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Abstract: The operation of emergency logistics plays a prominent role in reducing the consequences
of disasters. Based on the establishment of a comprehensive evaluation system with the whole period
of the disaster cycle that covers emergency preparation, response, and recovery, this paper proposes
a fuzzy-symmetrical Technique for Order Preference by Similarity to Ideal Solution-Entropy Weight
(TOPSIS-EW) method with multi-granularity linguistic assessment (MGLA) information to evaluate
the performance of emergency logistics. Furthermore, the proposed evaluation method is employed
to evaluate the performance of emergency logistics in Wenchuan earthquake, five worst-hit regions
(i.e., Wenchuan County, Beichuan County, Qingchuan County, Mianzhu City, Shifang City) were
ranked as V, III, I, II, IV, respectively. Finally, the effectiveness and reliability of the method are
verified by comparison with the other two related methods and a sensitivity analysis. Based on the
comprehensive evaluation results, some specific managerial suggestions are proposed to improve the
emergency logistics capacity.

Keywords: emergency logistics performance evaluation; hesitant fuzzy linguistic set; TOPSIS;
entropy weight; multi-granularity linguistic

1. Introduction

In recent years, unconventional emergencies occur frequently and this phenomenon causes great
loss to people’s life, the safety of their property, and also affects the development of society. The ability
of pre-disaster prediction and prevention, emergency rescue in disasters, and post-disaster disposal
plays an important role in reducing loss [1]. Emergency logistics as a response to emergencies is
particularly important, which is related to whether the lives and properties of the victims can be saved.
If the role of emergency logistics cannot be effectively played, it may seriously affect the “golden
72-hour” life-saving work and worsen disaster consequences.

Despite the rapid economic and technological development of the world, countries or regions
around the world remain vulnerable to a number of emergencies such as natural disasters,
accidents, and public health emergencies. As is known to all, the frequent occurrence of emergencies
has caused huge loss of life and property all over the world. Disastrous events during the past two
decades include the Iraq war (2003), SARS in China (2003), the tsunami in Indonesia regions (2004),
Hurricane Katrina in America (2005), the Bangladesh cyclone Sidr (2007), the Wenchuan earthquake
in China (2008), etc. All of these emergencies have caused massive disruption to people’s lives,
requiring the delivery and distribution of large quantities of relief supplies in a short period of time.
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When unexpected disasters crop up, relief operations are carried out in the initial response phase,
and logistics support operations need to last longer to meet the basic living needs of survivors in
the affected areas. Therefore, the performance of emergency logistics plays a vital role in disaster
mitigation, it is very necessary to make a reasonable evaluation of the corresponding logistics.

The multi-criteria decision making (MCDM) method has been widely used in the area of logistics [2,3],
and while there are few studies on emergency decision-making [4], previous emergency logistics
evaluation research has tended to focus on emergency logistic planning or emergency logistic
management [5,6]. To the authors’ best knowledge, performance evaluations of emergency
logistics are rare. In addition, when evaluating emergency logistics, researchers usually take into
account the logistics center capabilities, the logistics system path planning, the material supplier
selection [7,8], and provide some suggestions for improving actual emergency logistics problems [9].
However, emergency logistics is a complex system, which needs to take into account the supply
capacity and coordination capacity of human, material, capital, transportation from a system
perspective. Therefore, the basic idea of this paper is to consider the whole components of emergency
logistics to carry out performance evaluation.

Because unconventional emergencies is an unstructured or semi-structured problem, most of the
studies are conducted considering the internal branches of the emergency logistics system, for example,
Sahu (2016) and Hu (2019) studied the selection of suppliers for disaster relief supplies [7,10].
Bozorgi-Amiri (2016) studied the location and route selection of disaster relief logistics [11]. Liu (2017)
evaluated the integrity of emergency supplies distribution [12]. Some researchers tried to establish an
indicators system for the evaluation of the whole emergency logistics system, for example, Gong (2012)
evaluated the emergency logistics system reliability and analyzed the hypothetical examples [13].
Guan (2017) proposed an evaluation model for earthquake relief emergency logistics capacity [14].
However, the indicators system of these researches mainly focuses on the emergency response stage
and rarely considers the pre-disaster prediction and post-disaster reconstruction. To solve this problem,
the indicators system established in this study considers the entire disaster cycle, which covers
emergency preparation, response, and recovery.

In recent decades, there have been a lot of evaluation methods for emergency logistics performance
evaluation [15], in which the MCDM method has been broadly employed [16,17], it refers to selecting
the optimal scheme or sorting under consideration of multiple criteria. As an MCDM method,
TOPSIS symmetrical technique has been extensively used in scheme selection and performance
evaluation [18,19]. The optimal scheme selected by the TOPSIS method is based on minimizing the
distance from the positive ideal point and maximizing the distance from the negative ideal point, so it is
very suitable for study with both benefit indicators and cost indicators. In addition, the TOPSIS method
can be operated easily when there are many criteria and alternatives [20–22]. Moreover, the advantage
of the TOPSIS method is that it can be used to deal with different indicators with different dimensions.
In the proposed evaluation indicator system of the emergency logistics performance, many kinds of
indicators with different dimensions are considered. Furthermore, the relative closeness calculation
of the TOPSIS method depends on the range of available alternatives. Emergencies are abrupt and
uncertain, and their destructiveness is also caused by the complexity of their influencing factors.
As a result, the public is unable to obtain the optimal results when faced with the losses caused by huge
disasters. Therefore, the TOPSIS method is applicable to the evaluation of emergencies, ranking the
performance of emergency logistics in various regions, based on which some suggestions can be put
forward for improving the ability to respond to emergencies. In addition, in the TOPSIS method,
the determination of indicator weights is the most critical part. Experts’ preferences are difficult
to measure using determined values, the hesitant fuzzy linguistic set, closer to human cognition
expressions [23–25], is used in this paper to describe the experts’ judgments on the importance of the
indicators. Moreover, maximum group consensus and minimum hesitant degree [26,27], which can
obtain group consistency and improve decision credibility [18], are considered to get the experts’
weights. Based on this, the weighted average operator is used for obtaining the indicator weight.
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However, due to its inherent subjectivity and ambiguity, the application of this method has some
limitations. The entropy weight (EW) method can fully mine the information contained in the original
data, the smaller the entropy value, the smaller the degree of disorder in the system, and the higher
the weight. Therefore, the objective weights of the EW method can be used to adjust the subjective
weights to get more practical results [2]. Furthermore, there exist some indicators in the system that
are difficult to quantify, the multi-granularity linguistic assessment (MGLA) approach, which can
enhance the elasticity and dependability of processing multifarious linguistic expressions [28–31],
is applied to express qualitative information as linguistic variables in the processing of some indicators
hard to quantify. In this case, a fuzzy TOPSIS-EW method with MGLA information is put forward in
this paper for performance evaluation of emergency logistics. Table 1 summarizes the main facing
challenges and the solving strategies adopted in this study.

Table 1. Challenges faced and strategies adopted in this paper.

Challenges Faced Strategies Adopted

Selection of evaluation indicators Considering the whole cycle of disasters
Quantification of some indicators MGLA method
Determination of expert weights Maximum group consensus and minimum hesitation
Determination of indicator weight Subjective-objective weighing of the method
Comparison of regional performance levels Fuzzy TOPSIS method

The remainder of this paper is structured in the following way. The key problem statement is
stated in Section 2. Section 3 introduces the comprehensive evaluation methodology, which includes
the overall framework, the indicators description, the main steps of the MGLA method, the weights
determination method, and the TOPSIS method. In Section 4, the proposed method is employed
to evaluate the emergency logistics performance level of several worst-hit districts in Wenchuan
earthquake in China, in which a comparison analysis with the TOPSIS method with equal expert
weights and the TOPSIS-EW method is conducted along with a sensitivity analysis demonstrating the
influence of decision-making strategy. Moreover, the deficiencies in some emergency logistics systems
are pointed out and the directions for improvement are presented in this section. Section 5 presents
the conclusions with a summary and gives the future research direction.

2. Key Problem Statement

2.1. Emergency Logistics System

As shown in Figure 1. Emergency response procedures include three stages: preparedness,
monitoring, and early warning; rescue and disposal, and post-emergency recovery and reconstruction [32].
The explanation for the three stages is as follows:

• Emergency preparedness is a key link to prevent the occurrence of emergencies, monitor risks
and make preparations for reducing the consequences of disasters so that the government and the
people form the necessary emergency capacity [33].

• Emergency response is an emergency action, the main function is to send rescue teams and social
forces to the disaster areas in a very short time, deliver and deploy rescue materials and conduct
other activities in the disaster area [9], so the timeliness and coordination of emergency response
largely determine the performance of this stage.

• Post-disaster recovery and reconstruction refers to the ability to ensure the basic life of the masses
and quickly restore the order of life in the affected areas.

The evaluation of the three stages can realize the performance evaluation of the emergency
logistics system formed by each component in emergency logistics. If we only evaluate materials
supply losing sight of the other two stages, its connection with reasonable materials distribution may
not be considered, resulting in redundancy or shortage of local materials. If we only take into account
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emergency response ignoring preparedness and post-disaster disposal, it will lead to failure to consider
the limitation of emergency funds and supplies, which will bring a heavy burden to emergency rescue.
If we only consider post-disaster reconstruction and recovery, it will cause great pressure on the
government due to the type and severity of emergencies.

Emergency
response

Command center

Medical center

Rescue center

Decision center

Information monitoring

Information processing

Materials supplying

Home reconstruction

Home repair

Emergency
preparedness

Home repair

Post-disaster recovery
and reconstruction

Figure 1. Emergency response procedures.

