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Abstract: In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions
for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes
coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f (t, u, v) and
g(t, u, v) in the considered systems are allowed to be singular at every variable. The boundary
conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the
difficulties arising from the singularity, a suitable cone is constructed through the properties of
Green’s functions associated with the systems. The main tool used in the present paper is the fixed
point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new
results.

Keywords: fractional differential equations; singularity; coupled integral boundary value conditions;
cone; fixed point theorem

1. Introduction

Recently, differential equations of fractional order have received more and more at-
tention in virtue of their various applications in the fields of science and engineering.
Compared with integer-order differential equations, fractional-order models can provide
more accurate characterizations of many natural phenomena and mathematical problems.
Many good results about fractional differential equations have been obtained in some
recent literature. For more details, one can see [1–17] and references therein. On the other
side, the coupled problem of differential equations is one of the hot topics in applied math-
ematics, biology, biomathematics, and other fields. As is well known, coupled conditions
in reaction–diffusion equations can reflect the interactions between diffusion and reaction
to a great extent. For instance, the prey–predator reaction–diffusion system, which is one
of the types of coupled models, can describe the relationships between prey density and
predator density through some specific time and location variables. See [18–21] for a good
overview.

Some existing papers [22–29] have studied the positive solutions for various boundary
value problems by using different methods of nonlinear functional analysis. For example,
Asif et al. [24] considered a integral (second)-order differential system with coupled bound-
ary value conditions. They found the existence of positive solutions by Krasnoselskii’s
fixed point theorem with the singularity only at t = 0 and t = 1. Y. Cui et al. [25] also
studied a class of second-order differential equations involving coupled integral bound-
ary value conditions, and they derived the existence and uniqueness result by a mixed
monotone method. The singularity in this paper was allowed at t = 0, 1 and at only one of
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the variables within the nonlinear items. C. Yuan et al. [27] obtained some results about
multiple positive solutions of a nonsingular fractional differential equation with coupled
boundary value conditions in view of some fixed point theorems on cone. W. Yang [23]
and D. Zhao et al. [28], by utilizing a nonlinear alternative of the Leray–Schauder type
and Krasnoselskii’s fixed point theorem together with the theory of fixed point index on
cone, derived some existence results of multiple positive solutions for some fractional
semipositone boundary value problems with coupled integral boundary value condi-
tions. However, the limitation was that the nonlinear functions here were all not provided
with singularity.

Inspired by the above works, we consider the following nonlinear fractional singular
systems with coupled integral boundary value conditions involving Riemann–Stieltjes
integrals in Banach spaces:

Dα
0+u(t) + f (t, u(t), v(t)) = 0, t ∈ (0, 1),

Dα
0+v(t) + g(t, u(t), v(t)) = 0, t ∈ (0, 1),

u(j)(0) = 0, j = 0, 1,
v(j)(0) = 0, j = 0, 1,

u′(1) =
∫ 1

0
v(t)dφ(t), v′(1) =

∫ 1

0
u(t)dψ(t),

(1)

where Dα
0+ denotes the Riemann–Liouville fractional derivative of order α ∈ (2, 3]; f , g ∈

C[(0, 1)× (0,+∞)× (0,+∞), [0,+∞)], that is, f (t, u, v), g(t, u, v) may be singular at t = 0,

t = 1 and u = 0, v = 0;
∫ 1

0
u(t)dψ(t) and

∫ 1

0
v(t)dφ(t) denote the Riemann–Stieltjes

integrals of u and v with respect to ψ and φ, respectively, where ψ and φ are right continuous
on [0, 1), left continuous at t = 1, and nondecreasing on [0, 1] with φ(0) = ψ(0) = 0. To the
best of our knowledge, no contributions exist investigating the existence and multiplicity
of positive solutions for such fractional singular system with coupled integral boundary
value conditions.

We point out that there are several basic methods to deal with the singularity occurring
at both t = 0, 1 and u or v = 0 . For example, one is a sequential-based method and the
other is a mixed monotone method. The main function of the first method is to transform
the singular system into an approximate system by using sequential techniques. Some
superlinear or sublinear conditions are usually supposed to the nonlinear functions. The
mixed monotone method is used to solve the unique positive solution of some singular
system, for which the variables of nonlinear terms should satisfy some monotonicity
conditions. Unlike the above two methods, in this paper, the classical cone compression
and expansion fixed point theorem, together with some necessary assumptions on the
nonlinear functions in singular system (1), is utilized to overcome the singularity. This
is based on the good properties of Green’s function and a special cone corresponding
to system (1). Relatively speaking, mixed monotone method has low demands on the
properties of Green’s function and the corresponding cone, and the sequential-based
method is usually utilized in abstract spaces with many abstract space theories such as
Arzelà-Ascoli theorem, noncompactness measure theory, etc. Therefore, for solving the
singularity problem of the same kind, the method adopted in this paper is relatively
concise and has its own advantages. Notably, this is also attributed to the assumptions of
the nonlinear terms and the structure of the special singular system in the present paper.

The proposed singular fractional order coupled system (1) here, which generalizes the
cases of singular integral (second)-order differential equations studied in [24,25] and [22],
has more extensive and valid applications. The nonlinear items in this paper are allowed
to be singular not only at time t = 0, 1, but also at both variables u, v = 0 in contrast
to the above-mentioned literature [24,25,27] and [29]. In addition, monotonicity with
respect to variables u, v in nonlinear items, which emerge in [25,29], is not needed in this
paper. By deriving Green’s functions in the integral representation of system (1) and
their important properties, we establish a special cone in an appropriate Banach space.
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This is an especially significant step for our subsequent proofs. Through utilizing cone
theory and the classical cone compression and expansion fixed point theorem, sufficient
conditions ensuring existence and multiplicity of positive solutions for system (1) are
derived, respectively.

