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Abstract: The existing learning-based unsupervised hashing method usually uses a pre-trained
network to extract features, and then uses the extracted feature vectors to construct a similarity matrix
which guides the generation of hash codes through gradient descent. Existing research shows that
the algorithm based on gradient descent will cause the hash codes of the paired images to be updated
toward each other’s position during the training process. For unsupervised training, this situation will
cause large fluctuations in the hash code during training and limit the learning efficiency of the hash
code. In this paper, we propose a method named Deep Unsupervised Hashing with Gradient Attention
(UHGA) to solve this problem. UHGA mainly includes the following contents: (1) use pre-trained
network models to extract image features; (2) calculate the cosine distance of the corresponding
features of the pair of images, and construct a similarity matrix through the cosine distance to guide
the generation of hash codes; (3) a gradient attention mechanism is added during the training of the
hash code to pay attention to the gradient. Experiments on two existing public datasets show that
our proposed method can obtain more discriminating hash codes.

Keywords: deep learning; deep hash; image retrieval; pairwise label; unsupervised hashing

1. Introduction

Image retrieval is a hotspot in multimedia data retrieval, and there are many different methods
today. The content-based image retrieval method [1] cannot meet the requirements of timeliness
and retrieval precision due to its own limitations. In order to obtain higher retrieval accuracy,
early researchers preferred the nearest neighbor search (NN). NN tends to retrieve the closest
object from the dataset, and the complexity increases linearly with the amount of data, so its time
performance cannot be guaranteed. Nowadays, there are a lot of high-dimensional multimedia data
on social networks, the existing NN-based retrieval methods cannot obtain ideal retrieval results and
an acceptable retrieval time. Therefore, researchers begin to pay attention to approximate nearest
neighbor (ANN) [2–9]. Compared with the traditional retrieval method [1], another effective solution
is the hashing method [2], through which high-dimensional media data can be converted into hash
codes in the binary space.

In recent years, hashing has become a popular sub-region in ANN search [6,10,11]. With low
storage cost and high query speed, the hash method has become the preferred method for effective ANN
search. Hashing methods include two subcategories: (1) data-dependent hashing; (2) data-independent
hashing. The process for data-independent hashing to obtain the hash code depends on the random
mapping, and a reliable hash function cannot be obtained. Liu et al. [3] uses a set of hash functions to
create multiple hash tables. After hash mapping, similar data points are more likely to collide in these
hash tables, but the probability of collision of different points is very small. Therefore, similar images
and non-similar images can be well distinguished. On this basis, Bai et al. [12] proposed to transfer the
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distance constraint of the hash code from the Hamming space to the Euclidean space. Data-dependent
hashing methods use image colors, textures, shapes, or other features to directly generate hash codes
and construct hash functions. Current researchers are committed to using deep learning methods
to map features extracted from Convolutional Neural Network (CNN) to Hamming space through
a hash function.

The data-dependent hashing method includes two subclasses: supervised hashing and
unsupervised hashing. The difference between the two subclasses is whether the label information is
used to construct the hash function. Gong et al. [13] was a representative algorithm in unsupervised
hashing. The application of the Principal Components Analysis (PCA) algorithm could effectively
reduce the dimensions of the original dataset, and at the same time constructed a binary hypercube.
Each vertex of the hypercube represented the data point in the dataset, the quantization error was
minimized by the rotation matrix. In supervised hashing methods [14–19], the construction process of
the hash function in these methods used similar information of the paired images. In binary space,
the Hamming distance of the image pair was determined by the image pair similarity.

The further development of CNN shows an excellent performance in feature extraction [20].
Existing supervised deep hashing methods have achieved a good performance [21–26]. However, for the
massive image data existing in the network, it is not realistic to manually label them, and the hash
method that relies on annotated data may not be suitable for practical applications.