2.2. Evaluation Indicator System

For considering the whole period of the disaster cycle and summarizing from previous evaluation
studies [13,14], the evaluation indicator system established in this paper is shown in Figure 2.
The emergency logistics performance evaluation indicators system can be divided into four subsystems:
information processing (denoted as A1), logistics operation (denoted as A2), organization and
coordination (denoted as A3) and post-disaster response (denoted as A4). Three aspects are
included in A1, i.e., information collection and analysis (denoted as B1), natural disaster prediction
(denoted as B2), and comprehensive database (denoted as B3). For A2, four aspects are involved,
i.e., material acquisition (denoted as C1), material reserve (denoted as C2), material transport (denoted
as C3), and material distribution (denoted as C4). Three aspects are considered for A3, i.e., arrange and
coordinate (denoted as D1), emergency fund reserves (denoted as D2), and mobilization (denoted as
D3). For A4, two aspects are embraced, i.e., immediate effect (denoted as H1) and recovery construction
(denoted as H2). For each subsystem, the selection of specific evaluation indicators follows the
principles below [34]:

• The accuracy principle. The definitions of objective indicators should be accurate and the source
of data should be reliable. The acquisition of subjective indicators should meet the requirements
of comprehensive evaluation techniques.

• The integrity principle. The evaluation indicator system should not only include the contents
of prediction, response and recovery, but also consider the organization, coordination and
information transmit in the process of emergency logistics operations.

• The easy-to-operate principle. The indicators are clear in definition, and the data is of good
accessibility, which can fully show the actual level of emergency logistics, and make for the
improvement of performance.

• The independent principle. Indicators should be independent of each other, avoiding
duplicate evaluations.

• The comparable principle. To make the evaluation results about indicators comparable in different
alternatives, the definitions and measurement criteria of indicators should be normalized.
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Figure 2. Evaluation indicator system.

3. Evaluation Methodology

3.1. Overall Framework

The overall framework is presented below. There are u evaluators, Em (m = 1, 2, . . . , u) is the
mth evaluator; p indicators, Ah (h = 1, 2, . . . , p) is the hth indicator; and q regions to be evaluated,
Ri (i = 1, 2, . . . , q) is ith region. This study describes the experts’ judgments on the importance
degrees of indicators by employing hesitant fuzzy linguistic sets and then both group consensus
maximization and hesitant degree minimization are considered to determine the experts’ weights.
The weighted average operator [18] is combined with the EW method to obtain the indicator weights.
Moreover, the MGLA method is utilized to solve the quantification problem of some indicators.
After collecting the data of all indicators, the TOPSIS method is utilized to sort and obtain the final
ranking of the regions (i.e., alternatives). The overall framework of the evaluation method is shown in
Figure 3.
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Gain the normalized evaluation matrix

Calculate the distance from the ideal value

Rank of evaluation results

Group consensus maximazation

Hesitant degrees minimization
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Some indicators quantification
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iS


9=S S

Figure 3. The general framework of the evaluation methodology.



Symmetry 2020, 12, 1331 6 of 27

3.2. Indicators Description

The indicators of emergency logistics performance evaluation can be divided into 4 subsystems:
information processing (denoted as A1), logistics operation (denoted as A2), organization and
coordination (denoted as A3), and post-disaster response (denoted as A4).

3.2.1. Information Processing

This paper mainly considers information processing from three aspects: information collection
and analysis (denoted as B1), natural disaster prediction (denoted as B2), and comprehensive database
(denoted as B3) [35]. The detailed description is as follows.

The real-time disaster information (denoted as B11) is used to reflect whether the local government
department can get the disaster situation in time after the disaster occurs in the disaster area [36].
Therefore, the time required to initiate an emergency response is used to measure this indicator.

B11 = Z1 − Z0, (1)

where Z0 is the time of the earthquake eruption, Z1 is the time required to initiate
an emergency response.

To provide more reliable and accurate real-time information of the demand for emergency
supplies in disaster areas, to predict and calculate the material demand (denoted as B12), to facilitate
decision-makers to conduct scientific and reasonable emergency supplies scheduling. In this paper,
the demand for tents after the disaster is used to measure this indicator.

Whether decision makers can timely grasp real-time road conditions has an important impact
on the path selection and transportation of emergency supplies, as well as personnel scheduling.
Live traffic (denoted as B13) affects the path selection. If accurate information cannot be mastered,
the subsequent path selection may no longer be optimized, and path adjustment is required.

The timeliness of disaster prediction (denoted as B21) mainly refers to the timely acquisition of
data and early warning of disasters to facilitate the prediction and prevention of disasters. Control in
the initial stage of a disaster can minimize the damage. The immediacy of disaster prediction can be
reflected by the time between the earthquake eruption and the government getting initial information
about the disaster.

B21 = Z2 − Z0, (2)

where Z2 is the time of the government to get initial information about the disaster.
The accuracy of disaster prediction (denoted as B22) is mainly influenced by the accuracy of

information prediction and the accurate judgment of information by professionals.
A well-developed emergency database can provide policymakers with information to make more

accurate decisions about disasters. The database is the collection and integration of historical data to
provide reference data for disaster prevention and prediction. Therefore, the integrity of the emergency
database (denoted as B31) can greatly improve the ability to cope with disasters [37]. The number of
disaster information collected within 24 h is used to measure this indicator.

3.2.2. Logistics Operation

Emergency logistics operation can ensure survivors of disaster-stricken regions with relief
materials (such as medical supplies, water, food), provide the necessary financial support in need
and contribute to post-disaster reconstruction and rehabilitation activities. In general, the emergency
logistics system consists mainly of elements such as the acquisition, storage, and transportation and
allocation of emergency supplies [38,39]. The goal of emergency logistics operation is to integrate and
make the best of emergency supplies, to pursue the fastest time efficiency within the acceptable range
of economic input, deliver the materials to the designated place as soon as possible, and reduce the
consequences of disasters.
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In this paper, the quantity of materials (denoted as C11) is the standard to measure whether
the emergency resources in the disaster area can reach the balance between supply and demand.
This indicator is based on the number of relief living tents delivered to the disaster area on 25 May 2008.

Reasonable emergency supplies reserve is a powerful guarantee to cope with unexpected disasters.
Therefore, it is of great importance to reserve emergency supplies and analyze the reasonable demand
for emergency supplies in case of emergencies. The emergency supplies storage plan should be of
operability ad rationality, paying attention to the sustainability, economy, and balance in the material
storage process [40].

By controlling the storage cost of emergency supplies [41], emergency funds can be allocated
more effectively. The cost of storing a single tent is about 10 percent of the market price, so the storage
cost is 40 yuan for each tent. Then the storage cost (denoted as C21) can be defined as

C21 = B12 × 40. (3)

Transportation and allocation are the core links of emergency logistics operations to convey relief
supplies and rescue staff to disaster areas. In emergency situations, the quantity of emergency relief
supplies is relatively limited, which requires decision-makers to formulate the optimal route for the
transportation of relief supplies with maximum social value.

The path selection (denoted as C31) directly affects the fastest time for the delivery of relief
supplies to the disaster-affected areas, and sometimes it is necessary to open a green channel to save
transportation time. In this paper, the road damage rate of the most influential path choice is used to
measure this indicator.

Even if the path selection above is optimal, the transportation process will still be affected by
the real-time road conditions and other conditions to reach the destination time. Let No denote the
on-time delivery times, and Nd denotes the total number of deliveries, the basic form for punctuality
rate (denoted as C32) can be expressed as follows:

C32 =
No

Nd
. (4)

Emergency relief material delivery from local distribution centers to disaster-affected beneficiaries
measure the last kilometer of material delivery [42] with quickness (denoted as C41) and accuracy
(denoted as C42).

3.2.3. Organization and Coordination

When an emergency occurs, a number of social groups or organizations organized by the
government participate in the emergency relief work, bringing more relief resources to the affected
areas and people. To ensure the efficient and orderly participation of the emergency rescue work,
the central and local governments should coordinate all aspects of the work, such as the establishment
of emergency funds and emergency departments.

The level of inter-departmental collaboration (denoted as D11) reflects the decision-making
ability and management ability of the government. Good inter-organizational coordination can make
efficient use of human and material resources and save rescue time. Therefore, it is necessary to set
up corresponding working groups, such as the emergency rescue team, the medical rescue team,
the communication support team, etc. This paper is represented by the number of working response
groups established after the earthquake.

The emergency drill level (denoted as D12) is the response to the emergency situation shown by
the simulation training in different situations. Practice has proven that regular emergency drills can
reduce personnel casualties and property losses and restore normal conditions for the disaster-hit
areas as soon as possible [43].

D12 = Z3 − Z0, (5)
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where Z3 is the time of government to get initial information about the damage.
Emergency fund (denoted as D21) is the important foundation for the rescue activities,

there should be enough funds and reasonable allocation of use, so the speed of fundraising (denoted as
D22) should be as fast as possible.

After the disaster, all the departments, military, medical, social volunteers, and other supporting
forces are mobilized to help the disaster regions. Consequently, the number of mobilization (denoted as
D31) to reflect the situation of mobilization after the disaster. The number of armed police officers
and soldiers supporting the disaster areas within three days after the earthquake to represent the
mobilization force.

3.2.4. Post-Disaster Response

As most emergencies will have serious consequences, such as damaging infrastructure and
buildings in the affected areas, post-disaster reconstruction is a difficult and long-term work.

This paper considers using the number of injuries and deaths (denoted as H11) to assess the
severity of the disaster.

Two indicators are used to evaluate the relief effect in the disaster area. First, Life-saving ratio
(denoted as H12) is defined as

H12 =
NR

TNV
× 100%, (6)

where NR is the number of rescued, TNV is the total number of victims.
And the cost of property damaged (denoted as H13) reflect the damage in the affected areas.
The people in the disaster-hit areas suffer heavy losses after the major disaster and must speed

up reconstruction to restore normal life in the disaster-hit areas. The economic recovery efficiency
(denoted as H21) reflects the rate of economic recovery, and on the other hand, the basic life rebuilding
speed (denoted as H22) is measured by the time the graduating students return to class.

3.3. MGLA Approach

Due to the uncertainty and complexity of earthquake occurrence, direct data cannot be obtained
for some indicators in real life, Therefore, it is necessary to conduct an expert evaluation on these
indicators, this paper uses the MGLA approach to solve the quantification of these indicators [28,29].

