
symmetryS S

Article

Towards a Formal IoT Security Model

Tania Martin *, Dimitrios Geneiatakis †, Ioannis Kounelis †, Stéphanie Kerckhof
and Igor Nai Fovino

European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
dimitrios.geneiatakis@ec.europa.eu (D.G.); ioannis.kounelis@ec.europa.eu (I.K.);
stephanie.kerckhof@ec.europa.eu (S.K.); igor.nai-fovino@ec.europa.eu (I.N.F.)
* Correspondence: tania.martin@ec.europa.eu
† These authors contributed equally to this work.

Received: 10 July 2020; Accepted: 2 August 2020; Published: 5 August 2020

Abstract: The heterogeneity of Internet of Things (IoT) systems has so far prevented the definition
of adequate standards, hence making it difficult to compare meaningfully the security degree of
diverse architectural choices. This task can be nonetheless achieved with formal methodologies.
However, the dedicated IoT literature shows no evidence of a universal model allowing the security
evaluation of any arbitrary system. Based on these considerations, we propose a new model that aims
at being global and all-encompassing. Our model can be used to fairly analyse the security level of
different IoT systems and compare them in a significant way. It is designed to be adaptive with realistic
definitions of the adversary’s (1) actions of interacting with IoT systems; (2) capabilities of accessing
the data generated by and exchanged in IoT systems with established rules; and (3) objectives of
attacking IoT systems according to the four recognised security properties of confidentiality, integrity,
availability and soundness. Such a design enables the straightforward characterization of new
adversaries. It further helps in providing a fine-grained security evaluation of IoT systems by either
accurately describing attacks against the analysed systems or formally proving their guaranteed level
of security.

Keywords: IoT; security; cryptographic model

1. Introduction

In the domain of computer science and symmetry, the development of new types of sensors and
actuators supported by network connectivity is shaping the concept of the Internet of Things (IoT).
This technology is completely changing the users’ approach and use of the cyber-space. It breaks down
the barriers between our physical daily world and the digital reality, enabling new services and paving
the way towards a full digital inclusion. IoT can support a variety of applications and services in
diverse domains such as healthcare, home automation, security, and vehicles. These services are built
on dynamic heterogeneous architectures, based on the symbiosis of various elements (i.e., sensors,
connections, and applications) with different criticalness levels.

The novelty, heterogeneity, and complexity of such systems involve however a broad and
unexplored attack surface that might lead to serious consequences for the users as well as for the
companies. For instance, the study of [1] demonstrated that a malicious entity is able to switch on or off
the smart bulbs of an IP-based light system, or even to brick them. This can bring unexpected electrical
consumption peaks in highly populated areas. A more critical incident is the IoT-based Mirai botnet
that launched a DDoS attack against Dyn, a major DNS provider, and caused a significant breakdown
of many famous web services, such as Twitter, GitHub, PayPal, Amazon, Netflix, and Spotify.
Additionally, IoT systems often generate opaque and huge flows of information. This, combined with

Symmetry 2020, 12, 1305; doi:10.3390/sym12081305 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym12081305
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 1305 2 of 16

the shift of the control paradigm of the devices from local to virtual and/or remote, implies new
security concerns for the users such as leakage, theft, or undesired use of sensitive data.

In order to mitigate those risks, defining consolidated standards and performing deep analysis
on the security level of IoT architectures becomes a necessity. A step towards this goal consists in
building a well-established formal security model that could be used as a tool to make fair analyses,
comparisons and security proofs of different types of IoT systems. Lots of papers related to the security
in IoT systems have been published recently. Yet they present models that are usually threat-based
oriented (i.e., validating the resistance of a system to a finite set of known attacks), strongly linked
to very specific application scenarios, or focused on the devices as individual entities rather than
as a complete system. In particular, the threat-based model of [2] is the closest reference related to
formal security frameworks in the IoT field. However, it does not allow to formally prove security
properties of an IoT system. Looking from the Internet protocols perspective, some automated tools
have been proposed to validate their security and applications [3,4]. Existing solutions based on attack
graphs [5] and similar approaches [6] require the prior knowledge of attacks’ vectors. Yet, to the best
our knowledge, literature in this domain with focus on IoT is very limited [2,7]. For instance in [7],
authors introduce a dedicated model for analysing smart meters systems. Regarding RFID technology,
many cryptographic security models related to privacy already exist, as depicted in the survey [8].
Especially, the model presented in [9] is able to compare RFID systems appropriately, considering
various system architectures. To cover this gap, we propose a formal model for evaluating whether or
not fundamental security primitives are provided by IoT solutions. Additionally, our model aims to be
all-encompassing, meaning that it is able to compare the security performances amongst different IoT
systems. Thus, access control models for IoT such as [10–14] are out of the scope of this work as they
are considered as complementary security services. However, we are planning to extend our model for
checking access control models for IoT in a future work.

Our main contribution is the proposal of a new model that expands the RFID privacy model
of [9] to the security properties of the IoT world. First, we provide a clear description of an IoT system
and its composition (devices, a backend system and users). We adapt the formal definitions of the
RFID building blocks regarding the initialisation procedure and protocol(s) given in [9] to IoT systems.
We generalise the definition issued in [9] of the potential adversaries so that their attacks can be
carried out on IoT systems, while maintaining the same notion of adversary class representing the
adversary’s capabilities during an attack. Finally, we define the attacks objectives by the means of
unique experiments that formalise the four well-known security properties of confidentiality, integrity,
availability, and soundness. As our model aims at being lightweight and easily usable, we additionally
demonstrate its practicality with the security analysis of two different IoT systems.

