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Abstract: A complete classification of space-time models is presented, which admit the privileged
coordinate systems, where the Hamilton–Jacobi equation for a test particle is integrated by the method of
complete separation of variables with separation of the isotropic (wave) variable, on which the metric
depends (wave-like Shapovalov spaces). For all types of Shapovalov spaces, exact solutions of the
Einstein equations with a cosmological constant in vacuum are found. Complete integrals are presented
for the eikonal equation and the Hamilton–Jacobi equation of motion of test particles.

Keywords: gravity; Hamilton–Jacobi equation; eikonal equation; Killing fields; separation of variables;
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1. Introduction

The last 30 years have brought great advances in gravity and cosmology in connection with
the discovery of the accelerated expansion of the Universe and the discovery of gravitational waves.
The phenomenon of “dark energy” and “dark matter”, which arose when trying to theoretically explain
the accelerated expansion of the Universe within the framework of the general theory of relativity
(GR), the phenomenon of cosmological constant—all these things require theoretical understanding
and the construction of theoretical models that correspond to observational data, and also obtaining
and the additional observational data themselves for the selection of viable theoretical ”constructions”.
Modified theories of gravity are often used as theoretical models explaining the phenomenon of
“dark energy” and “dark matter”. Furthermore, new observational data have now begun to arrive
in the framework of a new direction of research—gravitational-wave astronomy, which arose after the
experimental discovery of gravitational waves.

This work is in line with attempts to obtain additional mathematical tools both in the field of methods
of gravitational wave astronomy and in the field of studying and comparing modified theories of gravity
and general relativity. One of the constructive mathematical methods for constructing exactly integrable
models in the theory of gravity and cosmology is the theory of Stäckel spaces, which admit integration of
the equations of motion of test particles and radiation by the method of complete separation of variables
in the Hamilton–Jacobi equation. Note that the classes of Stäckel spaces include most of the known exact
solutions in general relativity—the Schwarzschild metric, Kerr metric, Friedman–Robertson–Walker metric,
Kasner metric, NUT metric, etc.

As it became clear recently (in the 1970s–1980s), the possibility of separating variables in the equation
of motion of test particles in a gravitational field is rigidly connected with the presence of spacetime
symmetries through the so-called “complete sets” of Killing vector and tensor fields, which correspond to
additional algebraic conditions. Among such spaces, models that allow the separation of isotropic (null)

Symmetry 2020, 12, 1372; doi:10.3390/sym12081372 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-4739-2788
https://orcid.org/0000-0001-5998-2238
http://dx.doi.org/10.3390/sym12081372
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/8/1372?type=check_update&version=2


Symmetry 2020, 12, 1372 2 of 16

variables, on which the spacetime metric depends, are currently of great interest. We call such models
wave-like Shapovalov spaces. In this paper, we will list all types of such spaces. Examples of particular
exact gravitational-wave solutions related to these spaces are the solutions obtained earlier in the works of
Robertson, Bondi, Trautman, Pirani (see [1]).

Thus, the special classes of spaces proposed for consideration in this work are interpreted as
gravitational waves and can serve as “frame” exactly integrable models for gravitational wave astronomy,
as well as serve as a theoretical tool for the comparative study of gravitational wave models in modified
theories of gravity and in General relativity based on a unified approach, including the formation of a
spectrum of observational problems for gravitational wave astronomy.

In this paper, we consider spacetime models that allow integration by the method of complete
separation of variables of the eikonal equation and the Hamilton–Jacobi equation for the motion of test
particles in a gravitational field, which allow the “privileged” coordinate systems (where separation of
variables is possible), in which one of the variables is isotropic (wave).

Spaces that allow complete separation of variables in the Hamilton–Jacobi equation for test particles
are called Stäckel spaces after Paul Stäckel, who first posed this problem (Paul Stäckel, see [2]). In a series
of papers, Stäckel solved this problem for the case when the metric of space in a privileged coordinate
system has a diagonal form. The theory of Stäckel spaces was developed by many authors and was finally
completed in the period 1973–1980 in the works of V.N. Shapovalov, who was the first to build a complete
classification of these spaces and obtain a general form of their metrics in privileged coordinate systems,
where complete separation of variables is allowed (see [3–9]). We recall some details from the theory of
Stäckel spaces (for a more complete presentation, see [9–11]).

