c, B) of the unknown function “5 )

The structure of our paper is provided as follows. Section 2 contains the definitions
and preliminary results to prove our main findings. In Section 3, we present an assistive
lemma that extracts the representation for the solutions of the problem (4) and we establish
the existence of the solutions by taking advantage of the Dhage fixed point theorem for the
proposed problem. The last section gives an illustrative example to support and justify the
acquired results.

2. Basic Preliminaries

The fractional calculus, with respect to another function, is discussed in this section.
For more information, please see [1-4]. Let | = [a,b] C R. Denote by C := C(J,R) the
Banach space of continuous real valued functions w : | — R with the norm:

el = sup { ()], 5 € T}
Now, we define the weighted space C;_, ¢(J, R) of function w on ] by:
Cl, (D) = Crqo(LR) = {w: (a,b] > B;  [9(¢) = 8(a)]' () €C,0< 7 <1}.
Obviously, C?_ " (]) is a Banach space with the following norm:

wleg | = |[8e) — 8@ ") |, = max|[8(2) — 8(a)] 7o) .

Let 8, w € C" such that ¢ is increasing and ¢’ (s¢) # 0, for all s € J.

Definition 1 ([12]). The 9-Hilfer FD of a function w of order ¢ € (n —1,n| and type p € [0,1]
is defined by
DY w(z) = T Dy TP o s0), 5)

wheren = [0] +1,n € Nand D} = (ﬂ/(l}{) %)n. The relation (5) can be written as

B0 —0;0 ;0
DY w() = ) PREDT w(z0), (6)

with v = 0+ B(n—0), Iggg;ﬂ(-) andRLDZf (+) are called the 9-RL fractional integral and
derivative defined by (see [1])

T () = — [ 0600 — 0(5))" eo(s)ds, and %

T(6) Ja

REDE? w(5) = D T " w(50), ®)
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respectively. Furtheremore, the 9-Caputo FD is given by (see [11]):
D w(x) = T, Df w(»), ©)
where 0 € {7y —o0,7,0}.

Remark 1. In the case O(32) = , the relations (5) and (7)—(9) reduce to the classical fractional
operators in [1,4,25].

Lemma 1 ([1,12]). Let 0 > Oand B > 0, and w € C". Then:

;06,9 +B;0
I§+If+ (s ):I§+ﬁ w(x),

and
DI T 0(30) = w ().
Lemma 2 ([1,12]). Let o, > 0and 6 > 0. Then:
1o I (8() = 8(a)" " = 1l (8() — 8(a)) 7,
2. DY (B(>) ~ ﬂ(a))‘H (,5‘” ) (9() = 9(a)?* 1, 6> 7 = g+ B(n—0),
3. D (9() —8(a) ' =0,6=

Lemma 3 ([12]). Assume that o0 € (n —1,n] (n € N), B € [0,1] with v = 0+ B(n — ¢) and
w € C". Then:

(323200 =t - L R 20 (2 %)

Particularly, if 1 < 0 <2,0 < B < 1withy = 0+ B(2 — 0) we have:

(15191?5;“ w)(%> — w(e)— (8(>) (z()ﬂ)) (I;;v;a@ (@)
_(19(%) 8(a))"” 2(22+’Yl9w> (a).

=

Lemma4 ([1]). Letn —1 < o < nand w € C. Then:

;0 . ;0
(#20)0) = i (120 0

Dhage’s hybrid fixed point result [26,27] will serve as the basis for demonstrating the
existence of the solution to the problem (4).

Theorem 1 ([26,27]). Let X C (Ci?*v(]) be a convex, bounded, and closed set; there are operators:

P,S: (Cf_y(l) —CY_ L(J)and Q : X — (le_ﬂr(]), such that:
(s1) P and S are Lipschitzian with Lipschitz constants Lp and Lg, respectively;
(s2) Q is continuous and compact;
(s3) u =PuQu+Su, VoeX=ucX
(s4) LpMg + Ls < 1, where Mg = || Q(X)|| = sup{|| Qv : v € X}.
Then, the operator equation v = PvQu + Sv possesses a solution in X.