The rest of the paper is organised as follows. Section 2 overviews the general architecture of an
IoT system and Section 3 introduces a formalization for it. Section 4 specifies the actions an adversary
can perform, and the data she can obtain from these interactions. The security properties of the
model are formalised in Section 5. The security analyses of two real-life IoT systems are provided in
Sections 6 and 7. Finally, Section 8 concludes the paper and presents the future research.

2. Overview of IoT Systems

An IoT system is the interconnection among physical objects with cyber services. Without loss
of generality, it is composed of three main entities: IoT devices, a backend system with which the
IoT devices interact with, and users that handle the devices and/or interact with the backend system.
We provide a high level description of these three elements below.

2.1. IoT Devices

Currently there is not a common definition for an IoT device, thus we assume that an IoT device
can be either a sensor or a hub. A sensor is usually a device with a small processing capacity that
performs various measurements or detects patterns (e.g., thermometer, motion sensor, or camera).

Symmetry 2020, 12, 1305 3 of 16

It is supported by a firmware for its operations, although some sensors in the market run lightweight
versions of well-known operating systems. Due to the sensor’s limited capabilities, a hub is usually
needed to provide additional services to the sensor, such as data storage or Internet connectivity.
Sometimes, a sensor and a hub can coexist in one single device.

2.2. Backend System

Most of IoT systems nowadays have a backend system to support and enhance the provided
services. Its purpose is twofold. First, it enhances the devices’ capabilities by supporting extra features
and services, such as additional storage or advanced user interface with more configurable options.
Secondly, it provides to the user continuous communication with the IoT system. In fact, the backend
system can be seen as a cloud service. Such a service is usually accessible through a website, where the
user has to first authenticate in order to get access. Such access can also be obtained through a
mobile application that, in general, automatically detects if the access to the backend is needed or not,
depending on the user’s location.

2.3. Users

They can interact with IoT devices and manage the system through different platforms such as
PCs, smartphones, or tablets. Depending on the system used, local and/or remote interactions with the
IoT system are provided. For instance, in case of remote management, all the information is forwarded
to the hub through the cloud service, while, if the user is acting from the same network where the hub
is installed, the traffic is routed directly to it and thus no Internet access is needed.

All these entities communicate together using different protocols depending on the choices of the
devices’ manufacturers. The most popular ones are Zigbee, Z-wave, Wi-Fi. Some IoT systems can also
involve devices that support low range communications such as RFID, NFC, or Bluetooth.

3. Formalisation of IoT Systems

In order to analyse IoT systems from a security perspective, we introduce a model that will
formalise our analysis. In particular, we describe the building blocks of an IoT system, namely the
initialisation procedures to set up a system and the protocol(s) executed by the entities of the system,
and the IoT data sets that can be extracted from these building blocks (namely transcripts and
snapshots). All the definitions of these notions are built on those of [9].

3.1. Initialization Procedures

An IoT system is setup by a procedure INITSYSTEM that (a) generates the public and private
values of the system depending on a security parameter λ; and (b) initialises the backend.

To allow a dynamic generation of IoT devices, a procedure CREATEDEVICE is defined and called
aside of INITSYSTEM. IoT devices can potentially be setup with unique data and must consequently be
registered in the system to be recognized afterwards. This action is not necessarily performed when the
IoT device is created, and thus requires the definition of an independent procedure REGISTERDEVICE.
For instance, the physical action of a user may be involved, such as pressing a button on the hub.

The three procedures determine each entity’s initial internal state, which is the data stored in each
entity’s memory. The backend internal state may furthermore contain the system database.

An example of such initialisation procedures is the Simple Service Discovery Protocol (SSDP) [15],
which is supported by many IoT manufacturers. It enables the transparent configuration of IoT devices
in a plug-and-play mode that requires minimum user interactions.

Symmetry 2020, 12, 1305 4 of 16

3.2. Protocols

The behaviours and interactions of the system entities are described through protocols. Each of
them determines the actions (e.g., computation, random generation), interleaved by transitions, that the
entities have to perform to reach a given objective.

For instance, a protocol can be a communication protocol where a sensor sends to the hub the
real-time measured temperature of a room. Or a protocol can simply be the process of a camera which
starts recording when it detects movements in its surroundings.

3.3. Transcripts

The subset of actions performed by an entity X during a protocol execution is called algorithm.
During an algorithm execution, X may exchange several data related to its IoT nature with the external
world, typically with other involved entities. This external view of an algorithm execution forms a
data set called transcript. It can be enriched by auxiliary information extracted from the activation of
transitions, e.g., the reception/emission time of a message or its recipient/issuer.

Transcripts are indexed with a counter incremented each time X engages in a new algorithm
execution. πi

X ,PROT denotes the transcript of the ith execution of X ’s algorithm related to a
protocol PROT.

3.4. Snapshots

Each algorithm execution may further modify the entity internal state. It is possible to capture the
information contained in an entity internal state at a given time (e.g., retrieving the IoT data stored on
a sensor by tampering it). Each capture defines a data set called snapshot.

Snapshots are also incrementally indexed, and εi
X denotes the ith snapshot of X ’s internal state.

4. IoT Adversary

To analyse the security level of an IoT system, we introduce the notion of adversary, i.e., a malicious
entity whose final objective is to attack the system. We adapt the adversary model introduced in [9],
originally defined for RFID systems, to the IoT context.

In order to define an appropriate adversary, we need to use the notion of oracles and selectors.
An oracle is a tool used by an adversary to simulate the interactions of an IoT system and collect
data. A selector is a tool used by an adversary to access the collected data. We also need to specify
the restrictions that can be applied to the use of the oracles and selectors by the adversary when she
plays/interacts with the system in order to attack it. Finally, the combination of oracles, selectors and
restrictions permits the definition of all the potential adversary classes that might attack an IoT system.

