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Abstract: The first author has recently investigated a type of Hyers-Ulam stability of the
one-dimensional time independent Schrödinger equation when the relevant system has a rectangular
potential barrier of finite height. In the present paper, we will investigate a type of Hyers-Ulam
stability of the Schrödinger equation with the symmetric parabolic wall potential.
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1. Introduction

In 1940, S. M. Ulam [1] discussed a number of important unsolved problems in a mathematics
club at the University of Wisconsin. Among them was the following question about the stability of
group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist a
δ > 0 such that if a function h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all
x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?

In 1941, D. H. Hyers [2] solved Ulam’s question for approximately additive functions, where G1

and G2 are Banach spaces. In fact, he demonstrated that we can approximate every solution to
‖ f (x + y)− f (x)− f (y)‖ ≤ ε (for x, y ∈ G1) by an additive function. In that case, we say that the
Cauchy additive functional equation f (x + y) = f (x) + f (y) has the Hyers-Ulam stability.

Meanwhile, Th. M. Rassias [3] tried to weaken the conditions for the Cauchy differences by
attempting not to restrict them strongly:

‖ f (x + y)− f (x)− f (y)‖ ≤ ε
(
‖x‖p + ‖y‖p),

where p < 1 is a fixed real number, and he demonstrated the theorem of Hyers. That is, he proved
the Hyers-Ulam–Rassias stability (or the generalized Hyers-Ulam stability) of the Cauchy additive
equation. Since then, P. Găvruţa [4] has published a paper that further expanded the theorem of
Rassias, both of which have been interesting enough to attract the attention of many mathematicians
(see [5–7]).
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Now we assume that I = (a, b) is an open interval (−∞ ≤ a < b ≤ +∞) and n > 0 is a fixed
integer. Let us consider the following nth-order linear differential equation

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = g(x), (1)

where the function y : I → C is n times continuously differentiable, the coefficient functions a0, . . . , an :
I → C are continuous, and the function g : I → C is continuous.

We say that if the following statement is true for all ε > 0, the differential Equation (1) has
Hyers-Ulam stability: If an n times continuously differentiable function y : I → C satisfies∣∣∣an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x)− g(x)

∣∣∣ ≤ ε

for any x ∈ I, then there is a solution y0 : I → C to (1) such that

|y(x)− y0(x)| ≤ K(x, ε)

for each x ∈ I, where K(x, ε) depends on x and ε and where lim
ε→0

K(x, ε) = 0 for any value of x.

If the limit lim
ε→0

K(x, ε) indeed depends on the value of x, it appears to be somewhat suitable for

Hyers-Ulam–Rassias stability in a broad sense, but not in its strict sense. Therefore, the differential
Equation (1) may be said to have a type of Hyers-Ulam stability because there is no appropriate official
terminology yet. For a more detailed and accurate definition of Hyers-Ulam stability, see [5–7].

As far as we know, M. Obłoza [8,9] is the first mathematician to demonstrate Hyers-Ulam stability
of differential equations. Indeed, Obłoza has fully demonstrated the Hyers-Ulam stability of the linear
differential equation:

y′(x) + f (x)y(x) = g(x). (2)

Since then, many mathematicians have dealt with this topic more broadly and in depth (see [3,10–20]).
In a recent paper [21], the first author, together with Choi, explored a type of Hyers-Ulam stability

for the one-dimensional time independent Schrödinger equation

− h̄2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = Eψ(x) (3)

when the system under observation has a rectangular potential barrier of finite height.
In the present paper, we will prove a type of Hyers-Ulam stability of the one-dimensional

time-independent Schrödinger Equation (3) with the symmetric parabolic wall potential,
where ψ : R→ C is the wave function, V is a symmetric parabolic potential function, h̄ is the reduced
Planck constant, m is the mass of the particle, and E is the energy of the particle with E > 0.

Finally, we need to mention that we are writing this paper using the ideas and experience of the
papers [16,18,21,22].

2. Preliminaries

The formula expressing the solution to the first-order linear inhomogeneous differential
Equation (2) is widely known. In the next lemma, we want to recall this theorem once again.

Lemma 1. Suppose that the functions f , g : R → C are continuous and each of the integrals below exists.
Every continuously differentiable function y : R → C is a solution of the first-order linear inhomogeneous
differential Equation (2) if and only if y can be expressed as

y(x) = exp
(
−
∫ x

0
f (w)dw

)(
y(c) +

∫ x

0
g(s) exp

(∫ s

0
f (w)dw

)
ds
)

,
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where y(c) is an arbitrary complex number.