In order to use these massive amounts of unlabeled data, the researchers proposed deep
unsupervised hashing method. The learning process of the hash code in the early deep unsupervised
hashing method was completed by the deep autoencoder [27,28]. However, the variability of natural
images in terms of position, color, posture, etc., affected the representativeness of the learned hash code.
Erin Liong et al. [29] maximized the representation of hash codes. Lin et al. [30] kept the hash code of
the rotating image unchanged to learn hash codes. Jin et al. [31] further studied the rotation invariance
between different images in the same category label. Yang et al. [32] used two half-Gaussian distributions
to estimate the cosine distance distribution of different data points. Based on this hypothetical estimate,
a pair-wise loss function was designed to retain semantic information. Generative adversarial networks
(GAN) were widely used in various fields [33], Ghasedi Dizaji et al. [34] used a shared parameter
generator and discriminator to optimize the hash function in the adversarial. On the basis of GAN,
Deng et al. [35] constructed a semantic similarity matrix by using feature similarity and nearest
neighbor similarity to guide the construction of hash codes.

The optimization algorithm commonly used in current deep learning models is gradient descent.
Huang et al. [36] proposed that the hash model based on gradient descent optimization may fall
into a dilemma during the optimization process, the hash codes of the paired images will always be
updated in the direction of the other side, and the worst case is that the paired hash codes will exchange
directions after being updated. This phenomenon is the “dilemma” of gradient descent. After falling
into this dilemma, the Hamming distance corresponding to hash code will not be reduced, affecting the
learning process, since this problem is caused by gradient changes in the process of updating hash
codes in backpropagation. Selectively ignoring or reducing the gradient of one of the hash codes
during backpropagation is an effective way to solve this problem. The gradient attention mechanism is
designed to focus on the gradient of the paired image hash codes in supervised hashing.

Existing unsupervised deep hashing methods usually use a pre-trained network model to construct
a similarity matrix to guide the generation of hash codes. Therefore, the above problems still exist in
unsupervised learning, through the experimental results show that after adding gradient attention
mechanism, unsupervised hash method achieved better performance.

2. UHGA Mmethod

2.1. Deep Hash Model

For unsupervised hashing, X = {xi}
N
i=1 represents a dataset containing N images, where xi is the

i-th image. Unsupervised hashing aims to obtain the binary code for each data point in the dataset
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and construct a hash function M(θ; x) to generate this binary code, where θ represents the parameters
of the deep model. Finally, after each image xi passes through the deep model M, it will be mapped
into a k-dimensional vector Z = {zi}

n
i=1, where zi the i-th k-dimensional vector. After performing

a bi = sign(zi) binarization operation on this k-dimensional vector, we obtain its corresponding hash
code

{
bi ∈ {±1}k

}n

i=1
, where bi the i-th hash code. The sign function is expressed as:

sign(x) =
{

1 i f x ≥ 0,
−1 i f x < 0

(1)

Unsupervised hashing usually guides the learning of hashing codes by constructing the semantic
similarity matrix between image pairs. In this paper, we extract the features of FC-7 layer from n
randomly selected data points in the dataset through the pre-trained Alexnet network to construct the
similarity matrix. Most of the current deep hash algorithms use VGG-F network in MATLAB as the
benchmark. In this paper, our experiment is implemented on the deep learning framework Pytorch.
To ensure the fairness of the experiment, Alexnet, which has the same structure as VGG-F network,
is selected as the benchmark network. For the input N data points, the corresponding feature matrix is
obtained after the pre-trained Alexnet. According to the feature matrix, calculating the cosine distance
of the corresponding feature of any two data points, and the cosine distance matrix D is constructed.

D =
FT

i F j

‖Fi‖ × ‖F j‖
(2)

where Fi represents the feature of FC-7 layer.
Then, the similarity matrix S is constructed as follows through the cosine distance matrix:

Si j =


1, i f d(i, j) < D.mean− α,
0, others,
−1, i f d(i, j) > D.mean + β

(3)

where D.mean represents the average value of cosine distance matrix D, α and β are threshold
parameters,Si j = 1 means that xi is semantically similar to x j, Si j = −1 means the opposite, and Si j = 0
means that the semantic relationship between xi and x j is uncertain.