3. Main Result

The next lemma transacts with a linear-type of the problem (4).
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Lemma 5. Assume that 9 € (1,2], € [0,1], y =0+ B(2—0), h(x) € (C‘f_y(]), and
A = 0104 — @3] # 0. (10)

A function u € CY_ o (J) is a solution of the following problem:

Deﬁﬂ( u(x )( f)( )) =h(x), 0€(1,2), »x€]:=]ab],

mZy " (M) gy (M) =y, a1
azpaﬂﬁ(u(q) f >+b2,D¢7/319<u(b;(h§(b)) — ¢,
if and only if:
u(x) = g()|TEh(2) + p(TIh(b) (12)
() (azzgj"”’h(q) + bzz;’;"”h(b))
+ M[B(3) = 9(a)]7 ! + Da[B(50) — ﬂ(ﬂ)W‘z} + f(50),
e 669 — @I [B(0) — B(a))2
Hi) = %AF(VL)I “sT iF(v —al) “ (1)
»)—Ula -1 »)—Uva -2
FPILICEL B ELT 0
and
ClWwy — COWw
b=
along with
a1 + by [8(3¢) — 8(a)]7 !
1= ( — T'(y )' (17)
_ ([8(5) — 9(a)]7 2
“2 = ( : T(y—1) ) (18)
a _ a —0— _ a —o—1
ws = ( 2[0(7) — 9(a)]” r(l;r_b;)[ﬂ(b) 9(a)]” ) (19)
_ —0— _ —r—2
w4:(”2[‘9(’7) ﬁ(ﬂ)]vr(vz_tbi[lf)(b) 9(a)]” ) (20)

Proof Let u be a solution of the first equation of the problem (11). Applying the operator

a+ , by Lemma 3 and setting Iz 78 (%) =k, I;;W? (%) = ko, we have:

(u(%;(_%])c(%)> = 2 1960 — o) + r('rkl_ gy [60) = B + I3 (). (D)

Applying the boundary conditions in Equation (21), and after collecting the similar
terms in one part, we have the following equations:

o1~ T () = k(1D [ﬂ(rb()v; ‘9(”)]7_1) (B [19(111)(7— _19(10))]%2), (22)

and
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o, o, a2[8(n7) — 9(a)]" "1 4+ by [8(b) — 8(a)]7 !
o — QZIEJr U,ﬁh(n) . b215+ J,ﬂh(b) _ kz( 2[ (77) ( )] r(,)/ — ;)[ ( ) ( )] ) (23)

a2[8(17) — 9(a)]7"7"2 + by[8(b) — 8(a)]7" 2
+k1( o) ) (24)

Rewriting Equations (22) and (23), by using Equations (17)-(20), we obtain:
¢1 = BiZ% h(b) = k@1 + k0, (25)
and 0—0;0 0—0;0 .

Cy — ﬂzIa+ ]’l(i]) — bquJr h(b) = ko3 + k1@y4. (26)

which, on solving, yields:

1 . o o
ki = X{CQ(D] — €13 + bﬂD:;Iffh(b) — 6126@115+ Uﬁh(ﬂ) — szDlIng mﬁh(b) }/
and
1 . . .
kr = A {Cl(D4 — Cp0p — bl(!O4I§j:9h(b) + azsz§+ 0'19]’1(17) — bz(DzIﬂQJr aﬁh(b) }

Substituting the value of k; and k; in Equation (32), we get the Equation (12). Con-
versly, assume that u is a solution of Equation (12). Then, we get

u(x) —f(=)  _ (22 n(56) + p (T R (b)

—v(5) (azzgj””’h(;y) + bzzgj‘”"h(b))

+ M[0(¢) = 8(a)] 7 + Mo[0(5¢) — 8(a)] 2.