An outline of the present paper is as follows. Some necessary preliminaries are
presented in Section 2. In Section 3, sufficient conditions of existence and multiplicity of
positive solutions for the addressed systems are investigated. In Section 4, we present an
example to illustrate the obtained new results.

2. Preliminaries

For convenience, we first list some results about fractional calculus in common use
that can be found in the recent literature [30,31].

Definition 1. The Riemann–Liouville standard fractional integral of order α > 0 of a continuous
function u : (0,+∞)→ R is given by

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

provided that the right-side integral is pointwise defined on (0,+∞).

Definition 2. The Riemann–Liouville fractional derivative of order α of a continuous function
u : (0,+∞)→ R is defined by

(Dα
0+u)(t) =

1
Γ(n− α)

(
d
dt

)n ∫ t

0

u(s)
(t− s)α−n+1 ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,+∞).

Lemma 1. Let α > 0, then the differential equation

Dα
0+u(t) = 0

has solutions u(t) = c1tα−1 + c2tα−2 + · · · + cNtα−N , for some ci ∈ R, i = 0, 1, 2, · · · , N,
where N is the smallest integer greater than or equal to α.

Lemma 2. Assume that u ∈ C(0, 1) ∩ L1[0, 1] with a fractional derivative of order α > 0 that
belongs to C(0, 1) ∩ L1[0, 1]. Then

Iα
0+Dα

0+u(t) = u(t) + c1tα−1 + c2tα−2 + · · ·+ cNtα−N ,

for some ci ∈ R, i = 1, 2, · · · , N.

Let space E = C[0, 1] be equipped with the maximum norm ‖u‖ = max{|u(t)| : t ∈
[0, 1]} for each u ∈ E. (E, ‖ · ‖) is a Banach space. Similarly, for each (u, v) ∈ E× E, we
define ‖(u, v)‖1 = max{‖u‖, ‖v‖}. It is not difficult to verify that (E× E, ‖ · ‖1) is also a
Banach space.

Now, for convenience, we present the assumptions as follows:

Hypothesis 1. f , g ∈ C[(0, 1)× (0,+∞)× (0,+∞), [0,+∞)], and there exist constants λi, µi
with −∞ < λi < 0 < µi < +∞, i = 1, 2, 3, 4, and constants N, M > 0 with 0 < N ≤ 1 ≤ M,
such that for all t ∈ (0, 1), u, v ∈ (0,+∞),

cµ1
1 cµ2

2 f (t, u, v) ≤ f (t, c1u, c2v) ≤ cλ1
1 cλ2

2 f (t, u, v), 0 < ci ≤ N, i = 1, 2,
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cλ1
1 cλ2

2 f (t, u, v) ≤ f (t, c1u, c2v) ≤ cµ1
1 cµ2

2 f (t, u, v), ci ≥ M, i = 1, 2,

cµ3
1 cµ4

2 g(t, u, v) ≤ g(t, c1u, c2v) ≤ cλ3
1 cλ4

2 g(t, u, v), 0 < ci ≤ N, i = 1, 2,

cλ3
1 cλ4

2 g(t, u, v) ≤ g(t, c1u, c2v) ≤ cµ3
1 cµ4

2 g(t, u, v), ci ≥ M, i = 1, 2.

Hypothesis 2. f (·, 1, 1), g(·, 1, 1) ∈ C[(0, 1), [0,+∞)] and satisfy 0 <
∫ 1

0 t(1− t)α−2 f (t, 1, 1)dt
< +∞, 0 <

∫ 1
0 t(1− t)α−2g(t, 1, 1)dt < +∞.

Hypothesis 3.
∫ 1

0
tα−1dφ(t) ·

∫ 1

0
tα−1dψ(t) < (α− 1)2. For the purpose of facilitating our next

proofs, we give the following notations:

ω1 =
∫ 1

0

tα−1

α− 1
dφ(t), ω2 =

∫ 1

0

tα−1

α− 1
dψ(t),

ω = 1−ω1ω2, v = min
{

N,
1
M

}
,

λ0 = min{λ1 + λ2, λ3 + λ4}, λ0 = max{λ1 + λ2, λ3 + λ4}, µ0 = max{µ1 + µ2, µ3 + µ4}.

Remark 1. (i) The representative functions satisfying the condition (Hypothesis 1) can be provided
as follows:

f (t, u, v) = ∑n
i=1 li(t)uξi vηi , where li ∈ C[(0, 1), R+], and

λ1 = ξ1 ≤ ξ2 ≤ · · · ≤ ξk < 0 < ξk+1 ≤ · · · ≤ ξn = µ1;

λ2 = η1 ≤ η2 ≤ · · · ≤ ηk < 0 < ηk+1 ≤ · · · ≤ ηn = µ2,

for i = 1, 2, · · ·, n; k = 1, 2, · · ·, n− 1.
g(t, u, v) = ∑n

i=1 ki(t)uζi vςi , where ki ∈ C[(0, 1), R+], and

λ3 = ζ1 ≤ ζ2 ≤ · · · ≤ ζk < 0 < ζk+1 ≤ · · · ≤ ζn = µ3;

λ4 = ς1 ≤ ς2 ≤ · · · ≤ ςk < 0 < ςk+1 ≤ · · · ≤ ςn = µ4,

for i = 1, 2, · · ·, n; k = 1, 2, · · ·, n− 1.
(ii) It is easy to check that ω = 1−ω1ω2 > 0 if (Hypothesis 3) holds.