In the training process, the sign function cannot perform gradient training, tanh is generally used
instead to relax each binary code into a continuous hash code h ∈ [−1,+1]k, where hk and bk denote the
k-th bit of h and b.

To preserve the similarity of the paired image in the hash code, we use the inner product of the
hash code to construct prediction similarity matrix =:

=i j = hT
i h j (4)

where hi and h j are relaxed hash codes.

To maintain the semantic information between image pairs, we minimize the L2 distance
(
=i j − Si j

)2

between the similarity matrix constructed by the feature matrix and the predicted similarity matrix.
The resulting objective function is:

min
θ

l(θ) =
1
n2

n∑
i=1

n∑
j=1

∣∣∣Si j
∣∣∣(=i j − Si j

)2
(5)

where =i j =
1
k hT

i h j, hi = tanh(M(θ; x)) and θ is the parameter of the network model.
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The commonly used method is to update the parameter θ by calculating the gradient of the loss
function. First we define νi = M(θ; x), the derivative of νi to θ can be directly calculated, and then
calculate the derivative of l(θ) to νi by Equation(6).

∂l(θ)
∂νi

=
2

kn2

n∑
i=1

(
1− h2

i

)
�

 n∑
j=1

∣∣∣Si j
∣∣∣ (1

k
hT

i h j − Si j

)
h j +

(1
k

hT
i h j − 1

)
hi

 (6)

Gradient descent is usually used to optimize parameters θ← θ− µ ∂l
∂θ . In the optimization

process, the backpropagation method is used to calculate the gradient of the model parameter θ,
the partial derivative ∂l/∂= is first calculated, and then the partial derivative hk

i can be calculated by
Equation (7).

∂l
∂hk

i

=
∑

j

∂l
∂=i j

∂=i j

∂hk
i

(7)

where hk
i denote the k-th bit of hi.

Finally, the gradient ∂l/∂θ can be calculated by (8):

∂l
∂θ

=
∑

i

∂l
∂hi

∂hi
∂θ

(8)

where ∂l
∂hi

=

[
∂l
∂h1

i
, ∂l
∂h2

i
, . . . , ∂l

∂hk
i

]T

.

2.2. The Dilemma of Gradient Decline

The purpose of network model optimization is to update the parameter θ of the model in the
training process, but after updating θ, the detailed changes in h cannot be displayed directly, in order
to analyze the change process of h, [36] proposes a lemma to analyze the update behavior of h.

Lemma 1: for a given composite function g(y), where x is a vector and y = f (x) is a scaling function.

Suppose x is updated by gradient descent, that is x+ = x− α∂g
∂x , where α is the step size.

Conclusion: y+ = f (x+) ≈ y− â∂g
∂y , where â is some positive scaler. i.e., y update along negative gradient.

Proof: Calculate the first-order Taylor expansion of f (x+) on x:

y+ − y = f (x+) − f (x) ≈
〈
∂y
∂x , x+ − x

〉
= −α

〈
∂y
∂x , ∂g

∂x

〉
= −α

〈
∂y
∂x , ∂g

∂y , ∂y
∂x

〉
= −α‖

∂y
∂x ‖

2 ∂g
∂y = −â∂g

∂y

(9)

where â = α‖
∂y
∂x ‖

2
. This proof is completed. �

By substituting x = θ, y = h and f (x) = tanh(M(θ)) into Equation (9), it can be seen that when θ
is updated by gradient descent, h changes along its negative gradient direction, and then the change in
h can be observed by gradient.