By using Lemma 1, we can easily prove the generalized Hyers-Ulam stability (or the
Hyers-Ulam-Rassias stability) of the first-order linear inhomogeneous differential Equation (2). Obłoza
proved the Hyers-Ulam stability version of the following theorem long ago, but for the convenience of
our readers, we want to prove it again here in a way that is a little different from the Obłoza’s way.
As usual, we denote by <(z) the real part of any complex number z.

Lemma 2. Suppose that the functions f , g : R → C and ϕ : R → [0, ∞) are continuous and each of the
integrals below exists. If a continuously differentiable function y : R→ C satisfies∣∣y′(x) + f (x)y(x)− g(x)

∣∣ ≤ ϕ(x)

for any x ∈ R, then there is a continuously differentiable solution y0 : R → C to the first-order linear
inhomogeneous differential Equation (2) such that

|y(x)− y0(x)| ≤ exp
(
−<

(∫ x

0
f (w)dw

)) ∣∣∣∣∫ x

0
ϕ(s) exp

(
<
(∫ s

0
f (w)dw

))
ds
∣∣∣∣

for all x ∈ R.

Proof. First, we define h(x) = y′(x) + f (x)y(x) − g(x) for each x ∈ R. Obviously, the function
h : R→ C is continuous and |h(x)| ≤ ϕ(x) for any x ∈ R. On account of Lemma 1, we get

y(x) = exp
(
−
∫ x

0
f (w)dw

)(
y(c) +

∫ x

0

(
g(s) + h(s)

)
exp

(∫ s

0
f (w)dw

)
ds
)

,

where y(c) is an arbitrary complex number.
Now we set

y0(x) = exp
(
−
∫ x

0
f (w)dw

)(
y(c) +

∫ x

0
g(s) exp

(∫ s

0
f (w)dw

)
ds
)

for any x ∈ R. Then, the function y0 : R→ C is continuously differentiable and it is a solution to the
first-order linear differential Equation (2) by Lemma 1. Furthermore, we have

|y(x)− y0(x)| =
∣∣∣∣exp

(
−
∫ x

0
f (w)dw

) ∫ x

0
h(s) exp

(∫ s

0
f (w)dw

)
ds
∣∣∣∣

≤
∣∣∣∣exp

(
−
∫ x

0
f (w)dw

)∣∣∣∣ · ∣∣∣∣∫ x

0
|h(s)|

∣∣∣∣exp
(∫ s

0
f (w)dw

)∣∣∣∣ ds
∣∣∣∣

≤ exp
(
−<

(∫ x

0
f (w)dw

)) ∣∣∣∣∫ x

0
ϕ(s) exp

(
<
(∫ s

0
f (w)dw

))
ds
∣∣∣∣

for each x ∈ R.

3. A Type of Hyers-Ulam Stability

In this section, suppose that the potential function V : R→ R is a parabolic function defined by

V(x) =
h̄2α2

2m
x2 − h̄2αβ

m
x +

h̄2

2m
(
α + β2)+ E

=
h̄2

2m
(αx− β)2 +

h̄2

2m
α + E,

(4)
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where α, β are real constants and E > 0. We will focus on the symmetric parabolic potential function
with α < 0 in the last part of this section.

Considering the form of the potential function V given in (4), we define the differential operators
L1 and L2 as follows:

(L1ψ)(x) = ψ′(x) + (β− αx)ψ(x),

(L2ψ)(x) = ψ′(x) + (αx− β)ψ(x)
(5)

for all continuously differentiable functions ψ : R→ C.
For all twice continuously differentiable functions ψ : R→ C, it follows from (4) and (5) that

− h̄2

2m
((L2 ◦ L1)ψ)(x) = − h̄2

2m

(
ψ′′(x) +

(
− α2x2 + 2αβx− β2 − α

)
ψ(x)

)
= − h̄2

2m
ψ′′(x) + V(x)ψ(x)− Eψ(x)

for each x ∈ R, which means that∣∣∣∣∣− h̄2

2m
ψ′′(x) + V(x)ψ(x)− Eψ(x)

∣∣∣∣∣ ≤ ε (x ∈ R)

if and only if

|((L2 ◦ L1)ψ)(x)| ≤ 2m
h̄2 ε (x ∈ R)

which is again equivalent to

∣∣φ′(x) + (αx− β)φ(x)
∣∣ ≤ 2m

h̄2 ε (x ∈ R), (6)

where we set φ(x) = (L1ψ)(x).
Since the inequality (8) below is strongly affected by the value of x, the phenomenon observed in

the following theorem is called a type of Hyers-Ulam stability.