Lemma 3. Suppose that condition Hypothesis 3 holds. Let x, y ∈ C[0, 1], then the following systems

Dα
0+u(t) + x(t) = 0, t ∈ (0, 1),

Dα
0+v(t) + y(t) = 0, t ∈ (0, 1),

u(j)(0) = 0, j = 0, 1,
v(j)(0) = 0, j = 0, 1,

u′(1) =
∫ 1

0
v(t)dφ(t), v′(1) =

∫ 1

0
u(t)dψ(t),

(2)

have an integral representation
u(t) =

∫ 1

0
G1(t, s)x(s)ds +

∫ 1

0
I1(t, s)y(s)ds,

v(t) =
∫ 1

0
G2(t, s)y(s)ds +

∫ 1

0
I2(t, s)x(s)ds,

(3)
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where Gi(t, s), Ii(t, s), i = 1, 2 and G(t, s) are the Green’s functions associated with the systems (2)
given by

G1(t, s) =
ω1tα−1

ω(α− 1)

∫ 1

0
G(τ, s)dψ(τ) + G(t, s), (4)

G2(t, s) =
ω2tα−1

ω(α− 1)

∫ 1

0
G(τ, s)dφ(τ) + G(t, s), (5)

I1(t, s) =
tα−1

ω(α− 1)

∫ 1

0
G(τ, s)dφ(τ), (6)

I2(t, s) =
tα−1

ω(α− 1)

∫ 1

0
G(τ, s)dψ(τ). (7)

G(t, s) =


tα−1(1− s)α−2 − (t− s)α−1

Γ(α)
, s ≤ t,

tα−1(1− s)α−2

Γ(α)
, t ≤ s.

(8)

Proof. Based on Lemma 2, we now can reduce (2) to the following equivalent equations

u(t) = −Iα
0+x(t) + c1tα−1 + c2tα−2 + c3tα−3

= −
∫ t

0

(t− s)α−1

Γ(α)
x(s)ds + c1tα−1 + c2tα−2 + c3tα−3,

v(t) = −Iα
0+y(t) + c′1tα−1 + c′2tα−2 + c′3tα−3

= −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds + c′1tα−1 + c′2tα−2 + c′3tα−3,

where ci, c′i, i = 1, 2, 3 are constants. Next, using the boundary conditions u(j)(0) =

v(j)(0) = 0, j = 0, 1, we derive ci = c′i = 0, i = 2, 3, which indicates

u′(t) = −
∫ t

0

(t− s)α−2

Γ(α− 1)
x(s)ds + c1(α− 1)tα−2,

v′(t) = −
∫ t

0

(t− s)α−2

Γ(α− 1)
y(s)ds + c′1(α− 1)tα−2.

From the boundary conditions u′(1) =
∫ 1

0
v(t)dφ(t), v′(1) =

∫ 1

0
u(t)dψ(t), we immedi-

ately obtain

c1 =
∫ 1

0

(1− s)α−2

Γ(α)
x(s)ds +

1
α− 1

∫ 1

0
v(t)dφ(t),

c′1 =
∫ 1

0

(1− s)α−2

Γ(α)
y(s)ds +

1
α− 1

∫ 1

0
u(t)dψ(t).

Therefore, we derive
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u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
x(s)ds +

∫ 1

0

tα−1(1− s)α−2

Γ(α)
x(s)ds +

tα−1

α− 1

∫ 1

0
v(t)dφ(t)

=
∫ 1

0
G(t, s)x(s)ds +

tα−1

α− 1

∫ 1

0
v(t)dφ(t)

=
∫ 1

0
G(t, s)x(s)ds +

tα−1

α− 1
u′(1),

(9)

v(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds +

∫ 1

0

tα−1(1− s)α−2

Γ(α)
y(s)ds +

tα−1

α− 1

∫ 1

0
u(t)dψ(t)

=
∫ 1

0
G(t, s)y(s)ds +

tα−1

α− 1

∫ 1

0
u(t)dψ(t)

=
∫ 1

0
G(t, s)y(s)ds +

tα−1

α− 1
v′(1).

(10)

Integrating (9) and (10) with respect to dψ(t) and dϕ(t), respectively, on [0, 1] gives

∫ 1

0
u(t)dψ(t) = u′(1)

∫ 1

0

tα−1

α− 1
dψ(t) +

∫ 1

0

∫ 1

0
G(t, s)x(s)dsdψ(t),

∫ 1

0
v(t)dφ(t) = v′(1)

∫ 1

0

tα−1

α− 1
dφ(t) +

∫ 1

0

∫ 1

0
G(t, s)y(s)dsdφ(t).

Thus, we have

u′(1) =
ω1

ω

∫ 1

0

∫ 1

0
G(t, s)x(s)dsdψ(t) +

1
ω

∫ 1

0

∫ 1

0
G(t, s)y(s)dsdφ(t), (11)

v′(1) =
1
ω

∫ 1

0

∫ 1

0
G(t, s)x(s)dsdψ(t) +

ω2

ω

∫ 1

0

∫ 1

0
G(t, s)y(s)dsdφ(t). (12)

Substituting (11) and (12) into (9) and (10), respectively, we can obtain

u(t) =
ω1tα−1

ω(α− 1)

∫ 1

0

∫ 1

0
G(t, s)x(s)dsdψ(t)

+
tα−1

ω(α− 1)

∫ 1

0

∫ 1

0
G(t, s)y(s)dsdφ(t) +

∫ 1

0
G(t, s)x(s)ds,

v(t) =
tα−1

ω(α− 1)

∫ 1

0

∫ 1

0
G(t, s)x(s)dsdψ(t)

+
ω2tα−1

ω(α− 1)

∫ 1

0

∫ 1

0
G(t, s)y(s)dsdφ(t) +

∫ 1

0
G(t, s)y(s)ds.

Consequently, the solutions of System (2) can be expressed as the following integral forms:
u(t) =

∫ 1

0
G1(t, s)x(s)ds +

∫ 1

0
I1(t, s)y(s)ds,

v(t) =
∫ 1

0
G2(t, s)y(s)ds +

∫ 1

0
I2(t, s)x(s)ds.

This completes the proof.
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Remark 2. The function G(t, s) defined by (8) has the following properties (see [32]):

(i) G(t, s) > 0, t, s ∈ (0, 1),

(ii) tα−1G(1, s) ≤ G(t, s) ≤ G(1, s), t, s ∈ [0, 1].

