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Abstract: Recently, software, especially CPS and Internet of Things (IoT), increasingly have high
requirements for quality, while program defects exist inevitably duo to the high complexity. Program
defect repair faces serious challenges in that such repairs require considerable manpower, and the
existing automatic repair approaches have difficulty generating correct patches efficiently. This paper
proposes an automatic method for repairing semantic defects in Java programs based on restricted
sets which refer to the interval domains of related variables that can trigger program semantic
defects. Our work introduces a repair mechanism symmetrically combining defect patterns and
repair templates. First, the program semantic defects are summarized into defect patterns according to
their grammar and semantic features. A repair template for each type of defect pattern is predefined
based on a restricted-set. Then, for each specific defect, a patch statement is automatically synthesized
according to the repair template, and the detected defect information is reported by the static detection
tool (DTSJava). Next, the patch location is determined by the def-use chain of defect-related variables.
Finally, we evaluate the patches generated by our method using DTSJava. We implemented the
method in the defect automatic repair prototype tool DTSFix to verify the effect of repairing the
semantic defects detected by DTSJava in 6 Java open-source projects. The experimental results
showed that 109 of 129 program semantic defects were repaired.

Keywords: automatic program repair; program semantic defect; defect pattern; restricted-set;
patch synthesis

1. Introduction

With the development of information technology, the Internet of Things (IoT) has made
breakthrough progress in smart transportation, smart home, public safety, and so forth, and extended it
to satellites, airplanes, submarines, and other areas. The number and complexity of IoT security defects
have increased significantly. Program defects that threaten IoT security [1] may cause operational errors
under certain conditions, producing abnormal results or behaviors, or even large irreparable losses in
severe cases. Generally, developers are busy implementing algorithms and functions, which makes
it easy to miss hidden semantic defects. These missed defects subsequently result in substantial
workloads to find and repair the defects during the testing and maintenance stages.

Newly, static analysis to identify common program defects and automatic program repair (APR)
becomes the main approach to strengthen the security of IoT applications [2]. APR is gradually
becoming a hot spot in software engineering research due to its advantages in helping developers find
and repair defects more efficiently. APR techniques, which reduce the onerous burden of debugging
and preserve program quality, are of tremendous value. Depending on the targets of the repair,
APR techniques can be classified into the following two families: functional defect repair [3-5] and
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semantic defect repair [6-10]. Functional defect repair focuses on repairing defects that fail to meet
the functional requirement specifications, while semantic defect repair is intended to repair defects
that violate program security semantics. Functional defect repair usually relies on test cases or
assertions, but test suites coverage issues and patch overfitting problems severely impede repair
precision and efficiency. Qi et al. [11] performed manual inspections to repair to 105 real defects in
GenProg [3] and AE [12] and found that only two of the GenProg repair results, and only three of the
AE repair results were semantically correct. The program semantic defect repair not only guarantees
the function-required implementation but also ensures the correctness of the program semantics.
Defect repair based on program semantics can narrow the search space, ensure the correctness of the
program semantics after a repair, and improve the repairs’ success rate. However, existing program
semantic defect repair methods do not combine defect information during the defect detection process.
Thus, the repair is not targeted, and the success rate of repairs is still low.

By comparing the repair effect of different repair methods, we found that repair methods for
specific defect patterns are more targeted and the success rate of repairs is higher. This paper proposes
an automatic program repair method using restraint mechanisms for defect patterns. Our work
introduces a repair mechanism symmetrically combining defect patterns and repair templates. With the
help of the static analysis, the program semantic defects in the program are automatically repaired
to improve the quality of the IoT program and security assurance. Similar to our prior work [13,14],
we utilize the static detection tool DTSJava to obtain semantic defect information, including defect
type, defect-related variable, and so forth. DTS]ava is a static analysis tool based on defect patterns
that can detect potential defects in programs, such as null pointer dereferences. Our work focuses on
repairing variable-related defects that refer to a problem, error, or hidden defect caused by a variable
value that damages the normal operation of the computer software or the program. In severe cases,
the system may exit or crash abnormally. The current variable-related defects mainly include null
pointer dereferences, out-of-bounds, illegal calculations, and so on.