Let us consider the Hamilton–Jacobi equation for the motion of a test particle of mass m in a
gravitational field defined by the metric tensor gij in the coordinate system {xi}:

gij ∂S
∂xi

∂S
∂xj = m2, i, j, k = 1...n, (1)

where the capital letter S denotes the action function of a test particle, n is the dimension of space. To avoid
confusion, note that in what follows we will also use the lowercase s to denote a spacetime interval.

Definition 1. If the space admits the existence of a privileged coordinate system {xi}, where the Hamilton–Jacobi
Equation (1) admits complete separation of variables, when the complete integral for the action function of the test
particle S can be written as:

S = φ1(x1, λ1, ..., λn) + φ2(x2, λ1, ..., λn) + ... + φn(xn, λ1, ..., λn), (2)

λ1, ..., λn − const,

det

∣∣∣∣∣ ∂2S
∂xi∂λj

∣∣∣∣∣ 6= 0,

then such a space is called Stäckel space, and the parameters λj are the constants of separation.

Definition 2. Space with metric g̃ij , allowing complete separation of variables in the eikonal equation for radiation
propagation (where Ψ is the eikonal function):

g̃ijΨ,iΨ,j = 0, (3)

is called a conformal Stäckel space.



Symmetry 2020, 12, 1372 3 of 16

Conformal Stäckel spaces admit separation of variables in the same privileged coordinate system as a
Stäckel spaces, and the metrics of such spaces, as can be seen, differ from the metrics of Stäckel spaces by
an arbitrary conformal factor.

The following theorem was proved by V.N. Shapovalov (see [6,9]):

Theorem 1. Let Vn be a Stäckel space. Then the components of the metric tensor gij in a privileged coordinate
system can be written as

gij = (Φ−1)n
ν Gij

ν , Gij
ν = Gij

ν (uν), Φµ
ν = Φµ

ν(uµ), (4)

Gij
ν (uν) = δi

νδ
j
ν εν(uν) + (δi

νδ
j
p + δ

j
νδi

p) Gνp
ν (uν) + δi

pδ
j
q Gpq

ν (uν), (5)

(there is no summation over index ν in Equation (5),

p, q = 1, ...N, ν, µ = N + 1, ...n,

where Φµ
ν(uµ) is the so-called Stäckel matrix.

Summation over repeated superscripts and subscripts is accepted, except for the Equation (5). The N
is the number of “ignored” variables that the metric in the privileged coordinate system does not depend
on. The subscripts p, q number “ignored” variables, and the indices ν, µ number “nonignored” variables.

It is shown that the equation of geodesics in Stäckel spaces admits first integrals that commute
pairwise with respect to Poisson brackets

X
µ
= (Φ−1)ν

µHν, Hν = εν p2
ν + 2Gνp

ν pp pν + hpq
ν pp pq, (6)

Y
p
= Y

p
i pi. (7)

Thus, for the covariant characteristic of the Stäckel space, it suffices to find the corresponding
properties of the integrals Equations (6) and (7) in an arbitrary coordinate system {xi}n.

Let us write the functions Xν, Yp in the form

X
ν
= X

ν

ij pi pj, Y
p
= Y

p
i pi. (8)

Then for Xν
ij and Yp

i we get
X
ν
(ij;k) = Y

p (i;j) = 0, (9)

where semicolon means covariant derivative and parentheses mean symmetrization.
Therefore, Yp

i, Xν
ij are the components of the Killing vector and Killing tensor fields, respectively.

Definition 3. Pairwise commuting Killing vector fields Yp
i, where p = 1, ... , N and the Killing tensor fields of the

second rank Xν
ij, where ν = N + 1, ... , n form a ”complete set” of type (N.N0) if the following conditions are met:

Bpq Y
p

i Y
q

j + Bν X
ν

ij = 0 =⇒ Bpq = Bν = 0, (10)

rank|| Y
p

i Y
q

i || = N − N0, (11)
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X
ν

ik X
µ

j
k = Cpq

νµ Y
p

i Y
p

j + Cτ
νµ X

τ

ij, (12)

X
ν

ij Y
p

j = Cq
νp Y

q
i. (13)

Theorem 2. A necessary and sufficient geometric criterion for the Stäckel space is the existence of a complete set of
type (N.N0).

This theorem was proved by V.N. Shapovalov in the work [9]. Thus, the Hamilton–Jacobi equation
can be integrated by the method of complete separation of variables if and only if there is a complete set of
first integrals of motion.