For a pair of input images
(
xi, x j

)
, assume xi is similar to x j, i.e., si j = 1. If one of the bits in the

current corresponding continuous hash code are hi = 1 and h j = −1 respectively, then the loss can
be defined as ` = 1−=i j = 1− hT

i h j. At this time, ` > 0, the current hash code needs to be updated.
The gradients of hi and h j are:

∂l
∂hi

=
∂l
∂=i j

∂=i j

∂hi
= −h j (10)
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∂l
∂h j

=
∂l
∂=i j

∂=i j

∂h j
= −hi (11)

Based on the lemma above, the updated values of hi and h j are expressed as h+i and h+j respectively,
which can be expressed as:

h+i = hi − αi j
∂l
∂hi

= hi + αi jh j (12)

h+j = h j − α ji
∂l
∂h j

= h j + α jihi (13)

where αi j and α ji are some positive scalers.
It can be seen from Equation (12) and (13) that, in the process of optimization, hi moves to h j

direction and tends to have the same value as h j. The update of h j is the same as hi. Note that when
hi = h j, =i j = Si j, the hash codes are optimal. However, in some cases i.e., hi = −h j = 1, =i j = Si j,
and hT

i h j = −1 when αi j = α ji = 2, h+i = h j = 1 and h+j = hi = −1, their inner product is still

h+T
i h+j = −1 after updating, therefore, the updated loss remains unchanged. In the next round of

update, hi and h j will switch their symbols, and their corresponding losses will not be reduced,
which will happen repeatedly. This dilemma also occurs when two different pairs of code are updated
to stay away from each other.

Updating one of the paired hash codes during backpropagation is an effective solution, when their
similarity prediction is not correct. When the prediction is correct, hi and h j are updated towards their
sign value, which can effectively avoid the problem of symbol switching. When updating hi and h j the
weight of the gradient should be carefully selected so as to update only one code when the similarity
of prediction image is not correct, and two codes when the similarity of prediction is correct.

2.3. Gradient Attention Network

In this paper, we use gradient attention network to focus on the gradients of hk
i and hk

j , and generate

weights for the derivatives of hk
i and hk

j before backpropagation to θ. We use the weighted derivatives

of hk
i and hk

j instead of the original derivatives to calculate the gradients of θ. For all training pairs,

the weighted derivatives of hk
i and hk

j are calculated as follows:

∂l
∂hk

i

=
∑

j

ξk
i j,i

∂l
∂=i j

∂=i j

∂hk
i

(14)

∂l
∂hk

j

=
∑

i

ξk
i j, j

∂l
∂=i j

∂=i j

∂hk
j

(15)

where ξk
i j,i and ξk

i j, j are the weights generated by the derivative of a pair of binary bits hk
i and hk

j
respectively. A new gradient g(ϕ) can be obtained by substituting (14), (15) into (8). The parameters of
the gradient attention network are expressed by ϕ.

For the hash model optimized by gradient descent, the change in the value of the corresponding
hash code hk

i of the paired image
(
xi, x j

)
is updated by the derivative related to the loss based on the

original value during the optimization process. For the gradient attention network, all the inputs are

hk
i , ∂l
∂=i j

∂=i j

∂hk
i

and ∂l
∂hk

i
.
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The gradient attention network first generates the feature value yk
i j,i for the k-th bit of the hash

code corresponding to the paired image, then calculates the weight of the k-th bit and normalizes it by
the softmax function. The calculation process is as follows:

ξk
i j,i =

exp
(
yk

i j,i

)
exp

(
yk

i j,i

)
+ exp

(
yk

i j, j

) (16)

ξk
i j, j =

exp
(
yk

i j, j

)
exp

(
yk

i j,i

)
+ exp

(
yk

i j, j

) (17)

Figure 1 shows the deep unsupervised hash network model. The gradient attention network
consists of two fully connection layers, each of which contains 100 hidden units.

The detailed learning process of the UHGA model is shown in Algorithm 1.

Algorithm 1. UHGA

Input:

Training set X = {xi}
n
i=1;

Code length k;
Output:

Updated network parameters θ and hash codes B.
Initialization:

Initialize the Alexnet;
Initialize parameters θ from the pre-trained Alexnet.
Extracting features of Alexnet FC-7 layer.
Using (2) to calculate cosine distance of paired image features.
Using (3) to construct similarity matrix S.