First, we extract the defect information, such as the defect file name, defect pattern, defect location,
to guide the repair process. Aiming at different defect patterns [13], we summarize six common defect
repair templates and propose a unified repair method for semantic defects. Next, a corresponding
predefined repair template is selected for each specific defect based on the defect pattern. And the
patch condition is automatically synthesized by the defect-related variables based on a restricted-set
denoting the defect semantic constraints. Then, the patch location is determined based on the
principle of minimum program modification, and the patch statement is applied to the location.
Finally, the generated patch is retested by DTSJava to ensure that the patch is both correct (i.e., the defect
was repaired) and safe (i.e., no new defect was induced). This approach fully utilizes the defect
information reported by DTSJava to synthesize the precise condition and determine the patch location,
avoiding blind automatic program repairs and improving the repair precision and efficiency.

In summary, the main contributions of this paper are as follows:

e  An automatic program repair method that utilizes defect information detected by the static
analysis tool DTSJava.

*  Two algorithms of conditional synthesis are proposed based on a restricted-set and patch location
to achieve multi-point repair.

*  An analysis of the repair results for 129 defects in a real-world program after applying the method
proposed in this paper is provided.

We have implemented our approach as a Java program repair system, DTSFix, and evaluated
DTSFix on six open-source Java projects. Our approach achieves an optimal balance in scalability
(repairing the large-scale real-world projects), repairability (repairing more types of semantic defects
detected by DTSJava), and repair quality (obtaining a functionally equivalent patch). And the approach
we proposed can repair the 84.5% semantic defects, and achieve the functional-equivalence repair.
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2. Related Work

At present, related researches on the automatic repair of program semantic defects are mainly
divided into three main categories—program semantic defect repair based on constraint solving,
program semantic defect repair based on program specifications, and template-based program semantic
defect repair.

The program semantic defect repair method based on constraint solving refers to acquiring
program runtime information via symbol execution, generating the constraint conditions required for
solving and using conditional synthesis to complete the program repair. Hoang et al. [15] proposed an
automatic repair method, called SemFix, which was based on symbolic execution, constraint solving,
and program synthesis. Constrained by a given test suite, the constraint is solved by iteratively
repairing the hierarchical space of the expression, and finally, the repair condition is synthesized.
Specific to Java programs, Xuan et al. [16] proposed an automatic repair method for defect conditional
statements, called Nopol, which uses the concept of angelic value pair positioning to determine
the expected value of the condition during test execution and encodes the runtime trace collection
variable and its actual value as an instance of satisfiability modulo theories (SMT). Finally, the solution
is transformed into a code patch. Xuan-Bach et al. [17] inferred semantic constraints via Symbolic
PathFinder, a well-known symbolic execution engine for Java programs, and utilized conditional
synthesis to implement semantic repair of Java programs.

Program semantic defect repair based on program specifications refers to the use of a series
of expected behaviors, namely, the program specifications, to achieve automatic program repair.
This process is divided into incomplete-specification repair and complete-specification repair issues.
Mechtaev et al. [18] introduced the idea of using a reference program to alleviate the overfitting
problem and provided a new idea to alleviate the over-fitting problem in incomplete-specification
repair issues. Gao Qing et al. [19] focused on a memory leak in C code, by summing up the program
specifications that must be satistied when no memory leak is present, and proposed a memory leak
repair method based on these complete-specifications.

Template-based program semantic defect repair refers to a generic template summarized
by the prior repair experience and patch data. Chen Liu et al. [20] combined historical fix
templates, machine learning techniques, and semantic patch generation techniques to fix defects
automatically. Benoit Cornu et al. [21] designed nine repair strategies by predefining two major
types of repair templates and implemented runtime fixes for null pointer references in Java projects.
Dongsun Kim et al. [22] studied existing human-written templates to obtain the 8 general repair
templates, analyzed the synthetic repair conditions, and achieved automatic defect repair. Kui et al. [10]
used a repair template for defective codes after static analysis as part of a patch generation effort to
implement the AVATAR system. This system complemented other template-based repair methods.
To address the inaccuracies of the existing methods, Xiong et al. [23] achieved the precise conditional
synthesis of program repair by variable sorting, API document analysis and predicate mining; and the
accuracy of this system reached 78.3%, which improved the patch repair rate.