Taking the operator Ds;ﬁ " onboth sides of above equation, with the help of Definition 1
and Lemmas 1-3, we get:

Dgfﬂ“(”(%) (— f(”)) = h().

g(5)

On the other hand, applying the operator I;f 7% on both sides of Equation (12), with
replace » by a, we get:

1-0 (u(a) — f(a) N A Al L a 0¥
T'; (g(a) ) 177 |28 (@) + p(@)by I8 h(b)

—v(a) (azzfj””h(n) + bzlffmh(b))] . 27)

Next, replace s by a in Equation (12), we get

M B 09 -
( g(b) ) - [Ia+h(b)+y(b)blza+h(b)

—v(b) (azzgj";"h(q) + bzzfg‘””h(b))

+ A1[9(b) = 9(a)]7 ! + Bo[B(b) — 19(61)]”*2}- (28)
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Multiply Equation (27) by a1 and Equation (28) by by and we get:

(M) e ()

= mZ) " [Z8h(a) + p() b (D)
—v(a) (azlff‘wh(iy) + bzzgj””’h(b))}
+by [foh(b) + (b)Y Z% 1 (D)
—v(b) (azzg;”h(q) + bﬂf;‘”%(b))
FA1[9(b) — 0(a)]7 + An[B(b) — ﬂ(a)]'r—ﬂ .

By the relations (13)—(20), one can get the first condition in the problem (11). On the other
hand, applying the operator DZ’f * on both sides of Equation (12), by replacing s by 7,

we get:

o0 (uln) — f(n) _ a9 [ 1o ;
Dy (MU o (26 + ) Z e

—v(n) (T8 () + LIS )] @)

Again, applying the operator Dg’f * on both sides of Equation (12), by replacing s by b,

we get:

DZf”(W) = DIP T n(b) + p(b)n T ()

—u(b) (azzgg‘”"h(q) n bzzgj‘”"h(b))
+ M) = 9@)] 7 + Ar[8(0) — 8(@)] 2], (30)

Multiply Equation (29) by a1 and Equation (30) by by, we get

s D7 (W} + by D7 (W)

= DI [Th(n) + pZE ()
~v() (a8 7 h(n) + T8 7 h(b) ) |
+b, D7F? [If;fh(b) + u(b)0 2% n(b)
—v(b) (aﬂg;mh(q) + bzIf;‘T;&h(b))
+81[8(b) — 8(a)] ™" + A [8(b) — 8(a)] 2]

By simple calculations, with the help of Equations (13)—(20), one can get the second
condition in the Equation (11). O

As a starting point, we must make the following assumptions, in order to verify the
main results in the sequel:

(HYP1) there exists Lg > 0 and Ls > 0, such that:

| F(5¢,u) — F(5,0)| < Lglu—1],
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and
|G (5¢,u) — G (34,0)| < [B(5) — 8(a)]' TLglu — 0],

forall >z € Jand u,v € R.
(HYP2) There exists bounded functions p, g, 7 : ] = R, such that:

[H (5,1, 0) < p(¢) + () |u] +1(>)]0],

for »x € Jand u,v € R.
(HYP3) There exist F* > 0 and G* > 0 such that

F* =sup|F(s0)|, G"=sup|G(sx0)]|,

ne] #€]

along with
p* =supp(x), q° =supq(x), r =supr(sx) <1

»€] Sl xe]

(HYP4) The following inequality holds:

|:MQL7J + Lg} <1,

where:
Mg = AD +A,
_ [8(0) —8(a)] e [8(b) — d(a)]®
A= ey Tery FOM
o (8) =8@)]  [9(b) —8(a)]*7
oo Me—o+1) " Tlg—o+1) ba),

>
I
>
£
+
>
N
=
= =
\
=
=
T
\b—\

To show the existence of solutions of the proposed system (4), we will need to prove
the theorem below.

Theorem 2. Suppose that the hypotheses (HYP1)-(HYP4) are satisfied. If
LpMg+Ls <1, (31)
then the problem (4) has a solution on J.
Proof. In view of Lemma 5, the solution of the problem (4) is given by:
u(z) = amuw»hﬁﬂaw+yWMJ@HAm
(u T () + 0T ”Hu(b))

+ M[8(x) —8(a)]"" l+Az[l9( ) = 19(11)]772} + F (5 u(x)), (32)

where: H,, () := H(%,u(%),Dgf;ﬂ(M)>.
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Choose p > 0, so that:
(AP +A)G* + F*

. . (33)
1- [(Acp FA)Lp + LS}

Define a closed ball, X C Cff,y(]), by:

x={uect ()l <p

and let the operators P : (C?_v(]) — (C‘f_ﬂr(]),S : (C‘f_,y(]) — (C?_y(]) and Q : X —
@19*7( J) be defined by:
Pu=G(,u(x), »€],
Qu = If;f?'{«u(%) + P‘(”)blz,f;f%u(b) — () (’1215;0;197{11(’7)
DT (1) + Ma[8(50) — 0(0)] T+ Agf8(oe) — 0(@)]T, €,

and
Su=F(x,u(x)), x€].