Step 1. At times, the experts employ multi-granularity linguistic term sets to express their own
judgment information. In this case, let Sβ = {Sβ

y |y ∈ {0, 1, . . . , β − 1}} be the βth pre-established

confined and completely ordered linguistic term set, where β is called the granularity of Sβ, Sβ
y denotes

the yth linguistic term of set Sβ. The judgment of each individual expert can be fully expressed by the
utilization of the linguistic label set of granularity.

Step 2. Considering these original linguistic terms are obtained from different experts with
different linguistic granularities, they should be unified first. This study utilizes some transformation
functions to unify the derived multi-granularity linguistic labels into a consistent linguistic term set.
With regard to any two linguistic term sets S̄(β1) = {S(β1)

µ | µ ∈ [0, β1 − 1]} and S̄(β2) = {S(β2)
ν | ν ∈

[0, β2 − 1]}, the transformation functions between them are presented below [44]:

F : S(β1) −→ S(β2), (7)

ν = F(µ) = µ
β2 − 1
β1 − 1

, (8)

F−1 : S(β2) −→ S(β1), (9)

µ = F−1(ν) = ν
β1 − 1
β2 − 1

. (10)
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Using Equations (7)–(10), the linguistic term sets in S̄(β1) and S̄(β2) can be made consistent without
loss of decision information. It is noteworthy that the selection of any given linguistic term sets does
not change the end results, therefore the above method can be employed to transform and unify the
multi-granularity linguistic comparison matrices based on the information given by the experts.

Step 3. Conducting improved standard and mean deviations method [44]. Let Sη , Sθ ∈ Sβ be two
linguistic variables, the deviation between Sη and Sθ is expressed as d(Sη , Sθ) = ||Sη − Sθ || = |η − θ|.
To expert ek and indicator Aj, the standard deviation between region Ri and others is as follows [45]:

G(k)
j =

√
1
q ∑

q
i=1

(∥∥∥∥x(k)ij w(k)
j −

1
q ∑

q
a=1 x(k)aj w(k)

j

∥∥∥∥)2

= w(k)
j

√
1
q ∑

q
i=1(d(x(k)ij , x(k)j ))2

= w(k)
j τ

(k)
j , j ∈ [1, p],

(11)

where

τ
(k)
j =

√√√√1
q

q

∑
i=1

(d(x(k)ij , x(k)j ))2, (12)

where x(k)ij denotes the judgement information given by expert ek about jth indicator of Ri region,

then x(k)j =
√

1
q ∑

q
i=1 x(k)ij denotes the mean value of indicator Aj given by expert ek. d(x(k)ij , x(k)j )

represents the deviation of the mean value x(k)j to the attribute value x(k)ij of the region Ri for the

indicator Aj of the expert ek. Then G(k)
j denotes the standard deviation for the indicator Aj of expert ek.

The mean deviation can be expressed as

V(k)
j =

1
q

q

∑
i=1

∥∥∥∥x(k)ij w(k)
j −

1
q

q

∑
a=1

x(k)aj w(k)
j

∥∥∥∥ = w(k)
j

1
q

q

∑
i=1

d(x(k)ij , x(k)j ) = w(k)
j ς

(k)
j , j ∈ [1, p], (13)

where

ς
(k)
j =

1
q

q

∑
i=1

d(x(k)ij , x(k)j ), (14)

where x(k)j = 1
q ∑

q
a=1 x(k)aj denotes the mean value of the indicator Aj given by expert ek. d(x(k)ij , x(k)j )

denotes the deviation of the mean value x(k)j to the attribute value x(k)ij of region Ri for indicator Aj of

the expert ek. Then V(k)
j denotes the mean deviation for indicator Aj of expert ek.

Step 4. Based on the above analysis, maximizing the total mean and standard deviation of all the
evaluation indicators to determine the weighting vector w. The objective function is established below:

max F(w) = ∑
p
j=1(ξG(k)

j + $V(k)
j ),

s.t.


p

∑
j=1

w(k)2

j = 1, w(k)
j ≥ 0, j = 1, 2, . . . , p,

ξ + $ = 1, ξ ≥ 0, $ ≥ 0,

(15)

where ξ and $ denote the preferences of the experts, $ = 0 denotes the experts take into account the
standard deviation while not the mean deviation, ξ = 0 denotes the experts take into account the mean
deviation while not the standard deviation, then ξ, $ 6= 0 denotes the experts take into account both
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the mean and standard deviations. Therefore the following model is determined when taking into
account both the mean and standard deviations:

max F(w) = ∑
p
j=1 w(k)

j (ξτ
(k)
j + $ς

(k)
j )

s.t


wj ≥ 0, j = 1, 2, . . . , p,

p

∑
j=1

w(k)2

j = 1,

ξ + $ = 1, ξ ≥ 0, $ ≥ 0.

(16)

This model could achieve the w(k)
j :

w(k)
j =

ξτ
(k)
j + $ς

(k)
j√

p
∑

j=1
(ξτ

(k)
j + $ς

(k)
j )2

. (17)

The normalization of w(k)
j is expressed in the following:

w∗(k)j =
w(k)

j
p
∑

j=1
w(k)

j

=
ξτ

(k)
j + $ς

(k)
j

p
∑

j=1
(ξτ

(k)
j + $ς

(k)
j )

, j = 1, 2, . . . , p. (18)

Step 5. The kth expert’s decision matrix is

Xk = (x
′(k)
ij )q×p =


x
′(k)
11 x

′(k)
12 . . . x

′(k)
1p

x
′(k)
21 x

′(k)
22 . . . x

′(k)
2p

...
...

. . .
...

x
′(k)
q1 x

′(k)
q2 . . . x

′(k)
qp

 , k ∈ u, (19)

where, for benefit indicators x(k)ij , it gives

x
′(k)
ij =

x(k)ij√
q
∑

i=1
(x(k)ij )2

, (20)

for cost indicators x(k)ij , it gives

x
′(k)
ij = 1−

x(k)ij√
q
∑

i=1
(x(k)ij )2

. (21)
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Then the calculated indicator weight vector is used to calculate the normalized decision matrix
W = (w1, w2, . . . , wu)T :

X
′
k = (wjx

′(k)
ij )q×p =


w1x

′(k)
11 w2x

′(k)
12 . . . wpx

′(k)
1p

w1x
′(k)
21 w2x

′(k)
22 . . . wpx

′(k)
2p

...
...

. . .
...

w1x
′(k)
q1 w2x

′(k)
q2 . . . wpx

′(k)
qp

 , k ∈ u. (22)

Then the average matrix of the group decision matrix (denoted as X
′∗, X

′∗ = 1
u ∑u

k=1 X
′
k) is the

final result of the indicators.

3.4. Weights Determination

As different indicators in the evaluation system may have different impacts on the performance
of emergency logistics, it is necessary to lay different importance degrees on various indicators. In this
section, an aggregated method with hesitation fuzzy linguistic judgments (i.e., subjective method) and
EW (i.e., objective method) is used to obtain the final indicator weights.

3.4.1. Hesitant Fuzzy Linguistic Judgment Description

When determining the weights of indicators, experts should be invited first to make linguistic
judgments on the importance degree of each indicator. However, each expert has different working
experience and knowledge, this difference directly affects their understanding and evaluation of the
importance degrees of various indicators [46]. Experts use different linguistic terms when judging the
indicators. For example, when experts are confident, they use a single linguistic term to give a clear
and definitive assessment, such as “the natural disaster prediction is of the highest importance”.
However, when they are low in cognition or confident, they would give continuous interval-valued
judgments, such as “the material reserve is between medium and important”. Some experts give
an open range such as “the material transport is more than slightly important”, and other experts
may offer more flexible judgments such as “the emergency fund reserve is between medium and
extremely important, but are most likely to be very important”. There is no need to force experts to
make crisp/single linguistic/random judgments when they are particularly unfamiliar with certain
indicators. Conversely, scoring in this situation may lead to an incorrect result.

Traditional linguistic evaluation approaches that use single linguistic terms are unable to express
the hesitations of experts. Therefore, this study applies the method of hesitant fuzzy linguistic term
sets [47] to express the expert judgments on the importance degrees of different indicators, as this
method is more flexible, accurate, and in line with human habits of information expression [48].

Let N = {Nα|α = −t, . . . ,−1, 0, 1, . . . , t} be a symmetrical linguistic term set, a 9-scale linguistic
term set can be expressed in the following:

N = {Nα|α = −t, . . . ,−1, 0, 1, . . . , t}
= {extremely poor, very poor, poor, slightly poor, fair, slightly good, good, very good,

extremely good}.
(23)

The linguistic variable KN(I) is denoted as a fuzzy restriction label, and each linguistic value
corresponds to a real number in [0, 1] [49]. In this paper, a 9-scaled symmetrical linguistic term set
is applied for the evaluation [50]: {0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0}. For instance,
when evaluating the “material transport route selection”, the linguistic information given by hesitant
fuzzy linguistic terms might be φ1 = very good, φ2 = between slightly good and very good, φ3 = between
poor and fair, probably slight poor φ4 = The performance is no more than slight poor, φ5 = Better
than the fair. The real numbers in the interval [0, 1] are divided into 9 scales, which can be expressed
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as K1
N = {N3} = {0.875}, K2

N = {N1, N2} = {0.625, 0.75}, K3
N = {N−2, N−1, N0} = {0.25, 0.375, 0.5},

K4
N = {N−4, N−3, N−2, N−1} = {0.0, 0.125, 0.25, 0.375}, K5

N = {N0, N1, N2, N3, N4} =
{0.5, 0.625, 0.75, 0.875, 1.0}, as shown in Figure 4.

S4

1.0

Poor
Slightly
poor

Extremely
poor Fair

Very
goodGood

Slightly
good

=(N1,N2)=(N-2,N-1,N0)

=(N-4,N-3,N-2,N-1) =(N0,N1,N2,N3.N4)

S-4

0.0
S-3

0.125
S-2

0.25
S-1

0.375
S0

0.5
S1

0.625
S2

0.75
S3

0.875

=(N3)

Very
poor

Extremely
good

3
NK

2
NK

1
NK

4
NK 5

NK

Figure 4. Examples of 9-scale fuzzy linguistic term sets.

