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Abstract: As a result of asymmetry in practical problems, the Lognormal distribution is more suitable
for data modeling in biological and economic fields than the normal distribution, while biases of
maximum likelihood estimators are regular of the order O(n−1), especially in small samples. It is of
necessity to derive logical expressions for the biases of the first-order and nearly consistent estimators
by bias correction techniques. Two methods are adopted in this article. One is the Cox-Snell method.
The other is the resampling method known as parametric Bootstrap. They can improve maximum
likelihood estimators performance and correct biases of the Lognormal distribution parameters.
Through Monte Carlo simulations, we obtain average root mean squared error and bias, which are
two important indexes to compare the effect of different methods. The numerical results reveal that
for small and medium-sized samples, the performance of analytical bias correction estimation is
superior than bootstrap estimation and classical maximum likelihood estimation. Finally, an example
is given based on the actual data.

Keywords: asymmetry of lognormal distribution; maximum likelihood; parametric bootstrap
resampling method; Cox-Snell bias-corrected method; Monte Carlo simulation

1. Introduction

Because of its flexibility and universality, the Lognormal distribution is a commonly used
reliability function distribution, which can be applied to describe the fatigue life and wear resistance
of products in the article of [1]. And [2] introduces the latest computer statistical method for test
plan and reliability data analysis of industrial products. The Lognormal distribution is asymmetrical
and positively skewed. The hazard rate function of this distribution always starts at zero, rises to
the maximum, and then drops to zero at a slow pace. Hence, when positive studies suggest that
the hazard rate of potential distribution is nonmonotone and single-peaked, these factual data can
be analyzed by the Lognormal distribution. As shown by [3], in the table associated with normal
(Gaussian) random variables, approximate values of the hazard rate that can be used to calculate the
parameter values outside of the usual range are presented. At present, [4] is the first one to put forward
the Lognormal distribution theory in detail. In the late 1920’s, there was an independent development
path in small-particle statistics with the Lognormal distribution. [5] pointed out the applicability of
truncated or censored lognormal distributions and [6] applied his theory to biological data which
appeared as discrete counts. In this case, [7] further studied the Lognormal distribution.

Most of the existing statistical analysis methods based on the hypothesis of the normal distribution
of data. Nevertheless, for data that does not contain negative values or is otherwise distorted,
the assumption of normality is not realized—which is common in different disciplines such as biology,
politics, philology, economics, physical, finance and sociology. In this case, the Lognormal distribution
can better fit the data.
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When an event is affected by multiple factors, the distribution of these factors is unknown.
According to the central limit theorem, after they are all added up, the average value of the result is
concerned as the normal distribution. Because of the existence of the central limit theorem, we use
the normal distribution to obtain most theoretical arguments. This theorem shows that with the
increase of the number of variables in the normal distribution, the distribution which is standardized
random variable summation approaches to unit a normal distribution. Nevertheless, on account of the
symmetry of the normal distribution, it can not accurately estimate actual problems. Because many
natural growth processes do not add up independently. They are related to each other and driven by
the accumulation of many small percentage changes. When inversely transformed to the initial scale,
it makes the scale distribution approximate to the Lognormal distribution. They are multiplicative and
additive on the logarithmic scale. Refs. [8,9] pointed out that an important difference amid the normal
distribution and the Lognormal distribution is that the former is on the basic effect of multiplication
and the latter is based on addition. Taking logarithm can make us change multiplication into addition.

If normal distribution is followed by log (X), we believe random variable X follows the Lognormal
distribution. In some cases, X only takes positive value. The calculation mean and median can be
different. Especially when there is a large value in the data, the arithmetic mean will be seriously
affected. Face so of circumstance, the Lognormal distribution is better for data fitting. The geometric
mean usually represents median, but arithmetic mean is greater than median, resulting in right
deviation of distribution. The curve of the Lognormal distribution is usually right-skewed, with long
tail on the right-hand position and narrow array on the left-hand sideways. The Lognormal distribution
is similar to Weibull distribution in some shape parameters, and some data suitable for Weibull
distribution are also appropriate for Lognormal distribution.