You can define the type of Stäckel space as follows:

Definition 4. Spacetime is called a Stäckel space of the type (N.N0) if there is a complete set of type (N.N0).

All these theorems and definitions are valid if the free Hamilton–Jacobi equation for the motion of
test particles in a gravitational field is considered.

Stäckel spaces are determined by the presence of the so-called “complete set” of commuting Killing
fields of the first and second rank, corresponding to an additional set of algebraic requirements. Moreover,
the N commuting Killing vectors (where 0 ≤ N ≤ n) included in the “complete set” determine the choice
of a “privileged” coordinate system where separation of variables is allowed and where the metric does
not depend on the corresponding N variables.

Definition 5. Coordinate variables of the privileged coordinate system, on which the spacetime metric does not
depend, are called ignored variable.

Stäckel and conformal Stäckel spaces are of great interest for metric theories of gravity, since they
allow explicitly, in quadratures, to integrate the equations for the motion of test particles and for radiation
propagation and, thereby, determine the form of geodesic lines of spacetime along which test particles
move in gravitational field. The application of these mathematical tools is possible in various metric
theories of gravity, including modified theories of gravity with various types of matter (see [12–25]).

2. Shapovalov Spaces

The space of the orbits of the N-parametric Abelian group of motions of the Stäckel space defined
by the Killing vectors from the “complete set” can be “isotropic” in the sense that the restriction of the
metric to these orbits can have a determinant equal to zero. Such spaces were first found and classified by
V.N. Shapovalov, and he called them ”isotropic Stäckel spaces”.

If the Killing vectors are from the “complete set” Yi
(p), where p numbers the Killing vectors in the

set (p, q = 1, ..., N), then for isotropic Stäckel spaces in the case of four-dimensional spacetime, we obtain
rank |Yi

(p)gijY
j
(p)| = (N − 1), that is, the space of the orbits of this group forms an isotropic surface.

The results of Vladimir Shapovalov made it possible for the first time to carry out a complete
classification of all spaces admitting the integration of the Hamilton–Jacobi equation of test particles by
the method of complete separation of variables, for which in the “privileged” coordinate systems one of
the “separated” nonignored variables is the “wave” (otherwise null or isotropic) and find an explicit form
of their metrics. We will call such spaces wave-like “Shapovalov spaces” (more precise definitions are
given below).
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Definition 6. We will call the coordinate variable isotropic (null), if along the coordinate line of this variable the
spacetime interval is equal to zero.

Definition 7. A spacetime that admits complete separation of variables in the Hamilton–Jacobi Equation (1) for
a test particle in a gravitational field will be called Shapovalov space if in a privileged coordinate system where
separation of variables is allowed, there is a nonignored isotropic variable.

Definition 8. A spacetime admitting complete separation of variables in the eikonal Equation (3) will be called
conformal Shapovalov space if there is a nonignored isotropic variable in a privileged coordinate system where
separation of variables is allowed.

In total, for the four-dimensional spacetime, there are three main classes of Shapovalov spaces in
accordance with the number of commuting Killing vectors in the complete set (from one to three vectors).
The form of the metrics in the privileged coordinate system is shown below (further, coordinates are
numbered starting from 0).

As an example of the application of Shapovalov’s wave-like spaces in metric theories of gravity,
solutions of the Einstein vacuum equations with the cosmological constant Λ are obtained:

Rij −
1
2

R gij = Λ gij, Λ = const. (14)

The obtained solutions of the field equations for Shapovalov’s wave-like spaces, when the eikonal
equation and the Hamilton–Jacobi equation admit the separation of isotropic variables on which the
spacetime metric depends, can be interpreted as gravitational waves. Comparative analysis of exact
gravitational-wave models for Shapovalov spaces in modified theories of gravity [26–31]) provides an
additional tool for comparing and selecting viable theories of modified gravity.

Note that some of the results below could have previously been presented in some form in our other
works and in the works of other researchers. The purpose of this work is to give a systematic presentation
of the topic under consideration, therefore, all the necessary results that we obtained ourselves are
included here.

3. Type I Shapovalov Spaces

Shapovalov spaces of type I admit one Killing vector and three Killing tensors of the second rank in
the complete set. The metric of the Shapovalov space of type I in the privileged coordinate system {xi}
can be written in the following form:

gij =
1
∆


0 V(1) 0 0

V(1) 0 0 0
0 0 V(2) 0
0 0 0 V(3)

 , (15)

V(1) = t2(x2)− t3(x3), V(2) = t3(x3)− t1(x1), V(3) = t1(x1)− t2(x2).