Theorem 1. Assume that V : R → R is the parabolic potential function defined by (4), where α, β are real
constants and E > 0 is a real number as the energy of the particle under observation. Given any ε > 0, if a twice
continuously differentiable function ψ : R→ C satisfies∣∣∣∣∣− h̄2

2m
d2ψ(x)

dx2 + V(x)ψ(x)− Eψ(x)

∣∣∣∣∣ ≤ ε (7)

for any x ∈ R, then there is a twice continuously differentiable solution ψ0 : R → C of the one-dimensional
time independent Schrödinger Equation (3) such that

|ψ(x)− ψ0(x)|

≤ 2m
h̄2 ε exp

(α

2
x2 − βx

) ∣∣∣∣∫ x

0
exp

(
−αs2 + 2βs

) ∣∣∣∣∫ s

0
exp

(α

2
w2 − βw

)
dw
∣∣∣∣ ds
∣∣∣∣ (8)

for every x ∈ R.

Proof. We set φ(x) = (L1ψ)(x) = ψ′(x) + (β− αx)ψ(x). On account of (6) and (7), we may apply
Lemma 2 to inequality (6), referring to the substitutions shown in the following Table 1:
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Table 1. Substitutions.

Lemma 2 in (6)

y(x) φ(x)
f (x) αx− β
g(x) 0
ϕ(x) 2m

h̄2 ε

We conclude that there is a continuously differentiable function φ0 : R→ C such that

φ′0(x) + (αx− β)φ0(x) = 0 (9)

and

|φ(x)− φ0(x)| ≤ 2m
h̄2 ε exp

(
−
∫ x

0
(αw− β)dw

) ∣∣∣∣∫ x

0
exp

(∫ s

0
(αw− β)dw

)
ds
∣∣∣∣

=
2m
h̄2 ε

∣∣∣∣∫ x

0
exp

(
β(x− s)− α

2
(
x2 − s2)) ds

∣∣∣∣ (10)

for every x ∈ R.
Since φ(x) = ψ′(x) + (β− αx)ψ(x), it follows from (10) that

∣∣ψ′(x) + (β− αx)ψ(x)− φ0(x)
∣∣ ≤ 2m

h̄2 ε

∣∣∣∣∫ x

0
exp

(
β(x− s)− α

2
(
x2 − s2)) ds

∣∣∣∣ (11)

for all x ∈ R. We can apply Lemma 2 to the inequality (11) with reference to the substitutions presented
in the following Table 2:

Table 2. Substitutions.

Lemma 2 in (11)

y(x) ψ(x)
f (x) β− αx
g(x) φ0(x)
ϕ(x) 2m

h̄2 ε
∣∣∫ x

0 exp
(

β(x− s)− α
2
(

x2 − s2)) ds
∣∣

In view of Lemma 2, there is a continuously differentiable function ψ0 : R→ C that satisfies

ψ′0(x) + (β− αx)ψ0(x) = φ0(x) (12)

and

|ψ(x)− ψ0(x)| ≤ 2m
h̄2 ε exp

(α

2
x2 − βx

) ∣∣∣∣∫ x

0
exp

(
−αs2 + 2βs

) ∣∣∣∣∫ s

0
exp

(α

2
w2 − βw

)
dw
∣∣∣∣ ds
∣∣∣∣

for all x ∈ R.
Moreover, by Lemma 1 and (12), the ψ0 has the form

ψ0(x) = exp
(α

2
x2 − βx

)(
ψ0(c) +

∫ x

0
φ0(s) exp

(
−α

2
s2 + βs

)
ds
)

,

where ψ0(c) is an arbitrary complex number. Since φ0 is continuously differentiable, we see that the ψ0

is twice continuously differentiable.
Finally, by making use of (9) and (12), it is easy to show that ψ0 : R → C is a solution to the

one-dimensional time independent Schrödinger Equation (3).
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For each real constants α and β with α < 0, we know that∣∣∣∣∫ s

0
exp

(α

2
w2 − βw

)
dw
∣∣∣∣ = exp

(
− β2

2α

) ∣∣∣∣∫ s−β/α

−β/α
exp

(α

2
u2
)

du
∣∣∣∣

≤ exp
(
− β2

2α

) ∫ ∞

−∞
exp

(α

2
u2
)

du

=

√
−2π

α
exp

(
− β2

2α

)
for all s ∈ R.

Hence, it follows from (8) that

|ψ(x)− ψ0(x)| ≤ 2m
h̄2

√
−2π

α
ε exp

(
α

2
x2 − βx− β2

2α

) ∣∣∣∣∫ x

0
exp

(
−αs2 + 2βs

)
ds
∣∣∣∣

=
2m
h̄2

√
−2π

α
ε exp

(
α

2
x2 − βx +

β2

2α

) ∣∣∣∣∣
∫ x

0
exp

(
−α

(
s− β

α

)2
)

ds

∣∣∣∣∣
(13)

for all x ∈ R.
If we put α < 0 and β = 0 in (4) and (13), then we see the corollary.