The number of various elements in KN(I) can be different, and to compare distances, we must
extend the shorter elements until all elements have the same length [23]. The extension value is
t̄ = ψt+ + (1− ψ)t−, where ψ(0 ≤ ψ ≤ 1) is the parameter obtained by the experts’ preferences,
t+ and t− are the maximal and minimal values in KN(I), respectively. The extension element
value t̄ = 1/2(t+ + t−) is used when experts are neutral on elements, which indicates ψ = 1/2.
The extension example of hesitant fuzzy linguistic terms set can be seen in Table 2. In addition,
when the length of an expert’s judgment is 0, the evaluation value given by other experts is used to
supplement it. For example, if the element for φ6 is blank, φ6 is supplemented with all the values given
by all the other experts, namely φ6 = {0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0}.

Table 2. Extension example of hesitant fuzzy terms set.

Original Hesitant Fuzzy Terms Extensions

K1
N = {0.25} {0.25, 0.25, 0.25, 0.25, 0.25}

K2
N = {0.625, 0.75, 0.875, 1.0} {0.625, 0.75, 0.8125, 0.875, 1.0}

K3
N = {0.375, 0.5, 0.625} {0.375, 0.5, 0.5, 0.5, 0.625}

K4
N = {0.25, 0.375, 0.5, 0.625, 0.75} {0.25, 0.375, 0.5, 0.625, 0.75}

K5
N = {0.75, 0.875} {0.75, 0.8125, 0.8125, 0.8125, 0.875}

3.4.2. Expert Weights Determination

In the MCDM problems, it is difficult to determine the weight of the expert because each expert
has different levels of knowledge, experience, and preferences. Previous studies are more inclined
to give equal or fuzzy weights to experts [51,52], while the determination of appropriate expert
weights is helpful to improve the reliability of evaluation results [53]. Therefore, a small hesitant
degree and a high group consensus are critical to the effectiveness and reliability of the results [18,54].
Therefore, this paper establishes a model of both minimizing degree of hesitation and maximizing
group consistency to determine the weight of each expert. Euclidian distance is used to express the
divergence between two expert judgments, and the ambiguity of experts in judging the importance
degrees of indicators is expressed by the degree of hesitation. The general idea is to minimize the
results of the sum of the hesitancy degrees and the Euclidean distance from one expert judgment score
to another expert.

In the first place, the importance of each indicator is judged by the experts. The experts’
judgments are described by hesitant fuzzy linguistic elements and converted into hesitant fuzzy
numbers (extended to the same length L), which can be expressed as follows:

tmh = {tl
mh|l = 1, . . . , L, m = 1, . . . , u, h = 1, . . . , p},



Symmetry 2020, 12, 1331 13 of 27

where L denotes the length of tmh.
As to the importance degree of indicator Ah, the total Euclidean distance or the judgment

divergence between one evaluator and another, can be denoted as d(t) and obtained by

d(t) =

√√√√ 1
L

L

∑
l=1

u

∑
m=1

u

∑
n=1,n 6=m

(tl
mh − tl

nh)
2. (24)

Therefore, hesitant fuzzy judgments with expert weights are: {wE
mtl

mh|l = 1, . . . , L}. According to
Equation (24), the weighted sum of the total Euclidean distance from one evaluator judgment score to
another for the indicator can be defined below:

d̄(t) =

√√√√ 1
L

L

∑
l=1

u

∑
m=1

u

∑
n=1,n 6=m

(wE
mtl

mh − wE
n tl

nh)
2. (25)

Secondly, the hesitant degree of the linguistic fuzzy sets provided by experts is also measured to
obtain the final result with high certainty. The mean of the hesitant fuzzy element tmh can be expressed
as follows:

t̄mh =
1
L

L

∑
l=1

tl
mh. (26)

Based on this, the hesitant degree of element tmh can be expressed as

φtmh =

√√√√ 1
L

L

∑
l=1

(
tl
mh − t̄mh

)2
=

√√√√ 1
L

L

∑
l=1

[
tl
mh −

(
1
L

L

∑
l=1

tl
mh

)]2

. (27)

Similarly, the total difference in hesitancy degree between one expert and another can be denoted
as follows:

f (φt) =

√√√√ u

∑
m=1

u

∑
n=1,n 6=m

(φtmh − φtnh)2. (28)

The hesitant degree of expert weight can be represented as {wE
mφtmh, m = 1, 2, . . . , u, h =

1, 2, . . . , p}. According to Equation (28), the weighted sum of the hesitancy degrees from one expert
assessment to another for an indicator is expressed as follows:

f̄ (φt) =

√√√√ u

∑
m=1

u

∑
n=1,n 6=m

(wE
mφtmh − wE

n φtnh)2. (29)

To achieve maximum consensus and certainty, we must determine the optimal
wE

m (m = 1, 2, . . . , u) by minimizing the sum of hesitations, based on which the fuzzy hesitations of
all expert weights should be brought close to each other as far as possible. According to the former
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analysis, The optimization model for minimizing hesitant degrees and the divergence among experts
is presented as follows:

min
p
∑

h=1
[d̄(t)× f̄ (φt)] =

p
∑

h=1

√
1
L

L
∑

l=1

u
∑

m=1

u
∑

n=1,n 6=m
(wE

mtl
mh − wE

n tl
nh)

2

×
√

u
∑

m=1

u
∑

n=1,n 6=m
(wE

mφtmh − wE
n φtnh)2

s.t.



tmh = {tl
mh|l = 1, . . . , L, m = 1, . . . , u, h = 1, . . . , p},

tnh = {tl
nh|l = 1, . . . , L, n = 1, . . . , u, h = 1, . . . , p, n 6= m},

u

∑
m=1

wE
m = 1,

wE
m ≥ 0, m = 1, . . . , u.

(30)

The expert weights wE
m (m = 1, 2, . . . , u) obtained from model (30) are obtained by minimizing

the total sum of Euclidean distances and hesitant degree from one average evaluator judgment score
to another, therefore, the determined wE

m (m = 1, 2, . . . , u) guarantees the consistency and superiority
of group decision making.

3.4.3. Indicator Weights Computation

The importance of each indicator can be determined by combining the expert hesitant fuzzy
judgments with the entropy weight method. As mentioned in the previous section, expert judgments
on the importance degrees of indicators can be expressed as tmh = {m = 1, 2, . . . , u; h = 1, 2, . . . , p}.
This study employs a weighted average operator to calculate the indicator weights:

Step 1. As the lengths of hesitant fuzzy judgements may not be equal, we must use the extension
precedure to ensure all fuzzy judgments have the same length: tmh = {tl

mh|l = 1, 2, . . . , L; m =

1, 2, . . . , u; h = 1, 2, . . . , p}.
Step 2. With the expert weights wE

m (m = 1, 2, . . . , u) determined from optimization model (30),
the weighted and extended hesitant fuzzy judgments can be obtained as follows:

t̄mh = {(wE
mtl

mh|l = 1, 2, . . . , L; m = 1, 2, . . . , u; h = 1, 2 . . . , p}. (31)

Step 3. Furthermore, the weighted average operator parameters can be calculated using the
following formulas:

ρ̄h =
u

∑
m=1

t̄1
mh, (32)

σ̄h =
u

∑
m=1

1
L− 2

(t̄2
mh + t̄3

mh + . . . + t̄L−1
mh ), (33)

ς̄h =
u

∑
m=1

t̄L
mh. (34)

Step 4. Based on Equations (32)–(34), hesitant fuzzy judgments can be transformed into triangular
fuzzy numbers (ρ̄h, σ̄h, ς̄h). Similar to de-fuzzification for the intuitionistic fuzzy numbers, the weighted
average operator can be utilized to calculate the weight of the hth indicator:

w−h =
ρ̄h + ς̄h ×

(
ρ̄h

ρ̄h+σ̄h

)
p
∑

h=1

[
ρ̄h + ς̄h ×

(
ρ̄h

ρ̄h+σ̄h

)] , (35)
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where w−h is determined by an optimization model that takes into account the maximum group
consensus of experts and the minimum hesitation, and calculated using the weighted average operator.

Hesitant fuzzy linguistic judgments by experts exhibit high subjectivity as it is remarkably affected
by expert’s knowledge, experience, and preference, while the objective methods such as EW method can
make up for the deficiency of the artificial instability of subjective methods in determining indicators,
and fully mine the information contained in the original data to obtain more practical results [2,55,56].
Therefore, a combination method that incorporates the expert’s weight and EW method is presented to
determine the indicator weights. The procedure of calculating objective weights based on EW method
is listed as follows [57]:

Step 1. Assuming that the original data matrix R is obtained as follows:

R =


r1,1 r1,2 . . . r1,p
r2,1 r2,2 . . . r2,p

...
...

. . .
...

rq,1 rq,2 . . . rq,p

 , (36)

Step 2. Then data matrix R is converted into the normalized matrix O as follows:

(1) Normalized matrix of benefit indicators:

aih =
rih −min (rih)

max (rih)−min (rih)
, (i = 1, 2 . . . , q; h = 1, 2 . . . , p). (37)

(2) Normalized matrix of cost indicators:

aih =
max (rih)− rih

max (rih)−min(rih)
, (i = 1, 2 . . . , q; h = 1, 2 . . . , p). (38)

Step 3. Calculate the entropy value of the hth indicator:

εh = − 1
ln q

q

∑
i=1

aih ln aih, h = 1, 2 . . . , p. (39)

where, if aih = 0, then aih ln aih = 0.
Step 4. Calculate the weight of the indicator as is as below:

wS
h =

1− εh

p−
p
∑

h=1
εh

, h = 1, 2 . . . , p. (40)

Based on the above description, the final weight of hth indicator (i.e., wA
h ) can be determined

as follows:

wA
h = (1− v)× w−h + v× wS

h , h = 1, 2, . . . , p, (41)

where the weight for the EW weight is represented by v and (1− v) indicates the weight considering
maximum group consensus and minimum hesitant degree. Without loss of generality, the value of v is
set as 0.5 in this paper.