Here, in the case of conformal Shapovalov spaces, ∆ is an arbitrary function of all variables, and for
Shapovalov spaces, the conformal factor is ∆ = σ1(x1)V(1) + σ2(x2)V(2) + σ3(x3)V(3). The variable x0 is
an ignored variable and x1 is nonignored isotropic wave variable.



Symmetry 2020, 12, 1372 6 of 16

The spacetime interval takes the form:

ds2 = ∆

(
2 dx0 dx1

V(1)
+

dx22

V(2)
+

dx32

V(3)

)
. (16)

The determinant of the metric is

det gij = −
∆4

V(1)2V(2)V(3)
. (17)

The solution for the metric Equation (16) of the Einstein equations in vacuum Equation (14) leads
to a degeneration of the type of space: additional commuting Killing vector fields appear, the number
of nonignored variables in the metric decreases and, thus, a transition to other types Shapovalov spaces
occurs (considered below). Thus, there are no solutions to the Einstein vacuum Equation (14) with a
cosmological constant for Shapovalov spaces of type I.

Note that, in modified theories of gravity, it is possible for Shapovalov spaces of type I to have an
exact “wave” solution of field equations in vacuum, and this problem requires additional study.

3.1. Integration of the Eikonal Equation for the Shapovalov Space of Type I

Separation of variables in the eikonal Equation (3) for the metric Equation (15) gives the eikonal
function of the form

Ψ = λ(0) x0 + ψ1(x1) + ψ2(x2) + ψ3(x3) + F(λ(0), λ(1), λ(2)), (18)

λ(0), λ(1), λ(2) − const,

where F(λ(0), λ(1), λ(2)) is an arbitrary function of constant separation parameters, and the functions ψ in
Equation (18) are defined by the expressions

2 λ(0) ψ1 = λ(2) x1 + λ(1)

∫
t1(x1) dx1, (19)

ψ2 = ±
∫ √

λ(1)t2(x2) + λ(2) dx2, ψ3 = ±
∫ √

λ(1)t3(x3) + λ(2) dx3. (20)

3.2. Integration of the Hamilton–Jacobi Equation of a Test Particle for the Shapovalov Space of Type I

Separation of variables in the Hamilton–Jacobi equation of a test particle Equation (1) in a privileged
coordinate system for the metric Equation (15) gives the complete integral of the action function of a test
particle of mass m in the form

S = λ(0) x0 + φ1(x1) + φ2(x2) + φ3(x3) + F(m, λ(0), λ(1), λ(2)), (21)

λ(0), λ(1), λ(2) − const,

where F(m, λ(0), λ(1), λ(2)) is an arbitrary function of constant parameters, and the functions φ in
Equation (21) are defined by the expressions

2 λ(0) φ1 = λ(2)x
1 +

∫ [
m2σ1(x1) + λ(1) t1(x1)

]
dx1, (22)
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φ2 = ±
∫ √

m2σ2(x2) + λ(1) t2(x2) + λ(2) dx2, (23)

φ3 = ±
∫ √

m2σ3(x3) + λ(1) t3(x3) + λ(2) dx3. (24)

4. Type II Shapovalov Spaces

Type II Shapovalov spaces admit two Killing vectors and two Killing tensors of the second rank in the
complete set and have two subtypes: II.A and II.B. For all types of spaces, below, complete integrals are
presented for the eikonal function and for the action function of test particles, and the Einstein equations
with the cosmological constant in vacuum are integrated.

4.1. Type II.A Shapovalov Spaces

In a privileged coordinate system, the metric can be represented as

gij =
1
∆


1 0 0 0
0 0 f1(x1) 1
0 f1(x1) a0(x0) + a1(x1) 0
0 1 0 0

 . (25)

In the case of conformal Shapovalov spaces, ∆ is an arbitrary function of all variables, and in the case
of Shapovalov spaces, the conformal factor is ∆ = t0(x0) + t1(x1). Variables x2 and x3 are ignored, x1 is a
nonignored isotropic variable.