3. Program Semantic Defects

3.1. Program Semantic Defect Patterns

Definition 1. Semantic defect. During the programming process, the code is fully compliant with the
specifications of the computer language, and no compile/link errors occur, but logic errors may exist. This defective
code may cause a program exception at runtime, and could even cause the system to crash.

The semantic defects related to variables are caused by the value of variables. During the
static analysis process, for the current real domain, and the restricted domain of the variable 'yé,
if ) N9}, # @, a program semantic defect may be generated.
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Definition 2. Defect pattern. A defect pattern refers to a class of semantic defects that have a commonality,
where the same grammatical or semantic feature describes a program property, the root cause, or the same
solution. This paper summarizes semantic defects into defect patterns.

Definition 3. Restricted-set. Variables may violate the sets of intervals of the legal value range in the program.
The restricted interval domain is defined as a restricted-set.

Let D be the interval domain of the variable, including &. The set of connectors is denoted as
C = {A,V}. If both two operands of the restricted operation violate the range of values, the connector A
will be used; otherwise, it is V. The restricted rule defined by the restricted-set is a quadruple R = <e,
domainy, c, domainy>, where domain, represents the restricted interval domain of the first relevant
operational expression, e represents the defect expression, and domain, represents the restricted interval
domain of the second relevant operation expression. domain; C D, domainy C D, ¢ € C. This paper
specifies that the operational expression is divided into a pre-expression operator (preoperator) and
post-expression operator (postoperator). For example, in the expression c = a/b, the operator is the
arithmetic division, and the preoperator and postoperator are a and b respectively. From the restricted
rule of the division operator, the divisor cannot be zero, therefore the restricted set of Defecty,,(d) in the
restricted-set of the b is [0,0] in this example.

For example, the program shown in Figure 1 is the PolarPlot.java file of the Java open-source
project jfreechart. The program initializes the variable state to null at line 1399, and axes.size() in line
1398 may return 0, the statement in the next for loop fails to execute and causing the code in line 1411
to be executed immediately. However, when the variable state is used in line 1417, its value is still
null; therefore, a null pointer dereference occurs at that point. The defect pattern in Figure 1 is a null
pointer dereference, and according to the repair template, a null check statement should be inserted.
The restricted-set of the variable state is determined and the patch condition state!=null is synthesized.
Then, the def-use chain analysis is used to determine the patch insertion location, which adds a null
check before line 1417.

1398: int axisCount = this.axes.size();
1399:  AxisState state = null;
1400: for (inti=0;i< axisCount; i++) {

1405: AxisState s = this.drawAxis(axis, location, g2, dataArea);
1406: if (i==0){

1407 state = s;

1408: I3

1409: I

1416:+ if(state!=null){
1417: drawGridlines(g2, dataArea, this.angleTicks, state.getTicks());
1418:+ }

Figure 1. Example of defect program repair.
3.2. Semantic Defect Detection

In this paper, the static detection [13] tool for specific defect patterns, DTSJava, can be used to
detect various defects through static analysis of program source code. The overall system architecture
diagram of DTSJava is illustrated in Figure 2. The defect information includes the main details
regarding the defect, such as the name of the defect file, the defect type, the defect location, and the
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restricted-set of defects, and so forth. The specific defect information outputted in the defect report is
illustrated by the defective program in Figure 1, as shown in Table 1.

Result User interface
analysis {manually determined alarm)
Aut G —
utomatic C Alarm detection X Alarm correlation ‘ Alarm
detection report

Reliability analysis Reliability analysis of
Data flow of inter-procedural program attributes
analysis : : .
( RSTVL-based statement migration analysis

Use-def chain](Def—use chain][ Function call

Basic graph j
process ( Controlflow graph >@ymbo| table generatoD

-ing generator
( Abstract syntax tree generator )

Defect mode
database

FEN
Program Detection
Input source file profile

Figure 2. Basic framework of DTSJava.

Table 1. Example of defect report output.