In this paper, we discuss some useful methods which can correct the maximum likelihood
estimators from the Lognormal distribution and deduce specific formulae of bias with limited samples.
The probability density function of Lognormal distribution is written as:

f (x; µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 (1)

where µ ∈ R, σ > 0 and x > 0. The mathematical expectation of the Lognormal distribution is

E (X) = eµ+ σ2
2 . For a given parameter µ, when σ tends to zero, the mathematical expectation tends

to eµ.
Then, the function of the failure rate is written as:

λ (x) =
1
σ ϕ
(

ln x−µ
σ

)
1−Φ

(
ln x−µ

σ

) (2)

where ϕ (y) is probability density function of standard normal distribution and Φ (y) is its
distribution function.

ϕ (y) =
1√
2π

e−
y2
2 (3)

Φ (y) =
∫ y

−∞
ϕ (t) dt (4)

The failure rate function is applicable to non monotonic data of inverted bathtub shape.
When the parameter σ is small, it can be simplified as the failure rate increasing model. When the
parameter σ is large, it can be simplified as the failure rate decreasing model. And the Lognormal
distribution is applied to reliability analysis of semiconductor devices and fatigue life of some
kinds of mechanical parts. Its main purpose is to analyze the repair time data accurately in the
maintainability analysis.
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The Lognormal distribution has many important applications in financial asset prices such as
Black-Scholes equations and in reliability engineering in [10]. The Lognormal distribution is also
widely applied to the realms of health care. For example, Ref. [11] pointed out that the transcriptional
level of different genes is consistent with the Lognormal distribution and provided a more exact
method to estimate the gene activity of the typical cell. Ref. [12] exploited the age distribution of
Perthes disease is log-normal.

For the curve with horizontal asymptote, the standard concept of additive homogeneous error of
symmetrical distribution will appear almost inevitably. When estimating parameters of any probability
distribution, it is very important to choose the estimation method. No matter for real data or random
simulation data, the most commonly used approach in all classical estimation techniques is maximum
likelihood estimation. Under normal regularity circumstances, it is invariant, asymptotically consistent,
as well as asymptotically normal. Therefore, we mainly observe the maximum likelihood estimators
for Lognormal distribution parameters. However, we observe that these excellent properties can only
be realized in large-sample size. In the limited samples, especially in the small samples, the maximum
likelihood estimation (MLE) is often biased. Since the characteristic of likelihood equation of the
Lognormal distribution is usually highly non-linear and it also have an unclosed form solution,
it can be complex to determine such bias. In realistic application, in order to increase the accuracy
in estimation, it is very essential to obtain the closed expression of the first-order deviation of the
estimator. Many researchers have corrected the bias of different distributions. Readers can refer
to [13–21].

We focus on two approaches to modify the bias of MLEs from the first order to the second
order, and illustrate their effects. Ref. [22] recommended a method to obtain specific bias analytical
expressions. Then we use these expressions to develop the bias of MLEs, and get the consistent second
order. Instead of the analytically bias-adjusted MLEs, Ref. [23] introduced the parametric Bootstrap
resampling method. The two methods are compared with the classical MLE in terms of error reduction
and root mean square error. On the basis of results, a conclusion is drawn that the analytic method is
suitable for the Lognormal distribution.

In the article remaining part is arranged as follows. A brief Section 2 describes the parametric point
estimation for the Lognormal distribution by maximum likelihood method. In Section 3, we describe
the Cox-Snell bias-corrected method and parametric bootstrap resampling method. And these methods
are used in the Lognormal distribution. Section 4, contains simulation by Monte Carlo as used to
contrast action of Cox-Snell bias adjustment estimation, bootstrap bias adjustment estimation and
MLE. In Section 5, for the purpose of illustrating the point, the application of real data are proposed.
Eventually, the summary of the article is in Section 6.