4.1. Oracles

The following oracles can be carried out on an already initialised IoT system. They are divided in
three families, according to their functions.

(i) Oracles that dynamically add IoT devices to the system.

• OCREATEDEVICE()→ X : executes the CREATEDEVICE procedure, and returns the label X .
• OREGISTERDEVICE(X)→ ∅: executes the REGISTERDEVICE procedure on the device X .

When the system is just initialised, there is no IoT device yet defined, only the backend and
the public and private values of the system. Consequently, the two previous oracles are used
to add devices to the analysed system.

(ii) Oracles that completely or partly execute a protocol.

• OEXECUTE(PROT,X1, . . . ,Xα) → (πi1
X1,PROT, . . . , πiα

Xα ,PROT): executes the protocol
PROT between the entities (X1, . . . ,Xα), fills up and outputs their transcripts
(πi1
X1,PROT, . . . , πiα

Xα ,PROT).

Symmetry 2020, 12, 1305 5 of 16

This oracle reduces the adversary’s capabilities to an eavesdropper, while the two following
ones allow the splitting up of the previous oracle, and can be used to represent an active
adversary that controls all the steps and transitions of a protocol execution.

• OLAUNCH(PROT,X) → πi
X ,PROT: makes X launch a new execution of the protocol PROT,

fills up and outputs the transcript πi
X ,PROT when all the actions related to the oracle query

are performed.

• OSEND(PROT,X , m)→ πi
X ,PROT: sends a message m to X , fills up and outputs the transcript

πi
X ,PROT when all the actions related to the oracle query are performed.

(iii) Oracle that captures information on the system.

• OCORRUPT(X)→ εi
X : outputs the ith snapshot εi

X of X ’s internal state.

This oracle formalises a powerful capability that can be given to an adversary, by making her able
to corrupt a device and to capture all the information contained in the device at a given time.

4.2. Selectors

With the oracles, the adversary collects transcripts and snapshots. The selectors allow her to read
the different information contained in these data sets. There is no exhaustive list of the information
that is created/used/shared in an IoT system. This section simply presents the most common ones.

Given a selector s, π.s (resp. ε.s) denotes the information accessible through s contained in the
transcript π (resp. the snapshot ε).

(i) Selectors related to transcripts.

• msg: ability to extract the messages sent over the communication channels.
• result: ability to extract the result of the protocol (e.g., success or failure).
• timer: ability to extract the execution time of a device.

(ii) Selectors related to snapshots.

• eeprom: ability to extract the EEPROM memory of a device at a given time.
• ram: ability to extract the RAM memory of a device at a given time.

4.3. Restrictions

Some restrictions can be applied to the use of the oracles when the adversary plays with the
system. For instance, one restriction forces the use of OREGISTERDEVICE:

• Reg: all the devices must be registered.

Some restrictions on the use of OCORRUPT can also be applied:

• NonCorrSensor: no sensor can be corrupted;
• NonCorrHub: no hub can be corrupted.

Restrictions related to the selectors and entities can also be applied:

• Device: the selectors can only be called on transcripts performed by IoT devices, i.e., sensors
and hubs;

• Internet: the selectors can only be called on transcripts performed by entities having
Internet connection.

Symmetry 2020, 12, 1305 6 of 16

4.4. Adversary Classes

All the different oracles, selectors and restrictions allow to explicitly define the adversary’s
capabilities during the game (called experiment in what follows) performed with the targeted IoT
system to attack it. This is done with the concept of adversary class.

Definition 1 (Adversary class [9]). An adversary class P is defined by three sets O, S, R, and is denoted by
the 3-tuple (O, S, R), where:

• O is the set of available oracles;
• S is the set of available selectors;
• R is the set of restrictions regarding the use of the available oracles, selectors, and entities during the experiment.

Several classical adversary classes against IoT system can be defined. The goal is not to provide an
exhaustive list, but to highlight the most intuitive ones. For instance, a security model for IoT systems
should at least consider two types of adversary, internal and external, that can act maliciously either
on a passive or an active way depending on their goal.

On the one hand, the first category consists of INSIDER adversaries that are located in the
close range of an IoT system (e.g., inside a smart home); such adversaries can interact directly
with every legitimate device in their surroundings. EAVESDROPPER adversaries are INSIDER
with limited capabilities (as explained in [9], the adversary classes can be (partially) ordered.
For instance, an INSIDER adversary is stronger than an EAVESDROPPER one): they can only listen
to communications between the legitimate devices. On the other hand, EXTERNAL adversaries
do not have physical access to the devices; they can only interact with the devices having an
Internet connection (e.g., hub or backend system). These three categories of adversaries can
be formally defined by the following classes. In order to lighten the notations, let us denote
Obasic = {OCREATEDEVICE,OREGISTERDEVICE,OEXECUTE} the set of basic oracles.

• EAVESDROPPER = (Obasic, {msg, result}, {Reg, Device}).
• INSIDER = (Obasic ∪ {OLAUNCH,OSEND}, {msg, result}, {Reg, Device}).
• EXTERNAL = (Obasic ∪ {OLAUNCH,OSEND}, {msg, result}, {Reg, Internet}).

As a simple but concrete example, an EAVESDROPPER adversary can use the oracles
OCREATEDEVICE, OREGISTERDEVICE, OEXECUTE, the selectors msg and result, all with the restrictions
Reg and Device.