Then, the Equation (32) can be written as:
Pu(s)Qu(s) + Su(s) = u(sx), »€].
Now, we need to show that the operators P, Q, and S agree with the assumptions of

Dhage’s Theorem 1.
Step-I: We first show that P and S are Lipschitzian on lef 7( J), with Lipschitz con-

stants Lp and Lg, respectively. Let u, i1 € (le_ o (J). Then, using (HYP2), we have:
|(Pu(32) = Pii(5))[8(3¢) = 9(a)]' 7| = [8(5¢) — 8(a)]'™7|G (3¢, u(50)) — G (¢, (2))]
< [9(30) = ()] T Lg[8(5¢) — 8(a)]' " |u(3c) — 1 (52)|
< [8(6) = 0@ Lgllu — o,
for all sr € J. Operating the supremum norm over s, we get that:
|Pu—P@lcy < Lpllu—alg
forallu, i € C¥_ ,Y(]). In consequence, P is a Lipschitz map subject to constant:
Lp = [8(b) — 8(a)]" " Lg
By the same way and using (HYP3), we get that:
|(Su(50) = S(3)[8(3¢) = 8(@)]' 77| = [9(32) = 9(@)]' ™| F (52, u(0)) — F (3¢, (52))]
< [8(50) — 8(a)]' T Ls|u(5) — a(52))|
< Lsllu =l
for all s« € J. Operating the supremum norm over s, we get that:

| Su—S(@ley < Lsllu—algy ,
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forallu,im € C¥_ 7(]). In consequence, S is a Lipschitz map subject to constant L.
Step-II: We show that Q is completely continuous operator from X into C{ . (J). To

achieve the continuity of Q, we need to prove that the sequence {u, },cny — u € X. Then,
Lebesgue’s dominated convergence result yields:

lim Quiy () — lim 1) / " (5) (9(5¢) — 0(5))° Hun(s)ds

n—co n—co F(Q

- lim G s | " 9(5)(0(0) — 8(5))° Hay (s)ds

- Jim v() (s = [P O@0) 09 (<)

n—00 0—0

1 b / —o—
oo /. P E0) —00) ™, ()ds)

+ 81 [8(b) — 8(a)]7 + Do[B(5¢) — B(a)]7?

+ap

= a7 | 000~ ) lim Hun(s)ds

- HCb s [ 96 (60) — 09 lim s, 5)

000 (arpy [ OG0 — 0 lim o, ()

n—oo

+a, 1_0) /abz?’(s)(ﬁ(b)—ﬂ( N lim H,y, (s )ds)

F(Q n—00
+ D1[8(b) = 8(a)] 7! + Ay [9(5¢) — B(a)]7 2
1

T T /ﬂ% 8/ (s)(8(52) = 8(s))* ' Hu(s)ds

o s [ 8E)(60) — 8(6) s
1

~v(o0) (e =gy [ ¥ 0 ~ 06 Hu(s)es

r(gl_(,) / b ¢ (s)(8(b) — ﬂ(s))@—‘f—lm(s)ds)

+ A1 [0(52) = 8(a)]7 " + B2[9(0) — 8(a)] 7

+ap

= Qu(x),
where: H,,,, Hy € (C?JY(]), such that
Hy, (32) = H(e,u(), Hy, () and  Hy(s¢) = H(se, u(3), Hyu()),
for all 5 € J. Hence, Qu, converges to Qu pointwise on J.

Next, we will show that the operator Q is compact on X. Firstly, to ensure the uniform
boundedness, let u € X (and applying (HYP3)), we get:

[19Ge) = 8@ Hu(30)| = |[002) = 0@ H (4, u(32), Ha(2))|
[8() = 8(a)] 7 (p(2) + () [u(54)] + r()[Gu (54)])
[

(
9(b) = 8(@)]' 7P +q%p + A3|[8(52) — 9(a)]' T Gu(50)|-

IN N
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Hence:

’[19(%) _ 19(”)]1777'[;[(%)’ < [19(17) — 19(,1)}177;,* + q*p.