From Remark 2 together with (4)–(8) and condition (Hypothesis 3), it is not difficult
to derive

Lemma 4. The functions G1(t, s), G2(t, s) and I1(t, s), I2(t, s) defined by (4), (5)–(7), respectively,
have the following properties:

(i) $tα−1(1− s)α−2s ≤ Gi(t, s) ≤ ρ(1− s)α−2s, i = 1, 2,

(ii) $tα−1(1− s)α−2s ≤ Ii(t, s) ≤ ρ(1− s)α−2s, i = 1, 2.

where
ρ = max

{
ω1
ω

∫ 1
0

1
Γ(α) dψ(τ) + 1

Γ(α) , ω2
ω

∫ 1
0

1
Γ(α) dφ(τ) + 1

Γ(α) , 1
ω

∫ 1
0

1
Γ(α) dφ(τ), 1

ω

∫ 1
0

1
Γ(α) dψ(τ)

}
,

$ = min
{

ω1
ω(α−1)

∫ 1
0

τα−1

Γ(α) dψ(τ), ω2
ω(α−1)

∫ 1
0

τα−1

Γ(α) dφ(τ), 1
ω(α−1)

∫ 1
0

τα−1

Γ(α) dφ(τ), 1
ω(α−1)

∫ 1
0

τα−1

Γ(α) dψ(τ)
}

.

Denote

P = {(u, v) ∈ E× E : u(t) ≥ γtα−1‖(u, v)‖1, v(t) ≥ γtα−1‖(u, v)‖1, t ∈ [0, 1]},

where γ =
$

ρ
∈ (0, 1). It is easy to verify that P is a positive cone in E× E. Let

Pr = {(u, v) ∈ P : ‖(u, v)‖1 < r} (r > 0).

Define an integral operator T : P\{θ} → P by

T(u, v) = (T1(u, v), T2(u, v)),

where the operators T1, T2 : P\{θ} → Q =: {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]} are defined by

T1(u, v)(t) =
∫ 1

0
G1(t, s) f (s, u(s), v(s))ds +

∫ 1

0
I1(t, s)g(s, u(s), v(s))ds, t ∈ [0, 1],

T2(u, v)(t) =
∫ 1

0
G2(t, s)g(s, u(s), v(s))ds +

∫ 1

0
I2(t, s) f (s, u(s), v(s))ds, t ∈ [0, 1].

Clearly, if (u, v) ∈ P\{θ} is a fixed point of operator T , then (u, v) is a solution of
System (1).

Lemma 5. Suppose that (Hypothesis 1)–(Hypothesis 3) hold. Then, the integral operator T :
P\{θ} → P is well defined.

Proof. We first show that T(P\{θ}) ⊂ P. From that proposed in Lemma 4, for any
t, s, τ ∈ [0, 1], it follows that

Gi(t, s) ≥ γtα−1Gi(τ, s), Ii(t, s) ≥ γtα−1 Ii(τ, s), i = 1, 2,

G1(t, s) ≥ γtα−1 I2(τ, s), I1(t, s) ≥ γtα−1G2(τ, s),

and
G2(t, s) ≥ γtα−1 I1(τ, s), I2(t, s) ≥ γtα−1G1(τ, s).
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Then, for any (u, v) ∈ P\{θ}, t ∈ [0, 1], one has

T1(u, v)(t) =
∫ 1

0
G1(t, s) f (s, u(s), v(s))ds +

∫ 1

0
I1(t, s)g(s, u(s), v(s))ds

≥ γtα−1
∫ 1

0
G1(τ, s) f (s, u(s), v(s))ds + γtα−1

∫ 1

0
I1(τ, s)g(s, u(s), v(s))ds

= γtα−1T1(u, v)(τ),

and

T1(u, v)(t) =
∫ 1

0
G1(t, s) f (s, u(s), v(s))ds +

∫ 1

0
I1(t, s)g(s, u(s), v(s))ds

≥ γtα−1
∫ 1

0
I2(τ, s) f (s, u(s), v(s))ds + γtα−1

∫ 1

0
G2(τ, s)g(s, u(s), v(s))ds

= γtα−1T2(u, v)(τ),

which implies that

T1(u, v)(t) ≥ γtα−1‖T1(u, v)‖, T1(u, v)(t) ≥ γtα−1‖T2(u, v)‖.

Thus, it follows
T1(u, v)(t) ≥ γtα−1‖(T1(u, v), T2(u, v))‖1.

Similarly, we can prove

T2(u, v)(t) ≥ γtα−1‖(T1(u, v), T2(u, v))‖1.

Consequently, T(P\{θ}) ⊂ P.
For any (u, v) ∈ P\{θ}, one can obtain

γtα−1‖(u, v)‖1 ≤ u(t), v(t) ≤ ‖(u, v)‖1, t ∈ [0, 1].

Choose an appropriate constant c > 0 such that c‖(u, v)‖1 ≤ N,
1
c
> M. Thus, by Hypoth-

esis 1 one can have

f (t, u(t), v(t)) = f
(

t,
1
c

cu(t),
1
c

cv(t)
)

≤ cλ1 |u(t)|λ1 cλ2 |v(t)|λ2 f
(

t,
1
c

,
1
c

)
≤ cλ1−µ1 |u(t)|λ1 cλ2−µ2 |v(t)|λ2 f (t, 1, 1)

≤ c(λ1+λ2)−(µ1+µ2)‖(u, v)‖λ1+λ2
1 f (t, 1, 1),

(13)
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and

g(t, u(t), v(t)) = g
(

t,
1
c

cu(t),
1
c

cv(t)
)

≤ cλ3 |u(t)|λ3 cλ4 |v(t)|λ4 g
(

t,
1
c

,
1
c

)
≤ cλ3−µ3 |u(t)|λ3 cλ4−µ4 |v(t)|λ4 g(t, 1, 1)

≤ c(λ3+λ4)−(µ3+µ4)‖(u, v)‖λ3+λ4
1 g(t, 1, 1).