Defect Feature Defect Information Example

Defect defect type The defect type in line 1417 is “fault”
Category defect pattern The defect pattern in line 1417 is “null pointer dereference”
Id defect point ID The unique number of the defect point in AST,52
File location of defect file {i&; f;izlute path of the defect file, e.g., D:\testprogram
Variable related variable The variable related to the defect in line 1417: state
StartLine start line The declaration line for the state variable: line 1399
IPLine defect line The defect line: line 1417

The code in the defect line:

IPLineCode code in defect line drawGridlines(g2,dataArea,this.angleTicks,state.getTicks());

The interval set over which variables may violate the legal

Restrictset restricted set .
range of values in the program

The static detection tool DTSJava enables accurate analysis of Java projects, using field-sensitive
and context-sensitive program analysis to obtain accurate defect information. The synthesis of patch
statements depends on the information in the defect report, which helps make the repair more targeted
and helps developers find the specific causes and defect information that leads to defects. DTSFix does
not need to generate a large number of candidate patches, which reduces the overhead of generating
and filtering invalid patches.

To facilitate the description of the program semantic defect repair method proposed in this paper,
the following symbols are used to represent the various attributes of the defect record, where d refers
to a specific defect:

Defect pattern(d):= defect pattern
Defect;;(d):= The unique number of the corresponding node in the abstract syntax tree
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Defect fjj,(d):= defect file

Defect,p(d):= operator in defect point
Defecty,r(d):= defect-related variable
Defect)i,.(d):= defect line
Defectyss(d):= defect restricted-set

Various properties of the repair record:

Patchsy,(d):= patch synthesis condition
Patchgap100(d):= patch start location
Patch,4100(d):= patch end location

4. Program Semantic Defect Repair

Upon receiving a defect report, we execute DTSFix, analyze the defect report, determine the defect
pattern, and generate possible patches to repair the defect. First, a repair template is selected according
to the defect pattern. Then, a patch statement is obtained based on the restricted-set. Next, the patch
location is determined. Finally, the patch condition and the patch location are synthesized to generate
the patch, achieving automatic repair of defective programs.

4.1. Repair Template

According to the results of the data flow analysis, the defect pattern state machine iterates from
the start state of each FSM state instance. The update of data flow information in the FSM state instance,
triggers FSM condition; at that point, the defect state transitions from start to an interim state, and then
further to end or error.

The automatic testing module of DTSJava can detect different defect patterns. First, DTSJava
builds the defect state machine instance according to the defect feature described for each pattern
to be tested. Next, it conducts the state transition operation for the defect state machine instance
according to the corresponding semantic operation in the CFG. If the state can transfer to the error
state, the corresponding defect pattern will be produced.

The goal of our repair strategy is to ensure that the state of the repaired program never transfers
to the error state [24]. What we want to do is to make conditions that can transfer to error state
unsatisfiable by adding check statements. The patch statements usually have the following forms:

Pps def (if(c) return Ret; ) V (if(c) {s1;})
V (if(c) {s1; 82; s s}t (n>1))
V (if(c) throw e )

where ¢, Ret, s, and e represent the patch condition, expected return value, program statements,
and object of exception class respectively. The value of n is determined by the patch location.

When the value of the variable is not within the permissible range, a variable-related defect will be
generated. Before a variable is used, the value of that variable needs to be checked to ensure it is legal.
Therefore, these semantic defects can be repaired by inserting a check statement or a statement that
legalizes the value of the variable. For variable-related defects, the effects after repairing the defects are
as follows: the string or object is initialized; the variable is not null when it is used; when the variable
is declared, its value does not exceed the maximum or minimum range specified by the data type on
the computer platform; array index does not exceed the initialized upper-bound.

To satisfy the above conditions and repair the semantic defects of Java programs, we summarize
the common repair templates from experience gained during manual repairs and developer-patches.
As shown in Table 2, a unified repair method is given for program semantic defect features,
which improve the efficiency of program repair.
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Table 2. Semantic defect repair template.