5. Security Properties

After the formalisation of IoT systems and the definition of the potential adversary classes,
we define here attack objectives through four security properties, each one linked to a specific
experiment. In fact, an experiment formally represents the game performed by an adversary to
undermine the related security property expected by an IoT system. In order to clearly understand the
experiments and their corresponding security properties, some notations must be specified as follows.

• S is an IoT system of global security parameter λ.
• ε(.) is a negligible function.
• AP is the adversary A belonging to the class P playing an experiment Exp.
• C is the challenger, i.e., the honest entity that determines a kind of riddle that must be answered

by AP at the end of Exp.

The goal of AP is to win Exp with non-negligible probability, in comparison to a dumb adversary
who is considered to always perform random interactions during the experiment.

Symmetry 2020, 12, 1305 7 of 16

5.1. Confidentiality

This notion is linked to attacks aiming at retrieving confidential information. An example of such
a situation is a hospital using IoT for medical follow-up. The system is composed of (1) a centralized
backend containing the medical data of all the patients; (2) IoT wristbands that are worn by the patients
during their stay at the hospital; and (3) IoT tablets that scan the wristbands and provide to the doctors
the medical data related to the corresponding patients. In this example, an adversary may want to
retrieve the medical data of the patients wearing an IoT wristband. The confidentiality experiment is
described in Figure 1.

Experiment ExpConfident
S ,AP

(λ)

1. C runs INITSYSTEM(1λ).
2. C defines the set of confidential information CI.
3. AP interacts with the system S , limited by her class P.
4. AP outputs some information I.

ExpConfident
S ,AP

(λ) succeeds if I is (part of) CI.

Figure 1. Confidentiality experiment.

The confidentiality property is thus as follows.

Definition 2. Confidentiality: An IoT system S is said to be P-confidential for a specific set CI of confidential
information if:

∀AP ∈ P : Pr
(

ExpConfident
S ,AP

(λ) succeeds
)
≤ ε(λ).

5.2. Integrity

This notion is linked to attacks aiming at modifying (e.g., adding, changing or removing) part of
the critical information contained in a system. Following the hospital example, an adversary may want
to erase data of some patients, preventing them of being treated. The integrity experiment is described
in Figure 2.

Experiment ExpIntegrity
S ,AP

(λ)

1. C runs INITSYSTEM(1λ).
2. C defines the set of critical information CRI.
3. AP interacts with the system S , limited by her class P.

ExpConfident
S ,AP

(λ) succeeds if (part of) CRI has been modified in S by AP.

Figure 2. Integrity experiment.

The integrity property is thus as follows.

Definition 3. Integrity: An IoT system S is said to be a P-integrity system for a specific set CRI of critical
information if:

∀AP ∈ P : Pr
(

ExpIntegrity
S ,AP

(λ) succeeds
)
≤ ε(λ).

5.3. Availability

This notion is linked to Denial of Service (DoS) attacks. In the hospital example, an adversary
may want to prohibit the IoT tablets to communicate with the rest of the system, thus blocking the
doctors to do their job and jeopardizing the patients’ health. The availability experiment is described
in Figure 3.

Symmetry 2020, 12, 1305 8 of 16

Experiment ExpAvail
S ,AP

(λ)

1. C runs INITSYSTEM(1λ).
2. AP interacts with the system S , limited by her class P.
3. AP designates a specific IoT device D, and makes it interact with S .

ExpAvail
S ,AP

(λ) succeeds if D is no longer working within S .

Figure 3. Availability experiment.

The availability property is thus as follows.

Definition 4. Availability: An IoT system S is said to be P-available if:

∀AP ∈ P : Pr
(

ExpAvail
S ,AP

(λ) succeeds
)
≤ ε(λ).

5.4. Soundness

This notion is linked to impersonation attacks. In the hospital example, an adversary may want
to insert a fake wristband that would be accepted as a legitimate IoT device of the system, in order to
be treated free of charge by the hospital. The soundness experiment is described in Figure 4.

Experiment ExpSound
S ,AP

(λ)

1. C runs INITSYSTEM(1λ).
2. AP interacts with the system S , limited by her class P.

ExpSound
S ,AP

(λ) succeeds if AP is considered as a legitimate IoT device of S .

Figure 4. Soundness experiment.

The soundness property is thus as follows.

Definition 5. Soundness: An IoT system S is said to be P-sound if:

∀AP ∈ P : Pr
(

ExpSound
S ,AP

(λ) succeeds
)
≤ ε(λ).

6. Formalising Security Attacks

The model allows a precise evaluation of the security level of IoT systems. In order to highlight
this fact, we use it to analyse the four security properties of an IoT smart home system based on smart
light bulbs. This technology consists of a number of light bulbs (i.e., IoT sensors), a dedicated hub to
which the sensors connect to, a backend service that can communicate with the hub over the Internet,
and a mobile application that enables the user to control the lights both from a local network or via
the Internet.

Let us consider the case in which a user would like to control the smart home’s light bulbs using
his smartphone, while he is either outside or inside the home. To do so, he must firstly successfully
complete the PAIRING protocol (as illustrated in Figure 5) between his smartphone and the hub in
order to have remote access to the related sensors.

Symmetry 2020, 12, 1305 9 of 16

Smartphone P HubH
P−−−−−→

• Verify P unknown
NoAccess←−−−−−−

PressButton−−−−−−→
(physically)

• IDP ∈R {0, 1}λ

IDP←−−−−−−

• Register IDP

Figure 5. PAIRING protocol (smart light bulbs system).