3.5. Relative Closeness to the Ideal Solution Based on TOPSIS

Considering the complexity and variety of the emergency logistics performance evaluation system,
the TOPSIS method’s relative closeness computation depends on the scope of available alternatives
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themselves without considering other influence factors, therefore, it is applicable to the regional
performance evaluation of emergency logistics.

Based on the above description, as there are indicators A1, A2, . . . , Ap,
results ri,1, ri,2, . . . , ri,p, (i = 1, 2, . . . , q) are obtained from regional emergency logistics data.
The original evaluation matrix is represented as follows:

R =


r1,1 r1,2 . . . r1,p
r2,1 r2,2 . . . r2,p

...
...

. . .
...

rq,1 rq,2 . . . rq,p

 . (42)

In MCDM methods, TOPSIS exploits the positive-ideal solution and the negative-ideal solution
in multi-criteria problems to rank the regions (i.e., alternatives).

Step 1. Calculate the normalized decision matrix, the vector normalization is applied to obtain bih
as follows.

bih =
rih√
q
∑

i=1
r2

ih

, (i = 1, 2, . . . , q). (43)

Step 2. Obtain the expert weights wE
m (m = 1, 2, . . . , u) using optimization model (30), and the

indicator weights wA
h (h = 1, 2, . . . , p) are determined according to Equation (41).

Step 3. Construct the weighted and normalized evaluation matrix Z as follows:

Z =


z1,1 z1,2 . . . z1,p
z2,1 z2,2 . . . z2,p

...
...

. . .
...

zq,1 zq,2 . . . zq,p



=


wA

1 b1,1 wA
2 b1,2 . . . wA

p b1,p

wA
1 b2,1 wA

2 b2,2 . . . wA
p b2,p

...
...

. . .
...

wA
1 bq,1 wA

2 bq,2 . . . wA
p bq,p

 .

(44)

Step 4. Determine the best indicator λ+ and worst indicator λ− respectively. In this paper,
there are both benefit indicators and cost indicators, so some indicators are best when they are close
to a specific value (denoted Z f ). Then the new values for these indicators are |Zg − Z f |, where Zg

represents the real values. Therefore, the ideal indicator values λ+ and λ− are determined as

λ+ = {max
r

zi,h|h = 1, 2, . . . , p}
= (Z−B11

, Z−B12
, Z+

B13
, Z−B21

, Z+
B22

, Z+
B31

, Z+
C11

, Z−C21
, Z−C31

, Z+
C32

, Z+
C41

,
Z+

C42
, Z+

D11
, Z−D12

, Z+
D21

, Z+
D22

, Z+
D31

, Z−E11
, Z+

E12
, Z−E13

, Z+
E21

, Z−E22
),

λ− = {min
r

zi,h|h = 1, 2, . . . , p}
= (Z+

B11
, Z+

B12
, Z−B13

, Z+
B21

, Z−B22
, Z−B31

, Z−C11
, Z+

C21
, Z+

C31
, Z−C32

, Z−C41
,

Z−C42
, Z−D11

, Z+
D12

, Z−D21
, Z−D22

, Z−D31
, Z+

E11
, Z−E12

, Z+
E13

, Z−E21
, Z+

E22
),

where z+h = max
i

zi,h, h = 1, 2, . . . , p, z−h = min
i

zi,h, h = 1, 2, . . . , p.
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Step 5. Obtain the Euclidean distance between each region (i.e., alternative) and λ+ as follows:

U+
i =

√√√√ p

∑
h=1

(zi.h − z+h )
2, i = 1, 2, . . . , q. (45)

Similarly, the Euclidean distance between each region (i.e., alternative) and λ− can be
determined by

U−i =

√√√√ p

∑
h=1

(zi.h − z−h )
2, i = 1, 2, . . . , q. (46)

Step 6. Compute the relative closeness of each region (i.e., alternative) to the most preferable λ+

using the following formula:

Y+
i =

U−i
U+

i + U−i
, 0 < Y+

i < 1, i = 1, 2, . . . , q. (47)

Step 7. Rank the alternatives (i.e., regions) by sorting Y+
i (i = 1, 2, . . . , q) in descending order

as Y+
i can serve as the evaluation score of the emergency logistics performance. In other words,

the higher value of Y+
i indicates better regional emergency logistics performance.

4. Case Study

4.1. Case Description

The occurrence of public emergencies usually has disastrous consequences, and its suddenness
and destructiveness have brought great challenges to human beings. There have been more than
200 earthquakes in China in the past two decades. On 12 May 2008, the 8.0-magnitude Wenchuan
Earthquake occurred in Sichuan, China. The event was China’s worst massive earthquake in the
previous six decades in China, causing more than 70,000 fatalities, 18,000 missing, and 370,000 injured
with around 4.8 million people becoming homeless [58]. This incident has brought unprecedented
challenges to the Chinese government and the public in China. The suddenness and destruction of the
earthquake fully tested the ability of China to deal with unconventional emergencies.

In this study, the evaluation method is employed to 5 worst-hit regions of the 2008 Wenchuan
Earthquake, including Wenchuan County (denoted as W), Shifang City (denoted as S), Mianzhu City
(denoted as M), Beichuan County (denoted as B) and Qingchuan County (denoted as Q). The study
area is shown in Figure 5. By evaluating the performance of emergency logistics in these regions,
this paper provides feasible suggestions for the public to deal with unconventional emergencies.
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W S

M
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Q

N

W :  Wenchuan County
S:   Shifang City
M :  M ianzhu City
B :   Beichuan County
Q :  Qingchuan County

Sichuan Province

CHINA

Figure 5. Location of the study area.

4.2. Data Source

The indicators data of each region mainly come from the China Statistical Yearbook,
China Knowledge Resource Integrated Database, and local government websites.

In this evaluation system, some indicators are difficult to directly obtain accurate values, such as
the real-time road condition information collected after an earthquake of one city. As a result, a more
effective approach may be to use linguistic judements instead of numerical values. This paper uses
MGLA information [28,29] to solve the quantification of these indicators. Firstly, the multi-granularity
linguistic comparison matrices are transformed and unified using the computational formula.
Secondly, the method of mean and standard deviation is applied to calculate the indicator’s weight
vectors with reference to the different decision-makers. Finally, the average matrix of the group
decision matrix is obtained by computing the normalized decision matrix based on the determined
weight vector of each indicator [28].

4.3. Result Interpretation

Three experts E = {e1, e2, e3} are local emergency logistics management experts, who make
evaluations based on their actual situation and working experience. They are asked to evaluate
indicators (B13, B22, C32, C41, C42 and D22) that were difficult to quantify in the study. The 3
multi-granularity linguistic term sets are presented as follows:

S5
y = {S5

−2 = very poor, S5
−1 = poor, S5

0 = medium, S5
1 = good, S5

2 = very good}.
S7

y = {S7
−3 = very poor, S7

−2 = poor, S7
−1 = slightly poor, S7

0 = medium, S7
1 = slightly good, S7

2 =

good, S7
3 = very good}.

S9
y = {S9

−4 = extremely poor, S9
−3 = very poor, S9

−2 = poor, S9
−1 = slightly poor, S9

0 =

medium, S9
1 = slightly good, S9

2 = good, S9
3 = very good, S9

4 = extremely good}.
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Three experts give their evaluation information shown in Tables 3–5. According to
Equations (7)–(10), the evaluation information of the three experts can be transformation and unified
into 9 granularity evaluation matrices as shown in Tables 6–8. Using Equations (12) and (14), we can get:

τ
(1)
j = (2.0396, 1.4967, 1.2649, 2.0396, 1.7889, 1.2649),

τ
(2)
j = (0.9978, 1.0667, 0.9978, 0.8433, 1.8856, 0.8433),

τ
(3)
j = (0.8000, 0.6325, 1.0198, 1.8547, 1.4697, 1.3582),

ς
(1)
j = (1.7600, 1.2800, 0.8000, 1.7600, 1.6000, 0.8000),

ς
(2)
j = (0.8533, 0.9600, 0.8533, 0.5333, 1.6000, 0.5333),

ς
(3)
j = (0.7200, 0.4000, 0.8800, 1.6800, 1.3600, 1.1200).

Using Equation (18) to compute the indicators weight reference to different experts ek(k = 1, 2, 3),
supposing that ξ = $ = 0.5, then we can get:

w∗(1) = (0.2123, 0.1552, 0.1154, 0.2123, 0.1894, 0.1154),

w∗(2) = (0.1547, 0.1693, 0.1547, 0.1150, 0.2913, 0.1150),

w∗(3) = (0.1143, 0.0777, 0.1429, 0.2659, 0.2129, 0.1863).

Use Equations (19)–(21) to normalize the decision matrix of expert ek as follows:

X1 =


0.6220 0 0.3780 0 0.5 0.7559

0 0.3162 0 0.7559 0.5 0.3780
0.3780 0.3162 0.7559 0.6220 0 0.3780
0.3780 0.6325 0.3780 0.3780 0.5 0
0.7559 0.6325 0.3780 0.3780 0.5 0.3780

 ,

X2 =


0 0.5 0.3162 0.7559 0 0.3780

0.4226 0.2500 0.6325 0.3780 0.6838 0
0.5774 0.7500 0.6325 0.3780 0.3675 0.3780
0.5774 0.2500 0.3162 0 0.3162 0.7559

0 0.2500 0 0.3780 0.6325 0.3780

 ,

X3 =


0.2500 0.4264 0.4082 0.4714 0.8018 0.3162
0.7500 0.4264 0.5981 0.5286 0.5345 0

0.5 0.6396 0 0.2357 0 0.3162
0.25 0.2132 0.8165 0 0.7327 0.3675

0.2500 0.4264 0 0.2929 0 0.6325

 .