- 1—r*

Then, we have:

[9(3¢) — 19(,1)}1*77.[1[(%)’ < o) - 8@ P +q _ o

v 1—r

»€(a,b)

For s« € (a,b], we have:

[(Qu(5))[8(3¢) — 8(a)]' 7|
1

< [8(>) - l%@]lﬂw/tz 8/ (s)(8(52) — 8(s))* ™ Huls)lds

F1002) — 0]l [ 0'(5)(0(8) — 0(5))% [P (5) s

I'(e) Ja
/ ” 0 (s)(B(n) — 8(s))° " [Hu(s)|ds

a3

I'(e—0) Ja

+ [8() = 8(@)] ()|

+ r(Qai ) /ab '(s)(8(b) — ﬁ(s))gf‘771|’}-[u(s)|ds)

+[0(32) = 9(@)]' 7|81 [9(30) — 0(@)]" " + [B(5¢) — B(a)]' 7| Ao [B(5¢) — 8(a)] 72

[B(b) — 8(@)]" "¢ o [8(b) — B(a))°
ST T+ T Ty RO
o ([80n) = 8(a)] T [8(b) —8(a)]0 7
_(I)l/(b)( F(Q—O’—l—l) as + F(Q—U+1) bz)
+ (A1) + [Aa].

Taking the supremum in terms of sz in above, we get:

[9(b) — 9(a)]'7He _[B(b) — B(a)]®
||Q”(%)||<C;"w < T(o+1) @+ T(o+1)

o B) =@ [9(b) — 9(a)]0 7
_CD"(b)( Tlo—o+1) 27 Tlo—o+1) bz)
+ |D1] + [A2][8(b) — 8(a)] !

@fi(b)by

= AP+ A < oo,

for all u € X. Thus Q is a uniformly bounded operator on X.
Secondly, we shall show that Q is equicontinuous. Let u € X and let 51, 55p € ], such
that s¢» < 371. Then, we have:
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‘Qu(%z))[ﬁ(%z) = 8(a)]"7 — Qu(5a))[8(5a) — 8(a)]' 7

< w7 (180a) - 0@ 70 () (00m) - 0(s)*
[8(31) = 8(a)]!~78'(5) (8(51) — 8(5))*" ) [Hu(s)lds
+r(1g> [ 1802) — 0@ (5) (90e2) — 0(s)) ! Ha(s) s
+([9022) = 8(a)]' " (22)| = [9(21) — 8(a)]' |4 )
R CICORCI eI
+([9022) — 8(a)]' v (522)| = [8() = 9(@)]' " |v () )

(F(Qai ) /a” 0'(s)(9() — ()7 [Hu(s)|ds

a b / _o—
T ey b P00 o) Hu(s) )

1] ([9(22) = 8(a)]' 7 = [89(341) — 8(a)]*7)
+18a] ([8(322) — 8(a)]'~7 = [8(31) — 9(a)]' ")

— Qas i — .

by

That implies:
| Qu(s0) — Q(%1)||q>77 —0 asm — i

is uniformly forall u € X. This means that Q is equicontinuous on (C?i y (]). In consequence,
Q will be relatively compact. As a result of the Arzela—Ascoli theorem, we deduce that Q
is completely continuous. Thus, Q is compact on X.
Step-III: In this step, we need to show that the condition (s3) of Theorem 1 holds. Let
for v € X, such that:
u=PuQu+ Su.

Then, we have:

|[8() = B(@)}' (30|

= |[0Ge) — 0(@)]' " (PuQu) (3) + [8(:0) — 8(@)]' " Su ()|
< [8(0) — 0(@)]' 7 [Pu(0)| | Qo) | + [8() — (@) " |Su(:<)]

< (1665 u()) = G(40)| +1G(,0)

< [1800 — 0@ 7 [ OO0~ 0 1Gu(s) s

(o)