Repeat
a mini batch of images from X = {xi}

n
i=1, and for each image xi, follow each step below:

•Calculate l(θ) and obtain the derivative ∂l/∂= in the process of backpropagation;

•Using hk
i , ∂l
∂=i j

∂=i j

∂hk
i

and ∂l
∂hk

i
as input of gradient attention network to calculate attention weights yk

i j,i;

•Calculate ξk
i j,i and ξk

i j, j by (16) and (17);

•Calculate the new derivatives ∂l
∂hk

i
=

∑
j ξ

k
i j,i

∂l
∂=i j

∂=i j

∂hk
i

and obtain gradient of θ as g(ϕ) in the process of

backpropagation;
•Update θ by (18);
•Calculate the loss l(θ− αg(ϕ)) after update;
•Update ϕ;
•θ← θ+ ;

Until number of iterations reached

2.4. Optimization

The gradient attention network can solve the problem of the exchanging positions of consecutive
hash codes corresponding to pairs of images after updating. Due to this problem, the loss after updating
remains unchanged, as the performance of attention weight can be evaluated by the loss reduced
during the updating process. In gradient attention networks, the new gradient is first generated and
then the parameter θ of the hash model is updated by Equation (18).

θ+ = θ− αg(ϕ) (18)
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The updated loss is l(θ+) = l(θ− αg(ϕ)), and the reduced loss is l(θ)− l(θ+). After parameter θ
is updated, the goal is still to minimize the loss; the goal for optimizing gradient attention is:

min
ϕ

l(θ− αg(ϕ)) (19)

For Equation (19), θ can be optimized using Stochastic Gradient Descent (SGD) from Equation (6)
and, as long as θ+ is a function of g(ϕ), ϕ can be optimized by any optimizer.
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Figure 1. Deep Unsupervised Hashing with Gradient Attention (UHGA) network structure.

3. Experimental Results and Analysis

The UHGA model is based on the Alexnet implementation in Pytorch. Detailed configuration
information for the experimental machine is shown in Table 1.

Table 1. Configuration information.

Item Configuration

OS
GPU

Ubuntu 16.04 (X64)
4*GTX 1080ti

3.1. Datasets, Evaluation Metrics and Benchmarks

There are two authoritative image datasets: CIFAR-10 and NUS-WIDE datasets. The experiments
have used these two datasets as benchmark datasets to compare with other methods in order to verify
the feasibility of the UHGA model.

(1) CIFAR-10. A total of 60,000 images, including 10 categories, and each category contains 6000 images,
which is a single-label dataset.

(1) NUS-WIDE. A total of 269,648 images, including 21 categories, each category is associated with at
least 5000 images and each image belongs to one or more categories, which is a multi-label dataset.

In this article, the methods of SH (Spectral hashing) [37], SPH (Spherical hashing) [38], ITQ (Iterative
quantization) [13], DSH (Density Sensitive Hashing) [39], SSDH (Semantic structure-based unsupervised
deep hashing) [32], HashGAN (Unsupervised Deep Generative Adversarial Hashing Network) [34],
and USDH (Unsupervised Semantic Deep Hashing) [31] are selected for comparison. We use Mean
Average Precision (MAP), Precision–Recall curves (PR) and the precision curves of the first 1000 retrieval
results (P@N) as evaluation metrics.
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3.2. Hyperparameter Analysis

We use Equation (3) to construct a similarity matrix between images. There are two
hyperparameters α and β in Equation (3). In order to analyze the influence of hyperparameters,
we simply set the two hyperparameters to α = η(D.mean−D.min) and β = η(D.max−D.mean).
Then, we only need to adjust the hyperparameter η to observe the influence of the constructed
similarity matrix on the retrieval accuracy. Table 2 shows the effect of different η on two datasets under
different bits. In order to observe the change in MAP, we visualize it in Figure 2. Figure 2 shows that
the value of MAP is relatively smooth when η is between 0.2-0.4, and when η continues to increase,
MAP shows the opposite trend. Therefore, in subsequent experiments, the hyperparameter η is set
to 0.3.

Table 2. Mean Average Precision (MAP) of different η.