Defect Pattern Repair Template

Null pointor dereference Add null checker

Variable not initialization Initializate the object
Out-of-bounds Add array boundary check

Illegal calculation

Integer overflow Add a variable to the legal scope check in the computer

According to the repair templates, this paper implements a more accurate program repair method
(automatic program repair method for program semantic defects based on restricted-set). When a
new defect report is submitted, the method first reads the defect information and then selects the
corresponding defect repair template based on the defect pattern. Then, the patch condition is
synthesized using information such as Defecty,,(d). Subsequently, following the principle of minimum
program modification, we can utilize the AST structure and def-use chain analysis to find the location
of the defect node. The nearest-distance rule of the statement block states that beginning with the
block where Defectyq,(d) is located, the first definition of Defecty,,(d) is found when checking each block
from inside to outside. Then, the location of the patch statement is determined. Finally, a patch is
generated, and the patch is retested by DTSJava. A patch both repaired the original defect and does
not cause a new program defect, it is considered to be a correct patch. A patch verified as correct is
inserted into the original program code, and a defect repair report is output, that includes the number
of defect repairs, the repair template for the defect, and any conditional statements. Figure 3 shows the
defect repair framework of this paper.

Validation
with DTSJava

— — pass
=C=| ™

. Patch fail
Defect Repair Patch Location Patch
Files Templates Conditions Candidates Candidates Patch

| I 1

Figure 3. The Framework of DTSFix.

4.2. Patch Condition Synthesis Based on Restricted-Set

We can obtain the defect report output by DTSJava. If a defect is detected, Defect ttern(d) and
Defect,,(d) are first determined according to the defect report information, and Defectst(d) is determined
by the following constraint rule. The specific content of the restricted rules and the corresponding
Patchsy;(d) are shown in Table 3.
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Table 3. Restricted rule.

Related

Defect Pattern . Operator Restricted Sets Synthesis Condition
Expression
Null pointer "~
dereference e1 e1.f() <eqnull,V,o> e1!=null
eLes /. /= ?m(j)l(?{(()) 1div (), <e3,2,V, [0,0]> e!=0
e1 lolzg)()i)l(())gl(())(()), squt(()), <eq, [Min,0],V,2> e1>=0
Illegal calculation — 08PV Y, Y
e1 asin(), acos() <eq, [Min,0]U[1,Max],V,o> e1>=0&&e; <=1
e atan2() <er,a,V,[0,0] > ep!=0
1,62 pow() <e1Ue,[0,0],A, [Min,0]> e1!'=0&&er>=0
e1,6n _jnQ, _yn() <e1Uep, [Min,0],A, [Min,0]> e1>0&&ep>=0
Out-of-bounds e1 array[e;] <ep,[arraylength(),Max],V,2> ej<array.length()
Variabl Variable e1=n
_vanable. e uninitialization <e1,[0,0]Unull,V,o> 1=hew
uninitialization classnameofe; ()
before use

For some common program semantic defects, the proposed method can select a predefined repair
template based on the defect pattern, Defectpattern(d), and then use the defect information to analyze
the variable-related defect to obtain the restricted-set of the defect, Defect,s;(d). Finally, the patch
synthesis condition, Patchsy,(d), is synthesized using Defect,,,(d) as the synthesis ingredients of the
patch condition according to Defect;s;(d).

Based on the restricted-set, an algorithm is proposed to obtain the synthesized patch condition
Patchsy,(d). Another defect file performs the synthesis of the patch statement successively according to
Algorithm 1 until all the defect file information has been read.

Algorithm 1: Patch synthesis condition in DTSFix
Input: A Specific Defect, d
Ouput: Patchsy,(d)
1 ResultSet<Defect Information from Defect Report order by File
// Read the defect information into the result set in the order of Defect s (d)
2 Defect pattern(d)<— Category in ResultSet
3 Apply the repair-template for Defect pttern(d)
4 Rebuild the AST of Defectﬁle(d)
5 while (Defect ;. (d).hasDefect()) // Defects still exist in a defect file
6 defectNode<— ASTraverse (Defect;;(d))
7 Defect,,(d)<—operator on the currentNode
8 Defectyst(d)<—the rational variable restricted set by Defect,,(d)
9 Patchsy,(d)<—synthesis condition by restricted set
10 return Patchsy, (d)