The Shapovalov spacetime interval of the type II.A can then be written as:

ds2 = ∆
[
dx02

+ 2 dx1dx3 +
1

a0 + a1

(
dx2 − f1 dx3

)2]
. (26)

The determinant of the metric II.A has the form

g = det gij = −
∆4

a0 + a1
, a0 + a1 > 0. (27)

4.2. Exact Solution of the Einstein Equations for Shapovalov Spaces of Type II.A

For the metric Equation (25), we obtain the solution of the Einstein vacuum equations with
cosmological constant Λ (where x1 is an isotropic variable):

∆ = t0(x0), t1 = 0, a0 = 1/b0(x0), a1 = 0, f1 = α x1, α− const, (28)

ds2 = t0

[
dx02

+ 2 dx1dx3 + b0

(
dx2 − α x1 dx3

)2
]

, (29)

det gij =− b0t0
4, b0 > 0. (30)

The functions b0(x0) and t0(x0), included in the metric, are determined through the auxiliary function
Y(t0), which is a solution to an ordinary differential equation of the second order:

3Y
d2Y
dt0

2 −
(

dY
dt0

)2
− 2Λt0

2 dY
dt0
− 12Λt0Y + 8Λ2t0

4 = 0, (31)

where Λ is the cosmological constant.
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Then the function t0(x0) is determined by integrating the relation:

d t0(x0)

dx0 = ±
√

Y(t0). (32)

The function b0 is defined through the function t0 by the relation:

b0(t0) =
2t0Y′(t0)− 3Y(t0)

2 − 4Λt0
3

3α2t0
2 . (33)

Note that the order of the differential Equation (31) can be lowered to the first order.
When changing variables of the form

t0 = exp t, Y = X(t) exp 3t (34)

the newly obtained differential Equation for X(t) ceases to include the independent variable t and its order
can be reduced by introducing a new function Z(X) = dX(t)/dt.

The function Z(X), in turn, is a solution to the ordinary differential equation of the first order

3XZ(X)
dZ(X)

dX
+ Z(X)

(
−Z(X) + 9X− 2Λ

)
+ (3X− 2Λ)(3X− 4Λ) = 0. (35)

For the equation (35), there are particular solutions of the form Z(X) = βX + 2Λ, where β = −3 or
β = −3/2. For these particular solutions, the function Y(t0) takes the form

Y(t0) = t0
3
(
−2Λ/β + γt0

β
)

, γ− const. (36)

For a particular solution (36) at β = −3, the function b0(x0) becomes negative, which violates
the requirement for the sign of the determinant of the metric. For a particular solution for β = −3/2
the function b0 vanishes, which leads to the degeneration of the metric. However, in general,
Equations (31) and (35) may have viable solutions.

Ricci tensor and scalar curvature are nonzero and proportional to the cosmological constant Λ.
Weyl tensor and Riemann curvature tensor do not vanish.

4.3. Integration of the Eikonal Equation for a Shapovalov Space of Type II.A

Separation of variables in the eikonal equation for the metric of the Shapovalov space of type II.A gives

Ψ = ψ0(x0) + ψ1(x1) + λ(2) x2 + λ(3) x3 + F
(

λ(1), λ(2), λ(3)

)
, (37)

λ(1), λ(2), λ(3) − const, (38)

where F
(

λ(1), λ(2), λ(3)

)
is an arbitrary function of the separation parameters,

ψ0 = ±
∫ √

λ(1) − λ(2)
2 a0(x0) dx0, (39)

and the function ψ1(x1) is defined by the ordinary differential equation

2
[
λ(2) f1(x1) + λ(3)

]
ψ′1(x1) = −λ(1) − λ(2)

2 a1(x1), (40)
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where the prime means the ordinary derivative.

4.4. Integration of the Hamilton–Jacobi Equation of a Test Particle for a Shapovalov Space of Type II.A

The complete integral for the action function S of a test particle of mass m takes the form

S = φ0(x0) + φ1(x1) + λ(2) x2 + λ(3) x3 + F
(

m, λ(1), λ(2), λ(3)

)
, (41)

λ(1), λ(2), λ(3) − const, (42)

where F
(

m, λ(1), λ(2), λ(3)

)
is an arbitrary function of the separation parameters,

φ0 = ±
∫ √

m2 t0(x0)− λ(2)
2 a0(x0) + λ(1) dx0, (43)

and the function φ1(x1) is determined by the ordinary differential equation

2
[
λ(2) f1(x1) + λ(3)

]
φ′1(x1) = m2 t1(x1)− λ(2)

2 a1(x1)− λ(1). (44)

4.5. Type II.B Shapovalov Spaces

The metric of the Shapovalov II.B space in the privileged coordinate system can be represented
as follows:

gij =
1
∆


1 0 0 0
0 0 f1(x1) 1
0 f1(x1) a0(x0)b0(x0) b0(x0)