η
CIFAR-10 (MAP@ALL) (bits) NUS-WIDE (MAP@5000) (bits)

16 32 64 128 16 32 64 128

0 0.1015 0.3091 0.3744 0.3739 0.6571 0.6976 0.7230 0.7409
0.1 0.1015 0.3080 0.3413 0.3668 0.6546 0.6985 0.7198 0.7356
0.2 0.2940 0.3204 0.3464 0.3704 0.6480 0.7007 0.7183 0.7340
0.3 0.2841 0.3283 0.3508 0.3688 0.6444 0.6943 0.7213 0.7343
0.4 0.2854 0.3309 0.3470 0.3653 0.6434 0.6892 0.7179 0.7318
0.5 0.2837 0.3195 0.3404 0.3629 0.6235 0.6768 0.7131 0.6979
0.6 0.2822 0.3096 0.3276 0.3347 0.6199 0.6705 0.6940 0.6892
0.7 0.2199 0.2428 0.2650 0.2993 0.5761 0.6294 0.6661 0.7120
0.8 0.1677 0.2008 0.2380 0.2900 0.5239 0.5795 0.6282 0.6979
0.9 0.1576 0.1932 0.2334 0.2888 0.4920 0.5522 0.6168 0.6926
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3.3. The effect of Gradient Attention

In order to study the effect of gradient attention, we added the gradient attention mechanism to
the method based on pairwise loss. We used four methods in Table 3 as comparative experiments:
SSDH, SSDH+GA, Ours, Ours+GA, where SSDH is its original method, SSDH+GA means adding
gradient attention mechanism in SSDH, Ours means only using our own designed loss function to
train the unsupervised hash model, and Ours+GA means adding a gradient attention mechanism to
our own loss function.



Symmetry 2020, 12, 1193 9 of 15

Table 3. MAP for Different Number of Bits.

Method
CIFAR-10 (MAP @ALL) (bits) NUS-WIDE (MAP @5000) (bits)

16 32 64 128 16 32 64 128

SSDH [32] 0.2172 0.2313 0.2405 0.2351 0.5860 0.5788 0.6079 0.6127
SSDH+GA 0.2827 0.3018 0.3219 0.3462 0.6528 0.6637 0.6787 0.7032

Ours 0.2704 0.3133 0.3240 0.3452 0.6512 0.6846 0.7039 0.7125
Ours+GA 0.2936 0.3233 0.3499 0.3661 0.6601 0.6981 0.7224 0.7359

It can be seen from Table (3) that, after adding the attention mechanism, the MAP of SSDH [32]
is significantly improved. We obtained good results using our own designed loss function, and the
map value continued to increase after using the attention mechanism. Figure 3 shows the decreasing
trend of training loss before and after adding the gradient attention (GA) mechanism in SSDH [32] and
our method. It can be clearly seen that the loss decreases faster after adding the gradient attention
mechanism, which helps to obtain a better hash code.
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The loss function we proposed in Table 3 has been greatly improved in MAP. This is also shown in
the decreasing trend of training loss in Figure 3. The loss function we designed has more advantages
in the generation of constrained hash codes. After adding the attention mechanism, our method and
SSDH [31] are significantly improved on MAP. In Figure 3, the improvement in hash performance is
reflected in the faster decline in training loss.

Figure 4 shows the effect of different learning rates on retrieval results. It can be seen from (a) and
(b) in Figure 4 that, without the gradient attention mechanism, the retrieval quality will decline with
the increase in the learning rate because, in the process of reverse propagation, when the learning rate
is high, the network cannot converge. After using the gradient attention mechanism, the magnitude of
the gradient descent is not only controlled by the learning rate, but also by the gradient attention. In the
process of backpropagation, the gradient attention mechanism can select the appropriate gradient
modification parameters for the network to obtain a better deep hash model.