Once his smartphone is paired, the user can launch the corresponding mobile application and
send commands to the light bulbs either from the inside through the hub (as depicted in Figure 6),
or from the outside via the cloud service that acts as a relay between the smartphone and the hub.
This scenario is exploited what follows to analyse the security level of this smart home system S .

Smartphone P HubH Light bulb L

IDP , (IDL, STATL) IDP , (IDL, STATL) IDL, STATL
IDP ,IDL−−−−→

CMD

• Verify IDP , IDL
IDL−−−→

CMD

• Execute CMD

• Modify STATL
IDL←−−−

STATL

• Modify STATL
IDP ,IDL←−−−−
STATL

• Verify IDP , IDL

• Modify STATL

Figure 6. SEND_CMD protocol from inside (smart light bulbs system).

6.1. Confidentiality

An adversary can try to retrieve some confidential information about S , e.g., the unique identifier
IDP that is attributed by the hub to the smartphone during the PAIRING protocol. To do so, she only
needs to eavesdrop the PAIRING protocol (Figure 5) to retrieve this confidential information, since this
identifier is sent in cleartext from the hub to the smartphone. To formalise this attack, let us consider the
EAVESDROPPER class. The attack performed by AEAVESDROPPER on S during ExpConfident

S ,AEAVESDROPPER
(λ)

is as follows.

1. The challenger C runs INITSYSTEM(1λ).
2. C defines the set of confidential information CI={ID of all the devices of S}.
3. AEAVESDROPPER interacts with S with the following steps.

Symmetry 2020, 12, 1305 10 of 16

• She calls:

– 2 × OCREATEDEVICE()

and obtains the labelsH (for the hub) and P (for the user’s smartphone).
• To register the two devices within S , she calls:

– OREGISTERDEVICE(H);
– OREGISTERDEVICE(P).

• To eavesdrop a PAIRING protocol execution betweenH and P , she calls:

– OEXECUTE(PAIRING,H,P).
• She thus collects the transcripts:

– π1
H,PAIRING;

– π1
P ,PAIRING.

• She retrieves the value of IDP with the call:

– π1
P ,PAIRING.msg = (P , NoAccess, IDP).

4. AEAVESDROPPER outputs the information I=(IDP).

Consequently, this ExpConfident
S ,AEAVESDROPPER

(λ) succeeds as I is part of CI. S does not provide
EAVESDROPPER-confidentiality when CI={ID of all the devices of S}.

6.2. Integrity

An adversary can try to modify the status of a light bulb without the knowledge of the
user, and thus desynchronise this information in S . To do so, she must be active and perform
a man-in-the-middle attack to prevent the command message to be received by the light bulb.
To formalise this attack, let us consider the INSIDER class. The attack performed by AINSIDER on
S during ExpIntegrity

S ,AINSIDER
(λ) is as follows.

1. The challenger C runs INITSYSTEM(1λ).
2. C defines the set of critical information CRI={status STAT of all the light bulbs of S}.
3. AINSIDER interacts with S with the following steps.

• As the previous attack, she calls:

– 2 × OCREATEDEVICE();
– OREGISTERDEVICE(H);
– OREGISTERDEVICE(P);
– OEXECUTE(PAIRING,H,P).

• To start a new SEND_CMD protocol execution with P for turning ON a light bulb L, she calls:

– OLAUNCH(SEND_CMD,P).
• She thus collects the transcript:

– π1
P ,SEND_CMD.

• She retrieves the values sent by P with the call:

– π1
P ,SEND_CMD.msg = (IDP , IDL, CMD), where CMD = {light ON}.

• She forwards this message toH with the call:

– OSEND(SEND_CMD,H, (IDP , IDL, {light ON})).
H forwards the command to the light bulb L.

• At that moment, AINSIDER “intercepts” the message: in the model, this action is represented
by the fact that AINSIDER does not send any message to the light bulb L, which thus
remains OFF.

• But, to makeH believe that L received its message and answered positively to it, she calls:

– OSEND(SEND_CMD,H, (IDL, STATL)) with STATL = {ON}.
H thus records that STATL = {ON}, even though it is not true on L’s side.

• Finally, to make also P believe that everything went well and that L is turned ON, she calls:

Symmetry 2020, 12, 1305 11 of 16

– OSEND(SEND_CMD,P , (IDP , IDL, STATL)).

P also records that STATL = {ON}.

Consequently, this ExpIntegrity
S ,AINSIDER

(λ) succeeds since the status STATL of the light bulb L, i.e., part of
the CRI={STAT of all the light bulbs of S}, has been modified by AINSIDER. S does not provide
INSIDER-integrity.

6.3. Availability

An adversary can try to perform a Denial of Service (DoS) attack in order to make the system
unavailable anymore. She can thus use different techniques that might cause a DoS on the system by
targeting any of its components (i.e., the hub, the sensors, or the cloud service). Here, we focus on the
hub’s robustness to deal with low rate DoS. To do so, the adversary simply sends numerous requests
to the hub. To formalise this attack, let us again consider the INSIDER class. The attack performed by
AINSIDER on S during ExpAvail

S ,AINSIDER
(λ) is as follows.

1. The challenger C runs INITSYSTEM(1λ).
2. AINSIDER interacts with S with the following steps.

• As the first attack, she calls:

– 2 × OCREATEDEVICE();
– OREGISTERDEVICE(H);
– OREGISTERDEVICE(P);
– OEXECUTE(PAIRING,H,P).

• To start a new SEND_CMD protocol execution with the hub H and directly send the first
message to it, she calls a certain amount X of times:

– OSEND(SEND_CMD,H, (rnd, IDL, CMD)), where rnd is a random value replacing IDP .