(14)

Hence, for any t ∈ [0, 1], from Hypothesis 2, Hypothesis 3 and (13), (14), it follows that

Ti(u, v)(t)

≤ ρ
∫ 1

0
s(1− s)α−2 f (s, u(s), v(s))ds + ρ

∫ 1

0
s(1− s)α−2g(s, u(s), v(s))ds

≤ ρc(λ1+λ2)−(µ1+µ2)‖(u, v)‖λ1+λ2
1

∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds

+ρc(λ3+λ4)−(µ3+µ4)‖(u, v)‖λ3+λ4
1

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds < +∞, i = 1, 2.

Consequently, the integral operator T is well defined on P\{θ}.

Lemma 6. Suppose that Hypotheses 1–3 hold. Then, for any 0 < a < b < +∞, the integral
operator T : (Pb\Pa)→ P is completely continuous.

Proof. It is easy to check that T(Pb\Pa) ⊂ P according to Lemma 5. Now, we show that
the operator T is compact. For any bounded subset B ⊂ Pb\Pa, we can choose a suitable
real constant c ∈ (0, 1) such that

‖(u, v)‖1 ≤
N
c

,
1
c
> M,

for all (u, v) ∈ B. By virtue of the proof processes in Lemma 5, one can obtain

Ti(u, v)(t) ≤ ρ
∫ 1

0
s(1− s)α−2 f (s, u(s), v(s))ds + ρ

∫ 1

0
s(1− s)α−2g(s, u(s), v(s))ds

≤ ρc(λ1+λ2)−(µ1+µ2)aλ1+λ2

∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds

+ ρc(λ3+λ4)−(µ3+µ4)aλ3+λ4

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds < +∞, i = 1, 2,

which illustrates that T(B) is uniformly bounded.
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Next, we are ready to show that T(B) is equicontinuous on [0, 1]. From the proof of
Lemma 3, for any (x, y) ∈ B, t ∈ [0, 1], it follows that

T1(u, v)(t) =
∫ 1

0
G1(t, s) f (s, u(s), v(s))ds +

∫ 1

0
I1(t, s)g(s, u(s), v(s))ds

=
ω1tα−1

ω(α− 1)

∫ 1

0

(∫ 1

0
G(τ, s)dψ(τ)

)
f (s, u(s), v(s))ds

+
∫ t

0

tα−1(1− s)α−2 − (t− s)α−1

Γ(α)
f (s, u(s), v(s))ds

+
∫ 1

t

tα−1(1− s)α−2

Γ(α)
f (s, u(s), v(s))ds

+
tα−1

ω(α− 1)

∫ 1

0

(∫ 1

0
G(τ, s)dφ(τ)

)
g(s, u(s), v(s))ds.

Differentiating with respect to t and combining this with Hypothesis 1, we have

|T1(u, v)′(t)| =
ω1tα−2

ω

∫ 1

0

(∫ 1

0
G(τ, s)dψ(τ)

)
f (s, u(s), v(s))ds

+
∫ t

0

(α− 1)tα−2(1− s)α−2 − (α− 1)(t− s)α−2

Γ(α)
f (s, u(s), v(s))ds

+
∫ 1

t

(α− 1)tα−2(1− s)α−2

Γ(α)
f (s, u(s), v(s))ds

+
tα−2

ω

∫ 1

0

(∫ 1

0
G(τ, s)dφ(τ)

)
g(s, u(s), v(s))ds

≤ ω1

ωΓ(α)

∫ 1

0
dψ(τ)

∫ 1

0
s(1− s)α−2 f (s, u(s), v(s))ds

+
∫ t

0

(α− 1)tα−2(1− s)α−2 − (α− 1)(t− s)α−2

Γ(α)
f (s, u(s), v(s))ds

+
∫ 1

t

(α− 1)tα−2(1− s)α−2

Γ(α)
f (s, u(s), v(s))ds

+
1

ωΓ(α)

∫ 1

0
dφ(τ)

∫ 1

0
s(1− s)α−2g(s, u(s), v(s))ds

≤ c(λ1+λ2)−(µ1+µ2)aλ1+λ2

(
ω1

ωΓ(α)

∫ 1

0
dψ(τ)

∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds

+
∫ t

0

(α− 1)tα−2(1− s)α−2 − (α− 1)(t− s)α−2

Γ(α)
f (s, 1, 1)ds

+
∫ 1

t

(α− 1)tα−2(1− s)α−2

Γ(α)
f (s, 1, 1)ds

)

+c(λ3+λ4)−(µ3+µ4)aλ3+λ4
1

ωΓ(α)

∫ 1

0
dφ(τ)

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds.
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Let

Θ(t) = c(λ1+λ2)−(µ1+µ2)aλ1+λ2

(
ω1

ωΓ(α)

∫ 1

0
dψ(τ)

∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds

+
∫ t

0

(α− 1)tα−2(1− s)α−2 − (α− 1)(t− s)α−2

Γ(α)
f (s, 1, 1)ds

+
∫ 1

t

(α− 1)tα−2(1− s)α−2

Γ(α)
f (s, 1, 1)ds

)

+c(λ3+λ4)−(µ3+µ4)aλ3+λ4
1

ωΓ(α)

∫ 1

0
dφ(τ)

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds.

Exchanging the integral order and using condition Hypothesis 2, we derive that

∫ 1

0
Θ(t)dt ≤ c(λ1+λ2)−(µ1+µ2)aλ1+λ2

(
ω1

ωΓ(α)

∫ 1

0
dψ(τ)

∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds

+
∫ 1

0

(
s(1− s)α−2

Γ(α)
− sα−1(1− s)α−2

Γ(α)

)
f (s, 1, 1)ds

+
∫ 1

0

(α− 1)s(1− s)α−2

Γ(α)
f (s, 1, 1)ds

)

+c(λ3+λ4)−(µ3+µ4)aλ3+λ4
1

ωΓ(α)

∫ 1

0
dφ(τ)

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds < +∞.