Using Equation (22) to get the weighted standardized evaluation matrices as follows:

X
′
1 = (wjx

′(k)
ij )q×p =


0.1321 0 0.0436 0 0.0947 0.0872

0 0.0491 0 0.1605 0.0947 0.0436
0.0803 0.0491 0.0872 0.1321 0 0.0436
0.0803 0.0981 0.0436 0.0803 0.0947 0
0.1605 0.0981 0.0436 0.0803 0.0947 0.0436

 ,
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X
′
2 =


0 0.0847 0.0489 0.0870 0 0.0435

0.0654 0.0423 0.0978 0.0435 0.1992 0
0.0893 0.1270 0.0978 0.0435 0.1070 0.0435
0.0893 0.0423 0.0489 0 0.0921 0.0870

0 0.0423 0 0.0435 0.1842 0.0435

 ,

X
′
3 =


0.0286 0.0331 0.0583 0.1253 0.1707 0.0589
0.0858 0.0331 0.0855 0.1406 0.1138 0
0.0572 0.0497 0 0.0627 0 0.0589
0.0286 0.0166 0.1167 0.0000 0.1560 0.0685
0.0286 0.0331 0 0.0779 0 0.1178

 .

The average matrix of the group decision matrix:

X
′∗ =


0.0536 0.0393 0.0503 0.0708 0.0885 0.0632
0.0504 0.0415 0.0611 0.1148 0.1359 0.0145
0.0756 0.0753 0.0617 0.0794 0.0357 0.0487
0.0660 0.0523 0.0697 0.0268 0.1143 0.0518
0.0630 0.0579 0.0145 0.0672 0.0930 0.0683

 .

After all the indicators values are obtained, the indicator importance is evaluated. The assessment
team consists of five experts (i.e., E1, E2, . . . , E5), the experts invited for this paper are emergency
logistics decision-makers experienced in emergency allocation and evaluation, and they make linguistic
judgements about the importance of each indicator according to his own experience. The five experts’
hesitant fuzzy judgments on the importance degree of each indicator are shown in Table 9. The expert
hesitant fuzzy judgments of unequal length are extended to the same length. Lingo software is used to
solve model (30), and the expert weights are computed as wE

m = {0.1989, 0.1975, 0.2141, 0.1898, 0.1996}.
Next, we use the objective weight of EW calculation to adjust the subjective weight of experts. On that
basis, the TOPSIS-EW method is used to calculate Y+

i , the rank results obtained can be seen in Table 10.
According to the proposed method, the five regions in the earthquake received performance ratings of
V, III, I, II, and IV.

Table 3. 5 granularity linguistic decision matrix given by expert e1.

B13 B22 C32 C41 C42 D22

W S5
−1 S5

0 S5
1 S5

0 S5
1 S5

2
B S5

0 S5
1 S5

0 S5
2 S5

−1 S5
1

Q S5
1 S5

1 S5
2 S5

−1 S5
0 S5

1
M S5

1 S5
2 S5

1 S5
1 S5

−1 S5
0

S S5
2 S5

2 S5
1 S5

1 S5
1 S5

1

Table 4. 7 granularity linguistic decision matrix given by expert e2.

B13 B22 C32 C41 C42 D22

W S7
0 S7

2 S7
1 S7

2 S7
0 S7

1
B S7

−1 S7
1 S7

2 S7
1 S7

−1 S7
0

Q S7
1 S7

3 S7
2 S7

1 S7
−2 S7

1
M S7

1 S7
1 S7

1 S7
0 S7

1 S7
2

S S7
0 S7

1 S7
0 S7

1 S7
2 S7

1
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Table 5. 9 granularity linguistic decision matrix given by expert e3.

B13 B22 C32 C41 C42 D22

W S9
1 S9

2 S9
1 S9

2 S9
3 S9

1
B S9

3 S9
2 S9

−1 S9
−2 S9

2 S9
0

Q S9
2 S9

3 S9
0 S9

1 S9
0 S9

1
M S9

1 S9
1 S9

2 S9
0 S9

−1 S9
−2

S S9
1 S9

2 S9
0 S9

−3 S9
0 S9

2

Table 6. 9 granularity linguistic decision matrix given by expert e1 after transformation.

B13 B22 C32 C41 C42 D22

W S9
−2 S9

0 S9
2 S9

0 S9
2 S9

4
B S9

0 S9
2 S9

0 S9
4 S9

−2 S9
2

Q S9
2 S9

2 S9
4 S9

−2 S9
0 S9

2
M S9

2 S9
4 S9

2 S9
2 S9

−2 S9
0

S S9
4 S9

4 S9
2 S9

2 S9
2 S9

2

Table 7. 9 granularity linguistic decision matrix given by expert e2 after transformation.

B13 B22 C32 C41 C42 D22

W S9
0 S9

8/3 S9
4/3 S9

8/3 S9
0 S9

4/3
B S9

−4/3 S9
4/3 S9

8/3 S9
4/3 S9

−4/3 S9
0

Q S9
4/3 S9

4 S9
8/3 S9

4/3 S9
−8/3 S9

4/3
M S9

4/3 S9
4/3 S9

4/3 S9
0 S9

4/3 S9
8/3

S S9
0 S9

4/3 S9
0 S9

4/3 S9
8/3 S9

4/3

Table 8. 9 granularity linguistic decision matrix given by expert e3 after transformation.

B13 B22 C32 C41 C42 D22

W S9
1 S9

2 S9
1 S9

2 S9
3 S9

1
B S9

3 S9
2 S9

−1 S9
−2 d S9

2 S9
0

Q S9
2 S9

3 S9
0 S9

1 S9
0 S9

1
M S9

1 S9
1 S9

2 S9
0 S9

−1 S9
−2

S S9
1 S9

2 S9
0 S9

−3 S9
0 S9

2

Table 9. Expert fuzzy judgments to the importance of indicators.

Indicator E1hi E2hi E3hi E4hi E5hi

B11 (0.5) (0.5, 0.625) (0.5, 0.625, 0.75) (0.5) (0.25, 0.375)
B12 (0.125, 0.25, 0.375) (0.5) (0.375) (0.5, 0.625) (0.375)
B13 (0.875) (0.75) (0.75, 0.825, 1) (0.75) (0.75, 0.875)
B21 (0.375) (0.625, 0.75) (0.5) (0.25, 0.375, 0.5) (0.5, 0.625)
B22 (0.625, 0.75) (0.875, 1) (0.75, 0.875) (0.875) (0.625, 0.75)
B31 (0.375) (0.25, 0.375, 0.5) (0.5) (0.625) (0.2, 0.375)
C11 (0.875) (0.75, 0.875, 1) (0.75, 0.875, 1) (1) (0.75, 0.875)
C21 (0.25, 0.375) (0.25, 0.375, 0.5) (0.375) (0.25, 0.375) (0.25)
C31 (1) (0.875, 1) (0.625, 0.75, 0.875, 1) (1) (0.875, 1)
C32 (0.625, 0.75, 0.875) (0.875) (0.625, 0.75) (0.625, 0.75) (0.75, 0.875, 1)
C41 (0.5, 0.625) (0.375, 0.5, 0.625) (0.375) (0.625, 0.75, 0.875, 1) (0.625)
C42 (0.25) (0.25, 0.375) (0.125, 0.25) (0.375) (0.125, 0.25, 0.375)
D11 (0.875, 1) (1) (1) (0.75, 0.875) (0.875)
D12 (0.75) (0.5) (0.75, 0.875) (0.75, 0.875) (0.75, 0.825)
D21 (0.25) (0.375) (0.5, 0.625) (0.25, 0.375, 0.5) (0.25)
D22 (0.375) (0.25, 0.375) (0.625) (0.125, 0.25) (0.25, 0.375)
D31 (0.5, 0.625, 0.75) (0.5) (0.5, 0.625) (0.625.0.75) (0.5, 0.625, 0.75)
H11 (0.25, 0.375, 0.5, 0.625, 0.75) (0.25, 0.375) (0.25) (0.25, 0.375) (0.5)
H12 (0.875) (0.875, 1) (0.625, 0.75) (0.875, 1) (0.75, 0.875)
H13 (0.25, 0.375, 0.5) (0.5) (0.25) (0.5) (0.375, 0.50.625, 0.75, 0875)
H21 (0.875) (1) (0.75) (1) (0.875, 1)
H22 (0.625, 0.75, 0.875) (0.875) (0.75, 0.875) (0.5, 0.625) (0.375, 0.5, 0.625)
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Table 10. Evaluation results and comparison analysis.

Region
Fuzzy TOPSIS-EW Method TOPSIS-EW Method TOPSIS Method with Equal Expert Weights

Y+
i Rank by Y+

i Y
′+
i Rank by Y

′+
i Y

′′+
i Rank by Y

′′+
i

W 0.0971 V 0.0793 V 0.1178 V
B 0.4465 III 0.5118 II 0.3584 III
Q 0.8906 I 0.9083 I 0.8696 I
M 0.4518 II 0.4002 III 0.5159 II
S 0.2012 IV 0.2273 IV 0.1727 IV

4.4. Comparison Analysis

Y
′+
i (i = 1, 2, . . . , 5) represents the relative closeness of the ith region evaluated by the TOPSIS-EW

method, in which the expert assessments on the importance of the degrees of the indicators is ignored.
The results of the comparison analysis between the fuzzy TOPSIS-EW method proposed in this paper
and the TOPSIS-EW method are shown in Table 10. Compared with Y+

i based on the symmetrical
method of fuzzy TOPSIS-EW, except for Beichuan County and Mianzhu City, the rankings of other
regions remain unchanged, while the relative closeness is slightly different. One of the reasons for this
difference is that the EW method can directly reflect the information of the original data, but it can
not take into account the expert judgments on the importance degrees of the indicators. For example,
Mianzhu City storage cost of emergency supplies is nearly four times that of Beichuan County, which is
very important from the perspective of the EW principle, but experts think it is not so important.
Therefore, Y+

i which takes into account the subjective influences is more persuasive than Y
′+
i .