Of course, these messages are not accepted by the hubH.

3. AINSIDER designates the hubH and calls:

– OEXECUTE(SEND_CMD,P ,H,L).
The hubH is unable to perform correctly the protocol execution.

Consequently, this ExpAvail
S ,AINSIDER

(λ) succeeds as AINSIDER has been able to prevent the hub to
work properly again within the system. Note that the same attack could have been formalised
with an EXTERNAL adversary. Thus, S does not provide neither INSIDER-availability nor
EXTERNAL-availability.

6.4. Soundness

An adversary can try to impersonate a legitimate user in order to send illegitimate/undesired
commands to the light bulbs. To do so, she simply performs a replay attack: she reuses a previous
command eavesdropped between the legitimate user’s smartphone and the hub. To formalise this
attack, let us again consider the INSIDER class. The attack performed by AINSIDER on S during
ExpSound

S ,AINSIDER
(λ) is as follows.

1. The challenger C runs INITSYSTEM(1λ).
2. AINSIDER interacts with S with the following steps.

• As the first attack, she calls:
– 2 × OCREATEDEVICE();
– OREGISTERDEVICE(H);
– OREGISTERDEVICE(P);
– OEXECUTE(PAIRING,H,P).

Symmetry 2020, 12, 1305 12 of 16

• To eavesdrop a SEND_CMD protocol execution between P ,H and L, she calls:

– OEXECUTE(SEND_CMD,P ,H,L).
• She thus collects the transcripts:

– π1
P ,SEND_CMD;

– π1
H,SEND_CMD;

– π1
L,SEND_CMD.

• She retrieves all the values send by the legitimate smartphone P with the call:

– π1
P ,SEND_CMD.msg = (IDP , IDL, CMD, STATL).

• To start a new SEND_CMD protocol execution withH and directly send the first message to
it, she calls:

– OSEND(SEND_CMD,H, (IDP , IDL, CMD)).

H will accept this message as a legitimate one, and thus will forward to the bulb L the
command sent by AINSIDER.

Consequently, this ExpSound
S ,AINSIDER

(λ) succeeds as AINSIDER has been considered as a legitimate IoT
device (namely a smartphone) by the hubH. S does not provide INSIDER-soundness.

Though this type of attacks assumes that the adversary acts as an INSIDER of S ’s network, it might
also be performed by eavesdropping similar requests between the smartphone and the cloud service.
This might consequently introduce a vulnerability in S ’s architecture if the adversary can reach S ’s
router from the outside world.

7. Formalising Security Proof

In this section, we analyse the confidentiality level of a smart thermostat system very similar
to the one with smart light bulbs. It also has a PAIRING and a SEND_CMD protocols, as depicted in
Figures 7 and 8. The main difference is that all the devices of the system are able to compute a PRF
(Pseudo-Random Function) in order to exchange encrypted data.

Smartphone P HubH
KeyExchange←−−−−−−→

Protocol

• Register kP

• nP ∈R {0, 1}λ

• E = P ⊕ PRF(kP , nP)

• Register kP

nP ,E−−−−−−→

• P = E⊕ PRF(kP , nP)

• Verify P unknown
NoAccess←−−−−−−

PressButton−−−−−−→
(physically)

• IDP ∈R {0, 1}λ

• nH ∈R {0, 1}λ

• F = IDP ⊕ PRF(kP , nH)
nH ,F←−−−−−−

• IDP = F⊕ PRF(kP , nH)

• Register IDP

Figure 7. PAIRING protocol (smart thermostat system).

Symmetry 2020, 12, 1305 13 of 16

Smartphone P HubH Thermostat T

(IDP , kP), (IDT , STATT) (IDP , kP), (IDT , kT , STATT) IDT , kT , STATT

• nP ∈R {0, 1}λ

• E = (IDP ||IDT ||CMD)⊕ PRF(kP , nP)
nP ,E−−→

• (IDP ||IDT ||CMD) = E⊕ PRF(kP , nP)

• Verify IDP , IDT

• nH ∈R {0, 1}λ

• F = (IDT ||CMD)⊕ PRF(kT , nH)
nH ,F−−→

• (IDT ||CMD) = F⊕ PRF(kT , nH)

• Verify IDT

• Execute CMD

• Modify STATT (if needed)

• nT ∈R {0, 1}λ

• G = (IDT ||STATT)⊕ PRF(kT , nT)
nT ,G←−−−

• (IDT ||STATT) = G⊕ PRF(kT , nT)

• Verify IDT

• Modify STATT (if needed)

• n′H ∈R {0, 1}λ

• H = (IDP ||IDT ||STATT)⊕ PRF(kP , n′H)
n′H ,H
←−−−

• (IDP ||IDT ||STATT) = H ⊕ PRF(kP , n′H)

• Verify IDP , IDT

• Modify STATT (if needed)

Figure 8. SEND_CMD protocol from inside (smart thermostat system).

Theorem 1. The smart thermostat system S is INSIDER-confidential, for CI = {ID of all the devices of S}.

Proof. We use the game technique as described by Shoup in [16] (only modifications of the original
experiment are specified in the games: unspecified queries stay unchanged) to prove the confidentiality
of the smart thermostat system S against INSIDER adversaries. First, we assume that the key exchange
protocol used at the beginning of the PAIRING protocol is secure against man-in-the-middle attacks
(for instance, this is not the case for the original well-known Diffie-Hellman protocol).

Game 0: This game corresponds to the confidentiality experiment ExpConfident
S ,AINSIDER

(λ) performed
by the adversary AINSIDER on S of security parameter λ. Let CI={ID of all the devices
of S}. Let S0 denote the event “I is (part of) CI” in Game 0. Thus, we have that
Pr(S0) = Pr(ExpConfident

S ,AINSIDER
(λ) succeeds).