Algorithm 1 implements a patch condition solver based on the restricted-set. First, the process
reads the defect report, sorts each row of the defect report according to Defect ;;.(d), and obtains
Defectyar(d). Then, the Abstract Syntax Tree (AST) of Defect f;(d) is reconstructed. According to the
unique Defect;;(d) of the defect point on the AST, the corresponding tree node on the AST is returned
by the breadth-first traversal of the AST. Thus, Defectop(d) will be determined. Defect,st(d) is obtained
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from Defect,,(d) according to the restricted rules, and finally, Patchsy,(d) of the patch is obtained.
For instance, in the program code shown in Figure 1, line 1417 is detected as NPD. The first template
selected involves adding a null check, and Defect,,(NPD) is a reference to a variable that may be null.
Then, the restricted set of Defect,,,(NPD) is obtained (here the variable state is determined to be null),
and its composition condition is determined state !=null.

4.3. Patch Location Based on the Def-Use Chain

Given a program variable v and statement s, if v is used as input in s, it becomes a use point
of v, denoted as U( s, v). If v is assigned in s, it becomes a definition point of v, denoted as D(s, v).
The def-use chain is introduced to represent the def-use relationship, where U and D are the use
point and definition point of the same variable v respectively, and the def-use chain U-D is used to
denote that D is the last assighment of v before it is used at U. The assignment of the definition point
determines the value of V at the use point U.

To increase the readability of the program, the patch insertion location is set according to the
principle of minimum program modification, and the same defect patterns in the same statement block
are preferentially analyzed. If the defect pattern appears in a statement block and Defecty,(d) are the
same, and there is no redefinition or a statement that affects it, the location where the statement block
starts is determined as the insert location of patch statement. In other cases, the defect location is
considered the insertion location.

For example, if there are multiple defects in the for loop of line 1400 in Figure 1, the null pointer
dereference exception caused by state is null, and state is not redefined and no subsequent statement
affects it, then it will still be null, and the check statement is placed before the for loop.

The defect files in the Java project are sequentially repaired. Algorithm 2 determines the patch
location of all the defects in a file. We can obtain the patch synthesis conditions and the defect patch
location, and uniformly repair the defects in the file. During the repair, the information in the defect
report is read, then breadth-first traversal of AST is performed, and the information on the ASTNode
is marked on the AST based on Defectpattern(d) and Defectyr(d). Algorithm 2 is the algorithm that
determines the specific location for all the defect repairs in a file.

When a variable triggers only one defect, we apply the signal-point repair, that is, one patch
statement repairs only one defect. But when a variable causes multiple identical defect patterns, we
choose the multi-point analysis method. Algorithm 2 shows the idea of identifying the patch location
following the principle of minimum program modification. The implementation of Algorithm 2 is
based on the def-use chains and the patch synthesis condition obtained from Algorithm 1. Algorithm
2 determines the real patch location. First, the defect information is read. According to the unique
Defect;(d) of the defect point on the AST, all the defect nodes are pushed into the stack by traversing
the AST. The patch start and the end locations are initialized to the location of the top element of
the stack. The top elements of the stack are compared with Defect attern(d) and Defectyqr(d) and with
other remaining elements sequentially until the bottom of the stack is reached. If Defect pattern(d) and
Defectyqr(d) are the same, the definition point of Defect,q,(d) of the currently accessed element needs to
be checked by the def-use chain. If the definition point of the top element is prior or the same as the
location of the current element Defectyq,(d), we update the patch start location(the start location of the
block statement where the current element is located).

The end location of the patch remains unchanged, and the current element access update flag
is set; otherwise, both start and end locations of the patch remain unchanged. The bottom element
of the stack is accessed and a repair triplet is returned <Patchsy,(d), Patchsispiioc(d), Patche,goc(d)>.
Then, the top element of the stack is popped.