Corollary 1. Suppose V : R→ R is the symmetric parabolic potential function defined by

V(x) =
h̄2α2

2m
x2 +

h̄2α

2m
+ E, (14)

where α < 0 is a real number and E > 0 is a real number as the energy of the particle under observation. Given
any ε > 0, if a twice continuously differentiable function ψ : R→ C satisfies (7) for any x ∈ R, then there is a
twice continuously differentiable solution ψ0 : R→ C to the one-dimensional time independent Schrödinger
Equation (3) with

|ψ(x)− ψ0(x)| ≤ 2m
h̄2

√
−2π

α
ε exp

(α

2
x2
) ∣∣∣∣∫ x

0
exp

(
−αs2

)
ds
∣∣∣∣

for all x ∈ R.

In addition, if we set α = − 2mE
h̄2 in formula (14) for the symmetric potential function, then we have

V(x) =
2mE2

h̄2 x2 (15)

and the corresponding Schrödinger equation is closely related to the quantum-mechanical
harmonic oscillator.

Corollary 2. Suppose V : R→ R is the symmetric parabolic potential function defined by (15). Given any
ε > 0, if a twice continuously differentiable function ψ : R → C satisfies (7) for any x ∈ R, then there is a
twice continuously differentiable solution ψ0 : R→ C to the one-dimensional time independent Schrödinger
Equation (3) with

|ψ(x)− ψ0(x)| ≤ 2
h̄

√
mπ

E
ε exp

(
−mE

h̄2 x2
) ∣∣∣∣∫ x

0
exp

(
2mE

h̄2 s2
)

ds
∣∣∣∣

for every x ∈ R. In particular, the ψ0 is given by (17).
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Proof. Assume that ψ0 : R→ C is a solution of the one-dimensional time independent Schrödinger
Equation (3) with the potential function given in (15). It only needs to prove that the ψ0 is given
by (17) below.

We set ξ =
√

2mE
h̄ x for all x ∈ R. Then ξ ∈ R if and only if x ∈ R. Moreover, we put

φ0(ξ) = ψ0

(
h̄√

2mE
ξ

)
= ψ0(x) (16)

for all ξ ∈ R. Then we have

− h̄2

2m
d2ψ0(x)

dx2 = − h̄2

2m
2mE

h̄2
d2φ0(ξ)

dξ2 = −E
d2φ0(ξ)

dξ2 .

Hence, if we assume that the potential function V is given by (15), then we get

− h̄2

2m
d2ψ0(x)

dx2 + V(x)ψ0(x)− Eψ0(x) = −E
(

d2φ0(ξ)

dξ2 +
(
1− ξ2)φ0(ξ)

)
= 0

for all ξ ∈ R.
Furthermore, it is obvious that φ0 is given as

φ0(ξ) = exp
(
− ξ2

2

)(
C1 + C2

∫ ξ

0
ew2

dw
)

,

where C1 and C2 are fixed complex constants. By (16), the last expression for φ0 is equivalent to

ψ0(x) = exp
(
−mE

h̄2 x2
)(

C1 + C2

∫ x

0
exp

(
2mE

h̄2 w2
)

dw
)

, (17)

and we may show that the ψ0 is a particular solution of the one-dimensional time independent
Schrödinger equation (3) with the symmetric potential function V given in (15).

4. Discussion

The Schrödinger equation is based on the postulates of quantum mechanics and this method can be
applied to the perturbation theory when it is very hard to find the exact solution for some potentials.
It is also possible to apply the one-dimensional Schrödinger equation to analyze the state of the particles
reflected by the rectangular potential, which is less relevant to the subject matter of this paper.

Because the difference between the perturbed solution ψ and the exact solution ψ0 to the
one-dimensional time independent Schrödinger Equation (3) is influenced by x, we have not proved
in Theorem 1, Corollaries 1 and 2, the exact Hyers-Ulam stability of that Schrödinger equation when
the potential is a (symmetric) parabolic wall and E > 0. Therefore we can say that we have proved a
type of Hyers-Ulam stability in this paper.

It is necessary to improve Lemma 2 in order to demonstrate the exact Hyers-Ulam stability of the
Schrödinger Equation (3) with symmetric parabolic wall potential, but we think it may take quite a
while to accomplish this and we want to leave this improvement as an open problem.

5. Conclusions

In the present paper, we have proved a type of Hyers-Ulam stability of one-dimensional
time-independent Schrödinger equation by applying the operator method when the potential
function is expressed in the form of (4). Our main result does not cover the more general case of
Hyers-Ulam stability of the Schrödinger equation when the potential function is V(x) = αx2 + βx + γ,
where parameters α, β, and γ meet the minimum necessary conditions. Nevertheless, it is impressive
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and worthwhile that we showed a type of Hyers-Ulam stability of the Schrödinger equation with the
(symmetric) potential function of a smooth curve shape.
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