Let us assume that AINSIDER performs q OSEND queries to the hub during the PAIRING protocol.
These OSEND queries are called “encryption queries” in the sequel of the proof. From Game 0,
we introduce q transitions games as follows.

Game i: This is the same game as Game (i− 1) except that one additional encryption query has been
replaced as defined below:

• the ith first encryption queries are such that F = IDP ⊕ PRF(n, nH), where n ∈R {0, 1}λk

and λk is the output size of the key kP , and thus F is the result of the fixed value IDP XORed
with a pure PRF (i.e., used only with random values);

• the (q− i) next encryption queries are such that F = IDP ⊕ PRF(kP , nH), where F is the
result of the fixed value IDP XORed with a keyed PRF (i.e., used with the secret key kP).

Let Si denote the event “I is (part of) CI” in Game i, and Pr(Si) denote its success probability.

Symmetry 2020, 12, 1305 14 of 16

Game (i− 1) to Game i (for 1 ≤ i ≤ q) only differ from one encryption query. As stated by Shoup
in [16], the probability to distinguish a keyed PRF from a pure PRF is called the PRF advantage AdvPRF

S
and is negligible. This implies:

∀i s.t. 1 ≤ i ≤ q : |Pr(Si−1)− Pr(Si)| = AdvPRF
S ≤ ε(λ).

At the end of these q steps, the following game is obtained.

Game q: This is the game where all the q encryption queries during the PAIRING protocol have been
replaced by F = IDP ⊕ PRF(n, nH),. Let Sq denote the event “I is (part of) CI” in Game q,
and Pr(Sq) denote its success probability.

From Game q, the same reasoning can be applied for the SEND_CMD protocol. Let thus assume
that AINSIDER performs q′ encryption queries to the devices of S . This also implies:

∀j s.t. 1 ≤ j ≤ q′ : |Pr(Sq+j−1)− Pr(Sq+j)| = AdvPRF
S ≤ ε(λ).

Game (q + q′): This is the final game of this proof, where all the q′ encryption queries during the
SEND_CMD protocol have been replaced by a pure PRF. Let Sfinal denote the event “I is (part of)
CI” in Game (q + q′), and Pr(Sfinal) denote its success probability. Since AINSIDER is unable
to recover any ID from a pure PRF, she can only try to output a random value I: therefore
Pr(Sfinal) ≤ ε(λ).

From all the transitions, the conclusion is that:

Pr(ExpConfident
S ,AINSIDER

(λ) succeeds) = Pr(S0)− Pr(S1) + Pr(S1)− . . .− Pr(Sq)

+ Pr(Sq)− . . .− Pr(Sfinal) + Pr(Sfinal)

≤ Pr(Sfinal) +
q−1

∑
i=0

∣∣∣Pr(Si)− Pr(Si+1)
∣∣∣

+
q′−1

∑
j=0

∣∣∣Pr(Sq+j)− Pr(Sq+j+1)
∣∣∣

≤ Pr(Sfinal) + (q + q′).AdvPRF
S ≤ ε(λ).

Consequently, this ExpConfident
S ,AINSIDER

(λ) succeeds with negligible probability. This proves Theorem 1:
the smart thermostat system S described in this section provides INSIDER-confidentiality when
CI = {ID of all the devices of S}.

8. Conclusions and Future Research

In this paper, we proposed a new model able to analyse the security properties of IoT systems.
The model is composed of (1) the formalisation of IoT systems; (2) the definition of the potential
adversary classes based on oracles, selectors, and restrictions that are inspired from real-life examples of
IoT attacks; and (3) the definition of four well-established security properties (confidentiality, integrity,
availability, soundness).

The purpose of our model is twofold: it can be used either to accurately describe attacks against
IoT systems, or to formally prove the security level guaranteed by IoT systems. Formal proofs are
a tremendous support to identify the critical elements of an IoT system. In particular, they help in
highlighting the vulnerabilities and weakest links, and thus assist the IoT designers in building better
and more secure systems. They can be used during the design phase in order to set the security targets
of the implementation. Then, when the security tests are performed, the results can be verified against

Symmetry 2020, 12, 1305 15 of 16

the initial claims and, depending on the outcome, adjustments may be performed in the initial design
of the system. Since formal proofs guarantee a certain security level, they form a universal security
evaluation able to compare fairly different IoT systems. Our model could consequently also assist in
building an IoT certification framework.

Inheriting the positive specificities of the RFID privacy model [9], our model also provides
extensibility and granularity in the analyses. The extensibility is brought with the possibility to add
new features to the model (i.e., new oracles, selectors, restrictions), and the granularity is given with
the practicability to define as many potential adversaries as possible.

Nonetheless, such features of extensibility and granularity might bring some limitations and
intricacy in the security analysis. First, our model is designed to allow the definition of any adversary
class. This can add some difficulties in ordering the strength of the adversaries, thus rendering
troublesome to compare the security level of different IoT systems. Secondly, in order to entitle an
irrefutable security level to an IoT system, our model should be used to provide one formal proof for a
given adversary class P and one attack for the consecutive stronger adversary class. This should prove
that the analysed IoT system ensures the given P security level (e.g., P-confidentiality). In practice,
this can be complex to put in place since the extensibility and granularity of our model allows
the finding and introduction of new adversary classes that might be inserted between supposedly
consecutive classes.

In the near future, we are planning to extend our model to support access control mechanisms
formalisation and proofs in IoT systems, covering secure data access requirements as already identified
in other related works [14].