0 1 b0(x0) b0(x0)/a0(x0)

 , (45)

moreover, a0b0 6= 0. The variable x1 is a nonignored isotropic (wave) variable.
The interval II.B is:

ds2 = ∆

[
dx02

+
2 dx1 (−dx2 + a0 dx3)

a0 − f1
+

a0
(
dx2 − f1 dx3)2

b0 (a0 − f1)2

]
. (46)

The determinant of the metric II.B has the form

g = det gij = −
a0 ∆4

b0 (a0 − f1)2 , a0 b0 > 0. (47)

When integrating field equations for Shapovalov spaces, functional equations often arise that connect
the functions of the metric in different variables.

The Einstein Equation (14) with indices of nonignored variables {0, 1} can be written for the metric
II.B in the form

∂0∂1

(
ln
[

∆
a0(x0)− f1(x1)

])
= 0. (48)

For the case of Stäckel spaces, when ∆ = t0(x0) + t1(x1), we obtain the functional equation:

∂0∂1

(
ln
[

t0(x0) + t1(x1)

a0(x0)− f1(x1)

])
= 0. (49)
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The Equation (49), considered as a functional equation, taking into account the condition f1
′ 6= 0

(otherwise the degeneration of the separation type occurs), has the following set of solutions:

1. ∆ =
1

f1(x1) + q
− 1

a0(x0) + q
, q = const; (50)

2. ∆ = a0(x0)− f1(x1); (51)

3. ∆ = t0(x0), t1 = 0, a0 = const; (52)

4. ∆ = t1(x1), t0 = 0, a0 = const. (53)

Note that cases 2, 3 and 4 when solving the Einstein vacuum equations with a cosmological constant
Equation (14) lead to contradictions, and only in case 1 we obtain two exact solutions of the field equations,
which are listed below.

4.6. Exact Solution #1 of Einstein’s Equations for II.B Type Shapovalov Space

The first exact solution of the Einstein vacuum equations for a metric Equation (45) of type II.B in
case Equation (50) has the form (where x1 is an isotropic wave variable):

a0 = a0(x0), b0 = b0(x0), f1 = f1(x1),

ds2 =
1

(a0 + q)( f1 + q)

[
( f1 − a0) dx02

+ 2 dx1
(

dx2 − a0 dx3
)

+
a0

b0( f1 − a0)

(
dx2 − f1 dx3

)2]
. (54)

The cosmological constant vanishes, the solution has six independent constants:

Λ = 0, p, q, r, k, α, β, γ− const, γ = −q±
√

α2 + β2, (55)

Functions included in the conformal factor of the metric, take the form:

t0 =
1− px04

2(q + γ)
+ r, t1 = − 1

f1(x1) + q
− r, (56)

∆ = −

(
px04 − 1

)
f1(x1) + pqx04

+ q + 2γ

2(q + γ)( f1(x1) + q)
. (57)

The functions a0(x0), b0(x0) and f1(x1), included in the metric, are defined by the relations:

f1(x1) = α cos(kx1) + β sin(kx1) + γ, (58)

a0(x0) =
q
(

px04
+ 1
)
+ 2γ

1− px04 , (59)

∆ g23 = b0(x0) = −
k2
(

px04 − 1
) (

q
(

px04
+ 1
)
+ 2γ

)
16px02 , (60)
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∆ g22 = a0 b0 =
k2
(

q
(

px04
+ 1
)
+ 2γ

)2

16px02 , (61)

∆ g33 = b0/a0 =
k2
(

px04 − 1
)2

16px02 , (62)

The obtained metric depends on the wave variable x1 through harmonic functions.
The determinant of the metric is:

det gij =−
p x02

((
px04 − 1

)
f1(x1) + q

(
px04

+ 1
)
+ 2γ

)2

k2(q + γ)4( f1(x1) + q)4 , p > 0, (63)

For this solution, the Ricci tensor Rij, the scalar curvature R and the cosmological constant Λ vanish.
The Riemann curvature tensor and the Weyl tensor do not vanish.

4.7. Exact Solution #2 of Einstein’s Equations for Shapovalov Space of Type II.B

The second exact solution of Einstein’s vacuum equations for metric Equation (45) in case Equation (50)
has four independent constant parameters, the cosmological constant vanishes:

Λ = 0, p, q, r, k− const, p q < 0, (64)

Apart from the conformal factor ∆(x0, x1), the metric is determined by three functions (here the
variable x1 is an ignored isotropic variable):

a0 = a0(x0), b0 = b0(x0), f1 = f1(x1).