The absolute continuity of the integral yields that T1(B) is equicontinuous on [0,1].
From this together with the boundedness of T1(B) and the Arzelà–Ascoli theorem, it
follows that T1(B) is a relatively compact set. Similarly, we can show that T2(B) is also a
relatively compact set. Consequently, T(B) is relatively compact.

Finally, we shall show that T is continuous. For this purpose, we let (um, vm), (u0, v0) ∈
Pb\Pa such that ‖(um, vm) − (u0, v0)‖1 → 0 as m → +∞. Choose an appropriate real

constant c ∈ (0, 1) such that cb ≤ N,
1
c
≥ M. From this together with (Hypothesis 1), it

follows that

f (t, um(t), vm(t)) ≤ c(λ1+λ2)−(µ1+µ2)aλ1+λ2 f (t, 1, 1), m = 0, 1, 2, · · · ,

g(t, um(t), vm(t)) ≤ c(λ3+λ4)−(µ3+µ4)aλ3+λ4 g(t, 1, 1), m = 0, 1, 2, · · · ,

and

|T1(um, vm)(t)− T1(u0, v0)(t)|

≤
∫ 1

0
G1(t, s)| f (s, um(s), vm(s))− f (s, u0(s), v0(s))|ds

+
∫ 1

0
I1(t, s)|g(s, um(s), vm(s))− g(s, u0(s), v0(s))|ds

≤ ρ
∫ 1

0
s(1− s)α−2| f (s, um(s), vm(s))− f (s, u0(s), v0(s))|ds

+ρ
∫ 1

0
s(1− s)α−2|g(s, um(s), vm(s))− g(s, u0(s), v0(s))|ds.
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By the Lebesgue dominated convergence theorem, one can have

T1(um, vm)(t)→ T1(u0, v0)(t), m→ +∞.

Hence, the Arzelà–Ascoli theorem guarantees that

‖T1(um, vm)− T1(u0, v0)‖ → 0, m→ +∞.

In the same way, we can prove that

‖T2(um, vm)− T2(u0, v0)‖ → 0, m→ +∞.

Then, we have
‖T(um, vm)− T(u0, v0)‖1 → 0, m→ +∞,

which implies that T : (Pb\Pa) → P is continuous. Consequently, T : (Pb\Pa) → P is
completely continuous. The result of Lemma 6 follows.

Remark 3. From the proof of Lemma 5 and 6, we can see that singularity difficulty in proving
operator T to be completely continuous is overcome by the special construction of cone P and the
integral condition (Hypothesis 2) imposed on the nonlinear terms.

Lemma 7 (Guo–Krasnoselskii’s fixed point theorem (see [31])). Let E be a Banach space,
P ⊆ E a cone, and Ω1, Ω2 two bounded open balls of E centered at the origin with Ω1 ⊂ Ω2.
Suppose that T : P

⋂
(Ω2 \Ω1)→ P is a completely continuous operator such that either

(i) ||Tx|| ≤ ||x||, x ∈ P
⋂

∂Ω1 and ||Tx|| ≥ ||x||, x ∈ P
⋂

∂Ω2, or
(ii)||Tx|| ≥ ||x||, x ∈ P

⋂
∂Ω1 and ||Tx|| ≤ ||x||, x ∈ P

⋂
∂Ω2,

holds. Then T has a fixed point in P
⋂
(Ω2 \Ω1).

3. Main Results

Theorem 1. Suppose that Hypotheses 1–3 hold. Then, if 0 < µ0 < 1, the system (1) has at least one
positive solution.

Proof. First, we claim that there exists a sufficiently small constant r > 0 such that

‖T(u, v)‖1 ≥ ‖(u, v)‖1, ∀(u, v) ∈ ∂Pr.

Let c =
1
M

, and choose the constant r > 0 such that

r = min

{
MN,

1
2

,
(

$γ

4α−1 c1−λ0

(∫ 1

0
sα(1− s)α−2 f (s, 1, 1)ds +

∫ 1

0
sα(1− s)α−2g(s, 1, 1)ds

)) 1
1−µ0

}
,

which yields that

cu(s), cv(s) ≤ c‖(u, v)‖1 = cr ≤ N, ∀(u, v) ∈ ∂Pr, s ∈ [0, 1],

and
γrsα−1 ≤ u(s), v(s) ≤ r, ∀(u, v) ∈ ∂Pr, s ∈ [0, 1].

From Hypothesis 1, Hypothesis 2, and Lemma 4, we can derive that
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Ti(u, v)(t) ≥ $

4α−1

(∫ 1

0
s(1− s)α−2 f

(
s,

1
c

cu(s),
1
c

cv(s)
)

ds

+
∫ 1

0
s(1− s)α−2g

(
s,

1
c

cu(s),
1
c

cv(s)
)

ds
)

≥ $

4α−1

(
rµ1+µ2 c(µ1+µ2)−(λ1+λ2)γµ1+µ2

∫ 1

0
s1+(α−1)(µ1+µ2) f (s, 1, 1)ds

+ rµ3+µ4 c(µ3+µ4)−(λ3+λ4)γµ3+µ4

∫ 1

0
s1+(α−1)(µ3+µ4)g(s, 1, 1)ds

)

≥ $γ

4α−1 c1−λ0 rµ0

(∫ 1

0
sα(1− s)α−2 f (s, 1, 1)ds +

∫ 1

0
sα(1− s)α−2g(s, 1, 1)ds

)

≥ r = ‖(u, v)‖1, i = 1, 2, t ∈
[

1
4

,
3
4

]
, ∀(u, v) ∈ ∂Pr,

which implies that
‖T(u, v)‖1 ≥ ‖(u, v)‖1, ∀(u, v) ∈ ∂Pr. (15)

Next, we shall show that there exists a sufficiently large constant R > r such that

‖T(u, v)‖1 ≤ ‖(u, v)‖1, ∀(u, v) ∈ ∂PR.