Author Contributions: Conceptualization, T.M., D.G., I.K., S.K.; methodology, T.M., D.G., I.K., S.K.; formal
analysis, T.M. and S.K.; writing–review and editing, T.M., D.G., I.K., S.K.; supervision, I.N.F.; project administration,
I.N.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Ronen, E.; Shamir, A.; Weingarten, A.O.; O’Flynn, C. IoT Goes Nuclear: Creating a ZigBee Chain Reaction.
In Proceedings of the IEEE Symposium on Security and Privacy—SP 2017, San José, CA, USA, 22–26 May
2017; pp. 195–212.

2. Mohsin, M.; Anwar, Z.; Husari, G.; Al-Shaer, E.; Rahman, M.A. IoTSAT: A Formal Framework for Security
Analysis of the Internet of Things (IoT). In Proceedings of the Conference on Communications and Network
Security—CNS 2016, Philadelphia, PA, USA, 17–19 October 2016; pp. 180–188.

3. Armando, A.; Basin, D.A.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.C.;
Kouchnarenko, O.; Mantovani, J.; et al. The AVISPA Tool for the Automated Validation of Internet
Security Protocols and Applications. In Proceedings of the International Conference on Computer Aided
Verification—CAV 2005, Edinburgh, Scotland, UK, 6–10 July 2005; pp. 281–285.

4. Cremers, C.J.F. The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In Proceedings
of the International Conference on Computer Aided Verification—CAV 2008, Princeton, NJ, USA, 7–14 July
2008; pp. 414–418.

5. Jha, S.; Sheyner, O.; Wing, J. Two Formal Analyses of Attack Graphs. In Proceedings of the IEEE Computer
Security Foundations Workshop—CSFW-15, Cape Breton, NS, Canada, 24–26 June 2002; pp. 49–63.

6. Mauw, S.; Oostdijk, M. Foundations of Attack Trees. In Proceedings of the 8th International Conference
on Information Security and Cryptology—ICISC 2005, Seoul, Korea, 1–2 December 2005; Volume 3935,
pp. 186–198.

Symmetry 2020, 12, 1305 16 of 16

7. Tabrizi, F.M.; Pattabiraman, K. Formal Security Analysis of Smart Embedded Systems. In Proceedings of
the 32nd Annual Conference on Computer Security Applications—ACSAC 2016, Los Angeles, CA, USA,
5–9 December 2016; pp. 1–15.

8. Coisel, I.; Martin, T. Untangling RFID Privacy Models. J. Comput. Networks Commun. 2013, 2013, 710275.
[CrossRef]

9. Avoine, G.; Coisel, I.; Martin, T. Untraceability Model for RFID. IEEE Trans. Mob. Comput. 2014, 13, 2397–2405.
[CrossRef]

10. Kayes, A.S.M.; Han, J.; Colman, A.; Islam, M.S. RelBOSS: A Relationship-Aware Access Control
Framework for Software Services. In On The Move to Meaningful Internet Systems—OTM 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 258–276.

11. Kayes, A.S.M.; Rahayu, W.; Dillon, T.S.; Chang, E. Accessing Data from Multiple Sources Through
Context-Aware Access Control. In Proceedings of the 17th IEEE International Conference On Trust, Security
And Privacy in Computing and Communications/12th IEEE International Conference On Big Data Science
And Engineering—TrustCom/BigDataSE, New York, NY, USA, 1–3 August 2018; pp. 551–559.

12. Kayes, A.S.M.; Rahayu, W.; Dillon, T.S. Critical Situation Management Utilizing IoT-Based Data Resources
through Dynamic Contextual Role Modeling and Activation. Computing 2019, 101, 743–772. [CrossRef]

13. Tu, D.Q.; Kayes, A.S.M.; Rahayu, W.; Nguyen, K. ISDI: A New Window-Based Framework for Integrating
IoT Streaming Data from Multiple Sources. In Proceedings of the Advanced Information Networking and
Applications—AINA 2019, Matsue, Japan, 27–29 March 2019; Volume 926, pp. 498–511.

14. Kayes, A.S.M.; Kalaria, R.; Sarker, I.H.; Islam, M.S.; Watters, P.A.; Ng, A.; Hammoudeh, M.; Badsha,
S.; Kumara, I. A Survey of Context-Aware Access Control Mechanisms for Cloud and Fog Networks:
Taxonomy and Open Research Issues. Sensors 2020, 20, 9. [CrossRef] [PubMed]

15. UPnP Forum. UPnPTM Device Architecture 1.1; Technical Report; UPnP: Beaverton, OR, USA, 2008.
16. Shoup, V. Sequences of Games: A Tool for Taming Complexity in Security Proofs; Cryptology ePrint Archive,

Report 2004/332; IACR: Las Vegas, NV, USA, 2004.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2013/710275
http://dx.doi.org/10.1109/TMC.2013.161
http://dx.doi.org/10.1007/s00607-018-0654-1
http://dx.doi.org/10.3390/s20092464
http://www.ncbi.nlm.nih.gov/pubmed/32349242
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of IoT Systems
	IoT Devices
	Backend System
	Users

	Formalisation of IoT Systems
	Initialization Procedures
	Protocols
	Transcripts
	Snapshots

	IoT Adversary
	Oracles
	Selectors
	Restrictions
	Adversary Classes

	Security Properties
	Confidentiality
	Integrity
	Availability
	Soundness

	Formalising Security Attacks
	Confidentiality
	Integrity
	Availability
	Soundness

	Formalising Security Proof
	Conclusions and Future Research
	References