The spacetime interval takes the form:

ds2 =
1

(a0 + q)( f1 + q)

[
( f1 − a0) dx02

+ 2 dx1
(

dx2 − a0 dx3
)

+
a0

b0 ( f1 − a0)

(
dx2 − f1 dx3

)2]
. (65)

The functions included in the conformal factor of the metric ∆ are determined by the expressions:

t0(x0) =
x04

p
− k, t1(x1) = k− 1

q x12 , ∆(x0, x1) =
x04

p
− 1

qx12 , (66)

The functions a0(x0), b0(x0) and f1(x1) and the components of the metric are determined by
the relations:

f1(x1) = q x12 − r, (67)

a0(x0) =
p

x04 − r, (68)

∆ g23 = b0(x0) =
q

4p
x02
(

rx04 − p
)

, (69)
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∆ g22 = a0(x0) b0(x0) = −
q
(

p− rx04
)2

4px02 , (70)

∆ g33 = a0(x0)/b0(x0) = − 4p

qx06 , (71)

f1(x1)− a0(x0) = qx12 − p

x04 . (72)

The determinant of the metric takes the form:

g = det gij =
4x02

(
p− qx04x12

)2

p3q5x18 , p q < 0, (73)

For a given exact solution, the Ricci tensor, scalar curvature and cosmological constant vanish.
The Riemann curvature tensor and the Weyl tensor do not vanish.

4.8. Integration of the Eikonal Equation for the Shapovalov Space of Type II.B

Separation of variables in the eikonal Equation (3) for a Shapovalov space of type II.B in a privileged
coordinate system with metric Equation (45) gives the following form of the eikonal function

Ψ = ψ0(x0) + ψ1(x1) + λ(2) x2 + λ(3) x3, λ(1), λ(2), λ(3) − const, (74)

where the functions ψ0 and ψ0 are defined by the relations

ψ0 = ±
∫ √

λ(1) −
a0(x0)

b0(x0)

(
λ(2) a0(x0) + λ(3)

)2
dx0, (75)

ψ1 = −
λ(1)

2

∫ dx1

λ(2) f1(x1) + λ(3)
. (76)

4.9. Integration of the Hamilton–Jacobi Equation of Motion of a Test Particle for the Shapovalov Space of Type II.B

Separation of variables in the Hamilton–Jacobi Equation (1) for Shapovalov spaces of type II.B with
metric Equation (45) in a privileged coordinate system gives the full integral of the action function of a test
particle of mass m of the form:

S = φ0(x0) + φ1(x1) + λ(2) x2 + λ(3) x3, λ(1), λ(2), λ(3) − const, (77)

where the functions φ0 and φ1 are defined by the following relations:

φ0 = ±
∫ √

m2 t0(x0) + λ(1) −
a0(x0)

b0(x0)

(
λ(2) a0(x0) + λ(3)

)2
dx0, (78)

φ1 =
1
2

∫ m2 t1(x1)− λ(1)

λ(2) f1(x1) + λ(3)
dx1. (79)

In case when the function f1 is a constant, it can be set equal to zero by transformation of coordinates.
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5. Type III Shapovalov Spaces

Type III Shapovalov spaces admit three Killing vectors and one Killing tensor of the second rank in a
complete set. Metric of a Shapovalov space of type III in the privileged coordinate system can be written
as follows:

gij =
1
∆


0 1 g02(x0) g03(x0)

1 0 0 0
g02(x0) 0 g22(x0) g23(x0)

g03(x0) 0 g23(x0) g33(x0)

 . (80)

In the case of Shapovalov spaces, the conformal factor can be set equal to one (∆ = 1), and in the case
of conformal Shapovalov spaces, the conformal factor ∆ is an arbitrary function of all four variables.

The metric interval Equation (80) can be written in the following form (p, q = 2, 3):

ds2 = ∆
[
2 dx0dx1 + gpq(x0)

(
dxp + g(p)(x0) dx1

) (
dxq + g(q)(x0) dx1

)]
. (81)

The last expression, disregarding the conformal factor ∆, contains five arbitrary functions of one
variable x0, as in the metric Equation (80). Note that the metric Equation (81) is known in the literature as
the metric of a gravitational wave (see [1]).