To this end, we can choose

R = max


(

ρ

(
N
2

)λ0−µ0
(∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds +

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds

)) 1
1−µ0

, 1,
MN

2

.

Let c =
N
2R

. Then,
1
c
=

2R
N
≥ M, and

cu(s), cv(s) ≤ c‖(u, v)‖1 = cR =
N
2

< N, ∀(u, v) ∈ ∂PR, s ∈ [0, 1],

From Hypothesis 1, Hypothesis 2, and Lemma 4, it follows that
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Ti(u, v)(t) ≤
∫ 1

0
ρs(1− s)α−2 f

(
s,

1
c

cu(s),
1
c

cv(s)
)

ds

+
∫ 1

0
ρs(1− s)α−2g

(
s,

1
c

cu(s),
1
c

cv(s)
)

ds

≤ ρRλ1+λ2 c(λ1+λ2)−(µ1+µ2)
∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds

+ρRλ3+λ4 c(λ3+λ4)−(µ3+µ4)
∫ 1

0
s(1− s)α−2g(s, 1, 1)ds

= ρRµ1+µ2

(
N
2

)(λ1+λ2)−(µ1+µ2) ∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds

+ρRµ3+µ4

(
N
2

)(λ3+λ4)−(µ3+µ4) ∫ 1

0
s(1− s)α−2g(s, 1, 1)ds

≤ ρRµ0

(
N
2

)λ0−µ0
(∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds +

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds

)

≤ R = ‖(u, v)‖1, i = 1, 2, t ∈ [0, 1], ∀(u, v) ∈ ∂PR,

and then this indicates that

‖T(u, v)‖1 ≤ ‖(u, v)‖1, ∀(u, v) ∈ ∂PR. (16)

Therefore, Combining (15), (16) together with Lemma 7 yields our result. This completes
the proof.

Theorem 2. Suppose that Hypotheses 1–3 hold. In addition, there exists a real constant σ ∈ (0, 1)
such that the following two conditions are satisfied:

Hypothesis 4. Λ := max
{

1,
MN

γσα−1

}
< ∆

1
1−λ0 , where

∆ = $σ(1+λ0)(α−1)Nµ0−λ0 γλ0
∫ 1

σ
s(1− s)α−2( f (s, 1, 1) + g(s, 1, 1))ds,

Hypothesis 5.
∫ 1

0
s1+(α−1)λ0(1− s)α−2 f (s, 1, 1)ds +

∫ 1

0
s1+(α−1)λ0(1− s)α−2g(s, 1, 1)ds <

vµ0−λ0

ργλ0
.

Then System (1) has at least two positive solutions (ui, vi) ∈ P, i = 1, 2 such that

0 < ‖(u1, v1)‖1 < 1 < ‖(u2, v2)‖1 < +∞.

Proof. We first prove that there exists a sufficiently small constant r > 0 such that

‖T(u, v)‖1 ≥ ‖(u, v)‖1, ∀(u, v) ∈ ∂Pr.

As already done in the proof of Theorem 1, this can be derived similarly, and thus the proof
process is omitted here.
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Next, we shall show that

‖T(u, v)‖1 < ‖(u, v)‖1, ∀(u, v) ∈ ∂P1.

Noticing that v = min
{

N,
1
M

}
, and thus we have

vu(s), vv(s) ≤ N,
1
v
≥ M, ∀(u, v) ∈ ∂P1, s ∈ [0, 1],

and
γsα−1 ≤ u(s), v(s) ≤ 1, ∀(u, v) ∈ ∂P1, s ∈ [0, 1].

From Hypothesis 1, Hypothesis 2, and Lemma 4 together with Hypothesis 5, we can deduce
that

Ti(u, v)(t) ≤
∫ 1

0
ρs(1− s)α−2 f

(
s,

1
v

vu(s),
1
v

vv(s)
)

ds

+
∫ 1

0
ρs(1− s)α−2g

(
s,

1
v

vu(s),
1
v

vv(s)
)

ds

≤ ργλ1+λ2 v(λ1+λ2)−(µ1+µ2)
∫ 1

0
s1+(α−1)(λ1+λ2)(1− s)α−2 f (s, 1, 1)ds

+ργλ3+λ4 v(λ3+λ4)−(µ3+µ4)
∫ 1

0
s1+(α−1)(λ3+λ4)(1− s)α−2g(s, 1, 1)ds

≤ ργλ0 vλ0−µ0

∫ 1

0
s1+(α−1)λ0(1− s)α−2 f (s, 1, 1)ds

+ργλ0 vλ0−µ0

∫ 1

0
s1+(α−1)λ0(1− s)α−2g(s, 1, 1)ds

< 1 = ‖(u, v)‖1, i = 1, 2, t ∈ [0, 1], ∀(u, v) ∈ ∂P1,

which illustrates that
‖T(u, v)‖1 < ‖(u, v)‖1, ∀(u, v) ∈ ∂P1. (17)

Notably, System (1) has no positive solution on ∂P1.
Finally, we prove that there exists a sufficiently large constant R > 1 such that

‖T(u, v)‖1 ≥ ‖(u, v)‖1, ∀(u, v) ∈ ∂PR.

Let c =
1
N

and choose R > 0 such that

R = Λ + θ(∆
1

1−λ0 −Λ), 0 < θ < 1.