Y
′′+
i (i = 1, 2, . . . , 5) represents the evaluation results of the ith region by TOPSIS with equal expert

weights. Compared with Y+
i based on the symmetrical method of fuzzy TOPSIS-EW, the relative

closenesses of all regions (i.e., alternatives) change. The reason for this difference is that different
experts have different experience and knowledge when evaluating the importance of indicators,
we must pay attention to the difference in importance of each expert, while the equal expert weight
method ignores this aspect. Therefore, the model (30) of maximizing group consistency and certainty
proposed in the fuzzy TOPSIS-EW method of this paper can better solve this problem, with the
objective value is 0.7362 which is better than the result by the TOPSIS method with equal expert
weights (i.e., 0.7533). Therefore, the method put forward in this paper is more reliable.

To sum up, just considering the subjective factors or the objective factors, the determined weights
cannot be regarded reasonable, only by taking into account both of these two aspects, we can get more
effective and reliable weights and get more reasonable evaluation results.

4.5. Sensitivity Analysis

In the fuzzy TOPSIS-EW method, parameter v is represented as a preference parameter for
subjective and objective weights. Generally speaking, the value of v is often set as 0.5. However, v can
be any number between 0 and 1. Therefore, it is necessary to perform sensitivity analysis on the
parameter v to verify the results, sensitivity analysis can be conducted from totally considering the
subjective factor (i.e., v = 0) to totally considering the objective factor (i.e., v = 1). The relevant
results according to v value can be found in Figure 6. It is shown in Figure 6 that with the variation
of v value, the relative closeness of each region changes. The performance rankings of Qingchuan
County, Shifang City, and Wenchuan County are relatively stable, whereas those of Beichuan County
and Mianzhu City have changed. The results show that when only subjective or objective weight is
considered, the ranking results of performance levels in different regions will be different, so this bias
must be carefully considered in practical problems.
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Figure 6. Sensitivity analysis on parameter v.

4.6. Managerial Suggestions

The analysis results based on the value of Y+
i show that Qingchuan county has the best

performance and Wenchuan County has the worst. Y+
i value {0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8,

0.8–1}, corresponding performance level is {poor, relatively poor, average, relatively good, good}.
Therefore, as can be shown in Table 10. In this earthquake, Qingchuan County’s emergency logistics
performance is good, Mianzhu City and Beichuan County had average performance, emergency
logistics performances in Shifang City is relatively poor, and the Wenchuan County had poor
performance. Compared with the EW method and equal expert weight evaluation results, The fuzzy
TOPSIS-EW method considers both subjective weight and objective weight, and with the higher group
consensus so the relative closeness of all regions has changed. Therefore Y+

i evaluation results are
more accurate and reliable than the Y

′+
i and Y

′′+
i .

In this case analysis, some key problems are highlighted. First, the actual supply of emergency
supplies is far below the quantity need, and the distribution of supplies is unreasonable. For example,
before 25 May, Wenchuan County, which had the largest number of people affected, received less than
15 percent of the number of tents in Qingchuan County. Secondly, the long time it took the government
to get initial information about the disaster, especially in Qingchuan County, Mianzhu City and
Shifang City, reduced the efficiency of emergency logistics decision-making. Thirdly, The efficiency of
material transportation and material distribution after the disaster was low. Therefore, the paper puts
forward some suggestions to improve the emergency logistics system and improve regional emergency
logistic performance.

(1) Increasing emergency material reserves. After the disaster, the disaster area is in urgent need of
adequate supplies of life support. However, the actual amount of materials is always in short
supply, affecting the follow-up relief work. In addition, reducing the storage space and saving
storage costs can also improve relief work efficiency.

(2) Improving the informatization of emergency logistics management. it is advised to accelerate
the speed of information acquisition and apply advanced information and communication
technology to improve the speed and accuracy of pre-disaster prediction, material transportation,
and information transmission, and further improve the speed of information transportation
command and dispatch and emergency response. For example, it took several hours for
Qingchuan County to obtain information about the disaster, which seriously affected the
timeliness of disaster relief activities.

(3) Strengthening the construction of contingency logistics plans. Firstly, it is needed to rehearse the
emergency logistics plan, improve the practical operation ability of professionals, and increase
the emergency response ability. In addition, what should be done is to test, revise, and improve
the emergency plan, and more effectively deal with sudden and complex emergencies in practice.



Symmetry 2020, 12, 1331 24 of 27

(4) Improving a cross-departmental and cross-regional linkage and cooperation mechanism. For the
first time after the disaster, all departments should formulate a common code of action and
strengthen mutual communication and cooperation to ensure that personnel and materials can
reach the emergency site as quickly and safely as possible. For example, the Wenchuan County
and Beichuan County after the earthquake set up an emergency response working group later
than the other three areas.

5. Conclusions and Future Research Direction

The basic proposition of this research is that the occurrence of public emergencies are inevitable,
so ensuring efficient emergency logistics capacity can mitigate the consequences of disasters.
The MCDM method proposed in this paper provides an appropriate method for the performance
evaluation of emergency logistics, some inspiration for increasing the ability of emergency logistics
resilience are derived. The main contributions of this study are as follows: (1) Comprehensive
consideration of the three stages of the emergency preparation, response, and recovery indicators
system, based on which a more comprehensive evaluation indicator system of the emergency logistics
performance is established. (2) The MCDM method (i.e., the fuzzy TOPSIS-EW method) with MGLA
information is used to solve some indicators that are difficult to be quantified in the indicator system.
(3) A hesitancy degree minimized divergence model is constructed to determine the weight of the
experts, so as to achieve the maximum group consensus and reliability evaluation results. And apply
the EW method to adjust subjective weights assigned by experts. This fuzzy TOPSIS-EW method
synthetizes the merits of subjective and objective factors, thus improving the impartiality and reliability
of the evaluation results. (4) A practical case study is conducted on the Wenchuan earthquake in China,
which is the worst earthquake in China in recent years. Using the proposed method, the five regions
(i.e., Wenchuan County, Beichuan County, Qingchuan County, Mianzhu City, and Shifang City) in the
earthquake receive performance ratings of V, III, I, II, and IV. Moreover, a comparison analysis using
the proposed method with the TOPSIS-EW method and TOPSIS method with equal expert weight is
conducted, it verifies the reliability of the proposed method considering both subjective weight and
objective weight, which is also demonstrated by a sensitivity analysis on parameter v illustrating the
preference degree on subjective/objective weight. Finally, on the basis of case analysis, some concrete
suggestions are put forward to improve the performance of emergency logistics.

The limitations of this paper and future research direction include the following aspects. First of
all, this paper does not focus on the distance calculation formula of experts divergence and relative
closeness of TOPSIS. Therefore, in future studies, we can improve the distance calculation formula,
such as using Mahalanobis distance and Hamming distance. Moreover, due to the complexity of
MCDM, the TOPSIS-DEA method, TOPSIS-ANP method, grey relational analysis, VIKOR, and AHP
can be used to increase its stability in future studies. Finally, the proposed evaluation method can also
be applied to the evaluation of public emergencies such as the evaluation and decision-making in the
the COVID-19 Global Pandemic and the flood disaster in southern China in 2020, which is conducive
to the sustainable development of public health and public safety.
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21. Özcan, T.; Çelebi, N.; Esnaf, Ş. Comparative analysis of multi-criteria decision making methodologies and
implementation of a warehouse location selection problem. Expert Syst. Appl. 2011, 38, 9773–9779. [CrossRef]

22. Wa̧tróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria
method selection. Omega Int. J. Manag. Sci. 2019, 86, 107–124. [CrossRef]

http://dx.doi.org/10.1016/j.ijdrr.2017.09.037
http://dx.doi.org/10.1016/j.trpro.2017.05.328
http://dx.doi.org/10.1016/j.trpro.2017.05.328
http://dx.doi.org/10.1016/j.engappai.2020.103703
http://dx.doi.org/10.3390/sym10100476
http://dx.doi.org/10.1023/B:ANOR.0000030690.27939.39
http://dx.doi.org/10.1007/s11590-015-0853-z
http://dx.doi.org/10.1016/j.omega.2018.10.011
http://dx.doi.org/10.1016/j.omega.2014.05.002
http://dx.doi.org/10.1016/j.cie.2019.02.003
http://dx.doi.org/10.1108/BIJ-11-2014-0109
http://dx.doi.org/10.1007/s00170-015-7923-3
http://dx.doi.org/10.1016/j.egypro.2012.01.046
http://dx.doi.org/10.3233/JIFS-16252
http://dx.doi.org/10.1109/COINFO.2009.38
http://dx.doi.org/10.1016/j.ejor.2015.08.059
http://dx.doi.org/10.1016/j.ijdrr.2017.01.017
http://dx.doi.org/10.1016/j.omega.2018.06.003
http://dx.doi.org/10.1016/j.omega.2018.06.003
http://dx.doi.org/10.3390/sym11010017
http://dx.doi.org/10.1007/s00500-019-04421-5


Symmetry 2020, 12, 1331 26 of 27

23. Liao, H.; Xu, Z.; Zeng, X. Distance and similarity measures for hesitant fuzzy linguistic term sets and their
application in multi-criteria decision making. Inf. Sci. 2014, 271, 125–142. [CrossRef]

24. Liao, H.; Xu, Z.; Zeng, X. Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic
term sets. Knowl. Based Syst. 2015, 76, 127–138. [CrossRef]

25. Zhang, Z.; Guo, C.; Luis, M. Managing multigranular linguistic distribution assessments in large-scale
multiattribute group decision making. IEEE Trans. Syst. Man Cybern. 2017, 47, 3063–3076. [CrossRef]

26. Li, Z.; Liechty, M.; Xu, J.; Lev, B. A fuzzy multi-criteria group decision making method for individual research
output evaluation with maximum consensus. Knowl. Based Syst. 2014, 56, 253–263. [CrossRef]

27. Zhang, C.; Wang, C.; Zhang, Z. A novel technique for multiple attribute group decision making in
interval-valued hesitant fuzzy environments with incomplete weight information. J. Ambient. Intell.
Humaniz. Comput. 2019, 10, 2429–2445. [CrossRef]

28. Liu, S.; Chan, F.T.S.; Ran, W. Multi-attribute group decision-making with multi-granularity linguistic
assessment information: An improved approach based on deviation and TOPSIS. Appl. Math. Model. 2013,
37, 10129–10140. [CrossRef]