5.1. Exact Solution of the Einstein Equations for Shapovalov Spaces Type III

Integration of Einstein’s equations in vacuum for the metric Equation (81) leads to an exact solution
(gravitational wave), which can be represented as

ds2 = 2 dx0dx1 − exp (−γ0)
(

exp β0 cosh α0 dx22
+ exp (−β0) cosh α0 dx32

+ 2 sinh α0 dx2dx3
)

(82)

and only two functions are independent, the function β0 can be expressed in terms of the rest

β0 =
∫ √

2 γ′′0 − γ′0
2 − α′0

2

cosh α0
dx0, Λ = 0, (83)

where α0 and γ0 are arbitrary functions of one variable x0 (wave variable), and the prime means ordinary
differentiation with respect to x0.

5.2. Integration of the Eikonal Equation for the Shapovalov Space Type III

Separation of variables in the eikonal Equation (3) for the metric Equation (80) gives the complete
integral for the eikonal function of the form

Ψ = ψ0(x0) + λ(1) x1 + λ(2) x2 + λ(3) x3 + F
(

λ(1), λ(2), λ(3)

)
, (84)

λ(1), λ(2), λ(3) − const,

where F
(

λ(1), λ(2), λ(3)

)
is an arbitrary function of parameters, and the function ψ0(x0) in Equation (84)

is defined by the following expression

ψ0(x0) = −1
2

∫ λ(p)λ(q)gpq(x0)

λ(1) + λ(p) g0p(x0)
dx0, p, q = 2, 3. (85)
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When the components of the metric g0p become constants, they can be converted to zero by
transforming the coordinates.

5.3. Integration of the Hamilton–Jacobi Equation of a Test Particle for Shapovalov Space Type III

Separation of variables in the Hamilton–Jacobi equation of a test particle Equation (1) for the metric
Equation (80) gives a complete integral for the action function of a test particle of mass m of the form

S = φ0(x0) + λ(1) x1 + λ(2) x2 + λ(3) x3 + F
(

m, λ(1), λ(2), λ(3)

)
, (86)

λ(1), λ(2), λ(3) − const,

where F
(

m, λ(1), λ(2), λ(3)

)
is an arbitrary function of parameters, and the function φ0(x0) in Equation (86)

is defined by the following expression

φ0(x0) =
1
2

∫ m2 − λ(p)λ(q)gpq(x0)

λ(1) + λ(p) g0p(x0)
dx0, p, q = 2, 3. (87)

Note that the variables x0 and x1 of the privileged coordinate system are isotropic variables, and
the spacetime metric depends only on one wave variable x0 and is interpreted as an exact solution for a
gravitational wave.

6. Conclusions

The paper presents an effective mathematical tool for obtaining and analyzing wave-like models of
spaces in the theory of gravity. Namely, a classification is carried out and all possible types of spacetime
models are listed, allowing separation of variables in the eikonal equation and the Hamilton–Jacobi
equation of test particles with separation of isotropic (null) wave variables. We call such spaces wave-like
Shapovalov spaces. The classification is based on the type of “complete set” of Killing vectors and Killing
tensors admitted by the corresponding type of the considered spaces. The existence of such a “complete
set” in the considered spacetime models determines the possibility of complete separation of variables.

The types of spaces obtained in this work are “wave-like”, i.e., lead to solutions of field equations
of the “gravitational wave” type and, thus, are of interest for gravitational-wave astronomy. Since the
proposed method is applicable to various modified theories of gravity, it can be used to carry out a
comparative analysis of the same type of gravitational-wave solutions in various modified theories of
gravity in order to select viable theories (according to observational data of gravitational wave astronomy)
that claim to describe the phenomena of “dark energy” and “dark matter”.

As an example of the effectiveness of the proposed method, exact wave solutions of the Einstein
equations with a cosmological constant in vacuum are obtained. Solutions are written in coordinate
systems where variables are separated. Particular cases of the models under consideration in Einstein’s
theory of gravity are exact solutions of the “gravitational wave” type of Robinson, Bondi, Trautman, Peres.

The models of spaces proposed in the work allow integration in quadratures of the equations of
motion of test particles and radiation, which is significant for the theoretical foundations and methods of
gravitational-wave astronomy. As an example of the application of the considered approach, for all types
of spaces under consideration, the form of a complete integral for the action function of test particles and
for the eikonal function that determines the propagation of radiation is obtained. This makes it possible
for the considered models to describe in quadratures the motion of test particles.
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