1— 1 by ~1
+ [0(>) — 8(a)] ”\M(%)Ilhw/a ' (s)(9(b) — 9(s))* " |Gu(s)|ds

000 — @] TG (e [0 G000 — 0(9)* 7 Guls) s

b .
ooy |, #E00) =0 Gu(s)las)
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+ [8052) = ()] A1 [[8(5¢) — 0(@)] 7" + [8(52) — 0(a)]' 7|8 [8(0) — 0(a)]?]
+ [8(5¢) = 8(a)]' 77 [|F (36, u(5¢)) — F (3,0)| + | F (3,0)|
< (AP +8) |62, u(2)) = G(55,0)] +1G(5,0)]
+ [8(5¢) = 8@ [|F (36, u(50)) = F(3,0)| + | F(54,0)]]
< (A® + &)Ll +G°] + [Lslul +F71]. (34)
Thus, we obtain:
lulles . < (A®+8)|Lplulley +671] + [Lsllulleg +F1], (35)
and hence:
g < —APEAG I 6)

1- {(Acb +A)Lp + LS}

This means that the condition (s3) of Theorem 1 holds.
Step-IV: Finally, we have:

Mg = ||Q(X)||<gg77 = SuP{IIQuIIC?ﬂ cue X}

< AD + A.
From above estimate and by (31), we obtain:
LpMg+Ls <Lp(AP+A)+Ls <1

Hence, the condition (s4) of Theorem 1 holds. So, the operators P, Q, and S satisfy
all conditions in Theorem 1; hence, the equation PuQu + Su = u has a solution in X.
Consequently, the problem (4) has a solutionon . [

4. An Example

In this portion, we support our analytical results by demonstrating a pertinent example
to indicate the applicability of obtained proofs.

Example 1. We consider the following hybrid implicit FBVP:

1 —x
popP [u(%)—(lo <2(2|u)J|re >>] _ V2n 5 (14 |u| + [o])
a 1 . +|u _ 4
(mg +&«32+»«(1+|u\)> 44 =)
1—v;0 (u(a)—F (a,u(a)) u(b)—F(bu(b))\ _ (37)
a7 (™) + o (™) = e

azDZ’f"ﬂ(W) 4 bngf;w(w) =, 7€ (0,1).

) G(bu(b))

Let us consider the hybrid system (37) with specific data:
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Our analysis of the given data shows that:

.1 .1

'F - E/ g - m/
|F o) — Flo6, )| < = |u—1
7 7 —_ 10 7

(%) _ [e% _ 1]77160 B [6% _ 1]772“}
: AT(y) T AT -1
and
1/( ) _ [e% _ 1]fy—1w B [e% _ 1]7—260
AT T AT( -1
Hence, the hypotheses (HYP1) is satisfied with:
1 1 1B 1
Ls=-—,Lg=—5,Lp=1["—-1]"%—.
ST 1079 T g ” le ] 8e2
Let u,v € R. Then, we have:
V2
< — (1
|H (32,u,0)| < - %)2( + |u| + |v]),

and so, the hypotheses (HYP1) and (HYP3) are satisfied with

P =40 = ) = g

So:
p* _ q* _ 1’* — ﬁ
64
By the given data, we get A = 0.1 # 0, LpMg + Lg = 0.58 < 1. Thus, all the conditions of
Theorem 2 are satisfied. Hence, our problem (4) has at least one solution in (Ci i [0,1].

5. Conclusions

Nowadays, we need to develop and refine our capabilities, in order to generalize some
recent results directly related to the subject of FDEs, for the purpose of expanding new
trends in the area of these equations and their real-world applications.

Many authors have generalized some of the various fractional operators, utilizing
traditional operators in fractional calculus. One of these operators is the generalized
Hilfer fractional derivative, introduced by Sousa and Oliveira [12]. In this paper, we
have successfully investigated the existence of solution for the ¢-Hilfer type nonlinear
implicit hybrid FDE. The main result was obtained by applying Dhage’s hybrid fixed point
theorem for three operators in a Banach algebra [26-28]. The main results are illustrated
with a numerical example. Further, our current problem was a general extension of the
previous standard cases of implicit hybrid FDEs by assigning different values for all
existing orders and parameters or defining the ¢ function in the aforesaid problem (4).
The supposed problem (4), with given mixed integro-derivative boundary conditions,
can describe some mathematical models of real and physical processes, in which some
parameters are frequently acclimated to appropriate circumstances. So, the value of these
parameters can change the impacts of fractional integrals and derivatives.
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