The above situations indicate that the unsupervised method based on pairwise loss have a dilemma
in gradient descent, and the design of the loss function also affects the probability of this dilemma.
Obviously, the loss function we designed has a lower probability of dilemma. The addition of the
gradient attention mechanism can effectively reduce the occurrence of this dilemma, thereby improving
the performance of the hash method.
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3.4. Comparison of Experimental Results

In the training of the hash function, we select 500 images from each image category to form
a training dataset, and select 100 images for each category to serve as the test dataset on CIFAR-10.
All remaining image samples are used as retrieved data. We select 21 kinds of common images from the
NUS-WIDE dataset. Each class is associated with at least 5000 images, with a total of 190,000 images.
The NUS-WIDE test dataset consists of 100 images of each class and 2100 images in total. The training
dataset contains 5000 randomly selected images, and the rest of the images are retrieved as the
sample dataset.

Table 4 shows the comparison results of all comparative experiments on the evaluation metric
MAP. We calculated the MAP value of the hash code length of all the comparison methods from 16 bits
to 128 bits on the two datasets. In the measurement results of different hash code length, our method is
8.73%, 8.67%, 12.36%, 13.79% higher than USDH in the CIFAR-10 dataset, and 5.77%, 5.71%, 9.51%,
9.21% higher than USDH in the NUS-WIDE dataset.

Table 4. MAP for different numbers of bits.

Method
CIFAR-10 (MAP @ALL) (bits) NUS-WIDE (MAP @5000) (bits)

16 32 64 128 16 32 64 128

SH [37] 0.1621 0.1575 0.1549 0.1548 0.4350 0.4129 0.4042 0.4100
SPH [38] 0.1664 0.1745 0.1931 0.1992 0.4458 0.4537 0.4926 0.5.00
ITQ [13] 0.1999 0.2098 0.2229 0.2312 0.5082 0.5139 0.5252 0.5311
DSH [39] 0.1686 0.1846 0.1955 0.2071 0.5123 0.5118 0.5110 0.5267

SSDH [32] 0.2172 0.2313 0.2405 0.2351 0.5860 0.5788 0.6079 0.6127
HashGAN [34] 0.2457 0.2678 0.3077 0.3422 0.4020 0.4207 0.4460 0.4883

USDH [31] 0.2613 0.3021 0.3122 0.3241 0.6407 0.6568 0.6587 0.6724
Ours+GA 0.2936 0.3233 0.3499 0.3661 0.6601 0.6981 0.7224 0.7359

Figure 5and Figure 6 show the PR and P@N curves on CIFAR-10, respectively. From Figure 5,
the area under the PR curve corresponding to our method is the largest, and our method shows better
results as the length of the hash code increases. As can be seen in Figure 6, as the number of retrieval
results continues to increase, the retrieval precision of all methods shows a downward trend, but our
method always shows the best results.

Figures 7 and 8 show the PR and P@N curve on NUS-WIDE respectively. Figure 7 shows that our
method still has higher performance on multi-label datasets. Although the precision of our method is
lower than USDH when the recall is between 0-0.1, the area under the PR curve corresponding to our
method is still the largest overall; this also shows that our method is more stable. Figure 8 shows that
the n curve is not as obvious as the downward trend in Figure 6, and our method still consistently
shows the best performance in retrieval accuracy.
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The above experimental results show that our unsupervised hash method achieves the best
performance. Compared with other methods, the advantages of our proposed method are as follows:
(1) the designed loss function can generate a hash code with a greater performance (2) by adding
a gradient attention mechanism to reduce the impact of the dilemma in gradient descent during training.

4. Conclusions

In unsupervised deep hashing, a similarity matrix is usually constructed by extracting image
features and used in the training of neural networks. Gradient descent is used to update parameters
during training. However, for unsupervised hashing methods based on paired image training, there may
be a problem in the hash code update process, as the hash codes corresponding to paired images are
updated toward each other. After the network parameters are updated, the corresponding hash code
changes its location, but the overall loss remains unchanged. This paper presents a Deep Unsupervised
Hashing with Gradient Attention (UHGA) algorithm based on the deep learning end-to-end model.
UHGA uses the cosine distance of features to construct similarity information between images, and the
gradient attention mechanism in the process of gradient descent, which successfully obtains a better
deep hash model and significantly optimizes the retrieval quality. Experiments on two datasets show
that UHGA significantly improves the latest hash methods.
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