29. Zhang, Z.; Guo, C. A method for multi-granularity uncertain linguistic group decision making with
incomplete weight information. Knowl. Based Syst. 2012, 26, 111–119. [CrossRef]

30. Morente-Molinera, J.A.; Pérez, I.J.; Ureña, M.R.; Herrera-Viedma, E. On multi-granular fuzzy linguistic
modeling in group decision making problems: A systematic review and future trends. Knowl. Based Syst.
2015, 74, 49–60. [CrossRef]

31. Wang, H.; Xu, Z.; Zeng, X. Linguistic terms with weakened hedges: A model for qualitative decision making
under uncertainty. Inf. Sci. 2018, 433, 37–54. [CrossRef]

32. Schneider, J.; Romanowski, C.J.; Stein, K. Decision making to support local emergency preparation, response,
and recovery. In Proceedings of the 2013 IEEE International Conference on Technologies for Homeland
Security (HST), Waltham, MA, USA, 12–14 November 2013; pp. 498–503. [CrossRef]

33. Turcanu, C.; Crouäil, P.; Duranova, T.; Camps, J.; Schneider, T.; Raskob, W. Training courses on
emergency preparedness, response and recovery: theory, practice and application of newly developed
tools. Radioprotection 2016, 51, S171–S173. [CrossRef]

34. Wang, X.; Cui, Q.; Li, S. An optimal water allocation model based on water resources security assessment and
its application in Zhangjiakou Region, northern China. Resour. Conserv. Recycl. 2012, 69, 57–65. [CrossRef]

35. Li, D. Depth Research of Emergency Logistics Management information systems. In Proceedings of the 5th
International Conference on Education, Management, Information and Medicine (EMIM), Shenyang, China,
24–26 April 2015; pp. 972–976. [CrossRef]

36. Yandong, W.; Shisi, R.; Teng, W.; Mengling, Q. Rapid estimation of an earthquake impact area using a spatial
logistic growth model based on social media data. Int. J. Digit. Earth 2018, 12, 1265–1284. [CrossRef]

37. Havenith, H.B.; Strom, A.; Torgoev, I.; Torgoev, A.; Lamair, L.; Ischuk, A.; Abdrakhmatov, K. Tien Shan
geohazards database: earthquakes and landslides. Geomorphology 2015, 249, 16–31. [CrossRef]

38. Bastos, M.A.G.; Campos, V.B.G.; de Mello Bandeira, R.A. Logistic processes in a post-disaster relief operation.
Procedia Soc. Behav. Sci. 2014, 111, 1175–1184. [CrossRef]

39. Sheu, J.B. An emergency logistics distribution approach for quick response to urgent relief demand in
disasters. Transp. Res. Part Logist. Transp. Rev. 2007, 43, 687–709. [CrossRef]

40. Zhang, J.; Zhao, Q. Partition of emergency materials reserve area and analysis of reserve pattern.
In Proceedings of the 3rd International Conference on Logistics, Informatics and Service Science, Beijing,
China, 21–24 August 2015; pp. 335–340. [CrossRef]

41. Axsäter, S. A heuristic for triggering emergency orders in an inventory system. Eur. J. Oper. Res. 2007,
176, 880–891. [CrossRef]

42. Balcik, B.; Beamon, B.M.; Smilowitz, K. Last mile distribution in humanitarian relief. J. Intell. Transp. Syst.
2008, 12, 51–63. [CrossRef]

43. Li, X.; Su, G.; Zhong, S.; Zhang, F.; Zhang, F.; Huang, C.; Yuan, H.; Huang, Q.; Chen, J. Study on scene-driven
emergency drill method. Pract. Appl. Intell. Syst. 2014, 1089–1097. [CrossRef]

44. Wang, X.; Xiong, W. An integrated linguistic-based group decision-making approach for quality function
deployment. Expert Syst. Appl. 2011, 38, 14428–14438. [CrossRef]

45. Xu, Y.; Da, Q. Standard and mean deviation methods for linguistic group decision making and their
applications. Expert Syst. Appl. 2010, 37, 5905–5912. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2011.02.022
http://dx.doi.org/10.1016/j.omega.2018.07.004
http://dx.doi.org/10.1016/j.ins.2014.02.125
http://dx.doi.org/10.1016/j.knosys.2014.12.009
http://dx.doi.org/10.1109/TSMC.2016.2560521
http://dx.doi.org/10.1016/j.knosys.2013.11.018
http://dx.doi.org/10.1007/s12652-018-0912-2
http://dx.doi.org/10.1016/j.apm.2013.05.051
http://dx.doi.org/10.1016/j.knosys.2011.07.009
http://dx.doi.org/10.1016/j.knosys.2014.11.001
http://dx.doi.org/10.1016/j.ins.2017.12.036
http://dx.doi.org/10.1109/THS.2013.6699054
http://dx.doi.org/10.1051/radiopro/2016065
http://dx.doi.org/10.2991/icmce-14.2014.187
http://dx.doi.org/10.2991/emim-15.2015.186
http://dx.doi.org/10.1080/17538947.2018.1497100
http://dx.doi.org/10.1016/j.geomorph.2015.01.037
http://dx.doi.org/10.1016/j.sbspro.2014.01.152
http://dx.doi.org/10.1016/j.tre.2006.04.004
http://dx.doi.org/10.1007/978-3-642-40660-7_49
http://dx.doi.org/10.1016/j.ejor.2005.09.002
http://dx.doi.org/10.1080/15472450802023329
http://dx.doi.org/10.1007/978-3-642-54927-4_104


Symmetry 2020, 12, 1331 27 of 27

46. Li, Z.; Xu, J.; Lev, B.; Gang, J. Multi-criteria group individual research output evaluation based on context-free
grammar judgments with assessing attitude. Omega Int. J. Manag. Sci. 2015, 57, 282–293. [CrossRef]

47. Liao, H.; Gou, X.; Xu, Z.; Zeng, X.; Herrera, F. Hesitancy degree-based correlation measures for hesitant fuzzy
linguistic term sets and their applications in multiple criteria decision making. Inf. Sci. 2020, 508, 275–292.
[CrossRef]

48. Yan, H.; Ma, T.; Huynh, V. On qualitative multi-attribute group decision making and its consensus measure:
A probability based perspective. Omega Int. J. Manag. Sci. 2017, 70, 94–117. [CrossRef]

49. Gao, J.; Xu, Z.; Liang, Z.; Liao, H. Expected consistency-based emergency decision making with incomplete
probabilistic linguistic preference relations. Knowl. Based Syst. 2019, 176, 15–28. [CrossRef]

50. Meng, F.; Tang, J. New ranking order for linguistic hesitant fuzzy sets. J. Oper. Res. Soc. 2019, 70, 531–540.
[CrossRef]

51. Rathi, R.; Khanduja, D.; Sharma, S.K. A fuzzy-MADM based approach for prioritising Six Sigma projects in
the Indian auto sector. Int. J. Manag. Sci. Eng. Manag. 2017, 12, 133–140. [CrossRef]

52. Zhang, S.; Liu, S. A GRA-based intuitionistic fuzzy multi-criteria group decision making method for
personnel selection. Expert Syst. Appl. 2011, 38, 11401–11405. [CrossRef]

53. Dong, Y.; Liu, Y.; Liang, H.; Chiclana, F.; Enrique, H. Strategic weight manipulation in multiple attribute
decision making. Omega Int. J. Manag. Sci. 2018, 75, 154–164. [CrossRef]

54. Thuong, N.T.H.; Zhang, R.; Li, Z.; Hong, P.T.D. Multi-criteria evaluation of financial statement quality based
on hesitant fuzzy judgments with assessing attitude. Int. J. Manag. Sci. Eng. Manag. 2018, 13, 254–264.
[CrossRef]

55. Han, Q.; Li, W.; Song, Y.; Zhang, T.; Wang, R. A new method for MAGDM based on improved TOPSIS and
a novel pythagorean fuzzy soft entropy. Symmetry 2019, 11, 905. [CrossRef]

56. Mohsen, O.; Fereshteh, N. An extended VIKOR method based on entropy measure for the failure modes risk
assessment—A case study of the geothermal power plant (GPP). Saf. Sci. 2017, 92, 160–172. [CrossRef]

57. Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means
cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hyderol. 2018, 563,
975–986. [CrossRef]

58. Liu, Q.; Ruan, X.; Shi, P. Selection of emergency shelter sites for seismic disasters in mountainous regions:
Lessons from the 2008 Wenchuan Ms 8.0 Earthquake, China. J. Asian Earth Sci. 2011, 40, 926–934. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2011.04.103
http://dx.doi.org/10.1016/j.eswa.2010.02.015
http://dx.doi.org/10.1016/j.omega.2015.09.001
http://dx.doi.org/10.1016/j.ins.2019.08.068
http://dx.doi.org/10.1016/j.omega.2016.09.004
http://dx.doi.org/10.1016/j.knosys.2019.03.020
http://dx.doi.org/10.1080/01605682.2018.1447252
http://dx.doi.org/10.1080/17509653.2016.1154486
http://dx.doi.org/10.1016/j.eswa.2011.03.012
http://dx.doi.org/10.1016/j.omega.2017.02.008
http://dx.doi.org/10.1080/17509653.2017.1421107
http://dx.doi.org/10.3390/sym11070905
http://dx.doi.org/10.1016/j.ssci.2016.10.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Key Problem Statement
	Emergency Logistics System
	Evaluation Indicator System

	Evaluation Methodology
	Overall Framework
	Indicators Description
	Information Processing
	Logistics Operation
	Organization and Coordination
	Post-Disaster Response

	MGLA Approach
	Weights Determination
	Hesitant Fuzzy Linguistic Judgment Description
	Expert Weights Determination
	Indicator Weights Computation

	Relative Closeness to the Ideal Solution Based on TOPSIS

	Case Study
	Case Description
	Data Source
	Result Interpretation
	Comparison Analysis
	Sensitivity Analysis
	Managerial Suggestions

	Conclusions and Future Research Direction
	References