Then, it follows that

cu(s), cv(s) ≥ cγsα−1‖(u, v)‖1 ≥ cγσα−1R > M, ∀(u, v) ∈ ∂PR, s ∈ [σ, 1].
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From this and Lemma 4 together with Hypothesis 1, Hypothesis 2, and Hypothesis 4, one
can have

Ti(u, v)(t) ≥ $σα−1
(∫ 1

σ
s(1− s)α−2 f

(
s,

1
c

cu(s),
1
c

cv(s)
)

ds

+
∫ 1

σ
s(1− s)α−2g

(
s,

1
c

cu(s),
1
c

cv(s)
)

ds
)

≥ $σα−1
(

c(λ1+λ2)−(µ1+µ2)(γσα−1R)λ1+λ2

∫ 1

σ
s(1− s)α−2 f (s, 1, 1)ds

+ c(λ3+λ4)−(µ3+µ4)(γσα−1R)λ3+λ4

∫ 1

σ
s(1− s)α−2g(s, 1, 1)ds

)

≥ $σ(1+λ0)(α−1)Nµ0−λ0 γλ0
∫ 1

σ
s(1− s)α−2( f (s, 1, 1) + g(s, 1, 1))ds · Rλ0

≥ R = ‖(u, v)‖1, i = 1, 2, t ∈ [σ, 1], ∀(u, v) ∈ ∂PR,

which indicates that
‖T(u, v)‖1 ≥ ‖(u, v)‖1, ∀(u, v) ∈ ∂PR. (18)

Thus, in view of (17) and (18), by Lemma 7, System (1) has at least two positive solutions
(ui, vi) ∈ P, i = 1, 2 such that

0 < ‖(u1, v1)‖1 < 1 < ‖(u2, v2)‖1 < +∞.

The conclusion of this theorem follows.

Remark 4. (i) The singularity of the studied nonlinear terms with respect to variables u and v

could be large enough; that is, if the nonlinear terms contain
1

uλ
,

1
vµ , then λ, µ could be large

enough positive numbers. (ii) Although the system studied in [33] is more general, it does not
have singularity. Then the conditions imposed on nonlinear functions and the techniques employed
in this paper are completely different from it. Authors in [27] only discussed the singularity at
t = 0, 1, and the assumptions on the nonlinear functions to overcome the singularity were relatively
strong. For details, the condition (Hypothesis 4) in [27] is that∫ 1

0
t(1− t)α−1 f (t, u, v)dt < +∞,

∫ 1

0
t(1− t)α−1g(t, u, v)dt < +∞,

for any u, v. However, our condition (Hypothesis 2) to deal with the singularity is that∫ 1

0
t(1− t)α−2 f (t, 1, 1)dt < +∞,

∫ 1

0
t(1− t)α−2g(t, 1, 1)dt < +∞,

which is a more weaker condition than that (Hypothesis 4) in [27]. (iii) Compared with [27,33],
we get the existence of not only at least one positive solution but also the existence of at least two
positive solutions of the considered singular system.

4. An Example

In this section, we present an example to illustrate the validity of the proposed result.
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Example 1. Consider the following boundary value problems of fractional singular differential
systems with coupled integral boundary value conditions:

D
5
2
0+u(t) +

et

t
√

1− t
u−5v−4 +

sin t
3√t2(1− t)

u
1
3 v

1
4 = 0, t ∈ (0, 1),

D
5
2
0+v(t) +

et
√

t
u−6v−5 +

cos t√
t(1− t)

u
1
3 v

1
4 = 0, t ∈ (0, 1),

u(j)(0) = 0, j = 0, 1,
v(j)(0) = 0, j = 0, 1,

u′(1) =
∫ 1

0
v(t)d

√
t, v′(1) =

∫ 1

0
u(t)dt2.

(19)

We conclude that System (19) has at least one positive solution.

Proof. Notably, (19) can be regarded as a boundary value problem of the form (1), where

f (t, u, v) =
et

t
√

1− t
u−5v−4 +

sin t
3√t2(1− t)

u
1
3 v

1
4 ,

g(t, u, v) =
et
√

t
u−6v−5 +

cos t√
t(1− t)

u
1
3 v

1
4 ,

φ(t) =
√

t, ψ(t) = t2,

and
λ1 = −7, λ2 = −6, λ3 = −8, λ4 = −7,

µ1 =
1
2

, µ2 =
1
3

, µ3 =
1
3

, µ4 =
1
2

.

Straightforward calculation gives∫ 1

0

1√
s(1− s)

ds = π,
∫ 1

0

√
s(1− s)ds =

π

8
,

which can derive
ω1 =

1
6

, ω2 =
8

21
, ω = 1−ω1ω2 =

59
63

,

and ∫ 1

0
s(1− s)α−2 f (s, 1, 1)ds ≤

∫ 1

0
esds +

∫ 1

0

1√
s(1− s)

ds = e− 1 + π < +∞,

∫ 1

0
s(1− s)α−2g(s, 1, 1)ds ≤ e

∫ 1

0

√
s(1− s)ds +

∫ 1

0

√
sds =

πe
8

+
2
3
< +∞.

Hereto, we can infer that f (t, u, v) and g(t, u, v) satisfy conditions Hypothesis 1–Hypothesis 3.
Hence, Theorem 1 guarantees that System (19) has at least one positive solution.

5. Conclusions

In the present paper, we deal with the existence and multiplicity of positive solutions
for a class of nonlinear singular fractional differential systems with Riemann–Stieltjes cou-
pled integral boundary value conditions. More precisely, in order to conquer the difficulties
caused by singularity not only at t = 0, 1 but also at u, v = 0 in the nonlinear terms,
a suitable cone is constructed through the good properties of Green’s functions associated
with the systems, and some necessary assumptions are imposed on the nonlinear functions.
Compared with other basic methods to deal with the singularity, such as sequential tech-
niques of approximate system and the mixed monotone method, the idea adopted in this



Symmetry 2021, 13, 107 18 of 19

paper is relatively concise and has its own advantages, since some superlinear or sublinear
conditions and monotonicity conditions are no longer needed for nonlinear terms.
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