We need to check whether an updated access token exists. If there is one, the algorithm continues
to pop items; otherwise, repeats the above steps, and the updated access token is no longer compared
until the stack is empty. The algorithm uses the list to record the repair triple <Patchsy,(d), Patchsy1oc(d),
Patch,,4100(d)> for all the defects in a defect file.
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Algorithm 2: Repair Location in DTSFix
Input: AST of Defect ;;.(d), Defect Information of Defect ;;,(d)
Ouput: list[<Patchsy,(d), Patchg,10.(d), Patch,, g0, (d)>]
1 Update Defect Information of ASTNode in AST
// ASTNode represents a node on the abstract syntax tree
2 while (ASTNode != null)
3 defectNode < ASTraverse (Defect;s(d))
4 push defectNode to the stack
5 set flag of each Element in the stack to false
6 Patchgiqpio0(d), Patche,g100(d) < topE.defloc()
// topE represents the top element of the stack, defloc represents the
/ / definition point of the defect-related variable

7 while (!stack.isempty())
8 while (stack.nextElement())

9 if (flag == true)
10 pop topEm
11 else if (topEm. Defect pgttern(d) == nextEm.Defectytern (d)

&&(topEm. Defecty,,(d) == nextEm.Defecty,(d))
// nextEm represents the next element in the stack

12 analyze the ASTNode by def-use chain
13 if (topEm.defloc() <nextEm.loc())
// loc indicates the location of the defect
14 Patchgsgpi100(d) < nextEm.loc()
15 Patchgypg10c(d) < topEm.defloc()
16 set the flag of the nextEm as true
17 else Patchgygpy10.(d), Patcheyg10.(d) <— topEm.defloc()
18 get the Defectsy, (d) of topEm
19 pop topEm

20 return list[<Patchsy,(d), Patchsyapioc(d), Patchegioc(d)>]

4.4. Verification of Functional Equivalence of Programs

Automatic program repair can modify bug code, but functional test cases may not be sufficient
to ensure that the function of the program after the repair is consistent with the original. Although
program semantic defect repair can repair bugs, it may lead to functional differences with the original
program. Thus, it is necessary to verify whether the repaired program with the original one is
functionally equivalent.

Definition 4. Functional equivalence. If the same outputs are generated before and after repair for any inputs,
then it is called functional equivalence.

Exec(BRP)(input) = output, Exec(ARP)(input) = output
BRP/ = ARP/
where the BRP, ARP, and f indicate the before-repair program, after-repair program and function of
the original program respectively.

The program function can be regarded as a set of program paths. Therefore, if we can ensure that
each path produces the same output for the same input before and after the repair, we can consider
the path equivalent. Given a program S with semantic defects, in which exists program statement s
and defective statement s’, the control flow graph is obtained by program S, and the corresponding
defective statement is marked as unsafe node < on control flow graph. Traversing control flow graph,

M
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the program path set P<input, path, output>is obtained, where input records program input and path
records program execution path. The path containing v is called unsafe path nSP, and the path without
7 is called safe path SP. According to the output result of the same input of the defective program and
the repaired program, it verifies whether the program change with semantics preservation and the
program automatic repair with functional equivalence are realized.

In order to avoid triggering 7, security constraints are imposed on nSP by adding constraints
(synthesis conditions) entering nSP. Semantic defects of nSP are repaired by code changes, such as
adding statements, deleting statements, modifying statements.

5. Experimental Evaluation

To analyze the repair effect of our program repair method for semantic defects, we conducted a
program repair comparison experiment using the defect repair algorithm and the program semantic
defect automatic repair method based on the restricted-set proposed in this paper. We scanned 6
large Java open-source projects and verified the effect of repairs using DTSJava. Aiming at the defects
detected by DTSJava, we compared with the state-of-the-art approach based on the repair template
(PAR [22]). The patch generation results are shown in Table 4.

Statistics suggest that the density of program semantic defects is 3-5/kloc. Thus, improving
the repair efficiency of program semantic defects has high value for software development.
These experimental results demonstrate that we can repair most of variable-related semantic defects,
and effectively improve the program quality.

The number of repairs required for different defect patterns is different. In this paper, the repair
consequences of various types of defects in the experiment are counted to verify the repair effect of the
proposed method on different types of defect patterns. The statistical results are listed in Table 5.

Because NPD generation is closely related to the value of the variable, we can obtain the Defect ,-(d)
detected by the static defect detection tool DTSJava. Thus, by relying on DTSJava, DTSFix can repair
all the NPD defects. For example, a null pointer dereference exception in the ChartPanel java file under
the jfreechart project was repaired as shown in Figure 4.

Table 4. Comparison of experimental result.

Subject #Size(Line) #Bugs #Bugs Repaired by PAR #Bugs Repaired by DTSFix

rhino 51,001 24 9 21
log4j 27,855 24 5 20
math 121,168 34 6 28
lang 54,537 22 3 19
collections 48,049 9 1 8
jfreechart 130,300 16 13 8
Total 432,910 129 33 109

Table 5. Repair effect of different defect patterns.

Defect Pattern Number of Defects Number of Repaired Defects
Null pointer dereference 75 75
Illegal calculation 34 32
Variable uninitialization 0 0

Out-of-bounds 3 2




Symmetry 2020, 12, 1563 12 of 14

if (option == JFileChooser. APPROVE_OPTION) {
String filename = fileChooser.getSelectedFile().getPath();
if (isEnforceFileExtensions()) {
+ if(filenamel=null){
if (Ifilename.endswith(".png")) {

filename = filename + ".png";

Figure 4. Code comparison before and after null pointer dereference repair.

We can repair over half the illegal calculation, even achieve the multi-point repair, such as the
defect shown in Figure 5 (an illegal calculation exception in the FastCosineTransformer.java file under
the commons-math project). However, in some cases, we cannot repair these defects, for example,
when the returned value of the function involved in the illegal calculation.

for (inti=1;i<(n>>1);i++){
final double a = 0.5 * (f[i] + fln - i]);
+ if(n1=0){
final double b = FastMath.sin(i * FastMath.PI / n) * (f[i] - f[n - i]);
final double ¢ = FastMath.cos(i * FastMath.PI / n) * (f[i] - f[n - i]);

}

Figure 5. Code comparison before and after illegal calculation.

Most of the out-of-bounds defects can be repaired by DTSFix in a manner similar to the repair to
TokenStream java in the rhino-mirror project shown in Figure 6. DTSFix determines the defect location
accurately based on the defect static analysis; therefore, the repair effect is more dependable.

iflungetCursor!=0){
CUrSOr++;
+ if(0<ungetCursor&&ungetCursor<3){

return ungetBuffer[--ungetCursor];

}

Figure 6. Code comparison before and after arrays out of bound repair.

The experimental data show that our tools have the following advantages for the repairing of
program semantic defects:

1. We repaired 6 Java open-source programs and achieved a high repair rate especially for
NPD defects.

2. Because the method proposed in this paper can be combined with the defect detection process,
the repair is targeted, and does not need to generate large numbers of candidate patches;
thus, it substantially reduces the repair time.

3.  Compared with other approaches which assume that the repair is successful if the patch program
can pass all of the test cases (but where the program may actually still contain program semantic
defects), our method utilizes DTS]ava to assure the semantic correctness of the repaired program,
which avoids invalid repairs.

Although the method we proposed possesses the advantages listed above, the following threats
to validity still exist:
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1.  The proposed method can repair variable-related defects, but it does not currently the repair
non-variable related defects, such as multi-thread related or concurrent correlation defects.

2. The proposed method mainly repairs the defects based on prior defect detection information
generated by DTSJava. When defects cannot be detected by DTSJava, the proposed method lacks
the necessary reference information. In such cases, the versatility of the repair method is limited.

6. Conclusions

This paper analyzed the advantages and disadvantages of current automatic program repair
methods and proposed a semantic defect repair method for the Java program. Compared with existing
other semantic defect repair methods, our approach avoids the blind repairs and does not generate
any invalid patches, which reduces the development costs. The repair effect achieved on the semantic
defects of six large Java open-source projects showed that the proposed method is highly targeted and
yields a high repair rate.

In future work, we plan to formulate additional general repair templates from manual defect
repair experiences and from data mining of repair reports and add the associated repairable defect
patterns. We also plan to apply DTSFix to more Java open source programs to verify the effectiveness of
the proposed method. Finally, we also plan to use machine learning and other data mining algorithms
to learn the relationship between defect patterns and repair strategies, train a generalizable repair
model, and improve the repair efficiency.
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