2. Maximum Likelihood Estimator

Lognormal distribution maximum likelihood estimators are discussed in this part. If x =

(x1, · · · , xn) are randomly selected from independent observations which obey the Lognormal
distribution. From (1), the function of the likelihood can be donated as below:

L (µ, σ) =
n

∏
i=1

f (x; µ, σ) =
n

∏
i=1

1
xi

(
1

σ
√

2π

)n
e

(
−∑n

i=1
(ln xi−µ)2

2σ2

)
(5)

where µ and σ are two unknown parameters, and µ ∈ R, σ > 0.
The function of log-likelihood of µ and σ is denoted as below:

l = −
n

∑
i=1

log xi − n log σ− n
2

log 2π −
n

∑
i=1

(ln xi − µ)2

2σ2 (6)
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The MLEs of µ and σ are µ̂ and σ̂ which can be solved from the following equations:

∂l
∂µ

=
n

∑
i=1

(ln xi − µ)

σ2 = 0 (7)

∂l
∂σ

= −n
σ
+

n

∑
i=1

(ln xi − µ)2

σ3 = 0 (8)

The expected information matrix is defined as:

K =

(
n
σ2 0
0 2n

σ2

)

The inverse of K is expressed as:

K−1 =
σ4

2n2

[
2n
σ2 0
0 n

σ2

]

3. Bias-Corrected MLEs

We adopt the method proposed by [22] and the parametric Bootstrap resampling method
(Efron 1982). Both methods modify maximum likelihood estimators by reducing the bias order.

3.1. Cox-Snell Methodology

According to observation samples of size n and r-dimensional parameter vector θ, we can derive
L (θ). Due to properties of logarithm and derivative, the likelihood function is always regular for all
derivatives even the third derivative. The L (θ) derivatives joint cumulant is expressed as:

kij = E

(
∂2 ln L (θ)

∂θi∂θj

)
(9)

kijl = E

(
∂3 ln L (θ)

∂θi∂θj∂θl

)
(10)

kij,l = E
(

∂2 ln L (θ)

∂θi∂θi

∂ ln L (θ)

∂θl

)
(11)

where the function of the log-likelihood is L (θ), i, j, l = 1, · · · , r.
Moreover, the derivatives of kij can be written as:

k(l)ij =
∂kij

∂θl
(12)

All of the derivatives joint cumulants are presumed to be O (n). The data of the corresponding
sample are independent but not strictly subject to the same distribution. The sth element bias of the θ̂

can be denoted as follows:

Bias
(
θ̂s
)
=

r

∑
i=1

r

∑
j=1

r

∑
l=1

ksiksj
(

kij,l +
1
2

kijl

)
+ O

(
n−2

)
(13)
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where s = 1, · · · , r. (i, j)th element of the inverse expected information matrix K =
{
−kij

}
is kij.

Furthermore, in the case of non independent and every term of the k is O(n), the bias equation is also
applicable, It can be adjusted as:

Bias
(
θ̂s
)
=

r

∑
i=1

ksi
r

∑
j=1

r

∑
l=1

ksj
(

k(l)ij −
1
2

kijl

)
kjl + O

(
n−2

)
(14)

In terms of calculation, we normally choose this expression to evaluate, because it does not relate
to terms of kij,l . Define al

ij = kl
ij −

1
2 kijl ,where i, j, l = 1, · · · , r, and the matrix of A is obtained as:

A(l) =
{

al
ij

}
(15)

A =
[

A(1) | A(2) | · · · | A(r)
]

(16)

The bias of θ̂ can be re-expressed in the concise form:

Bias
(
θ̂
)
= K−1 Avec

(
K−1

)
+ O

(
n−2

)
(17)

The bias correction of θ̂ can be given by:

θ̂BCE = θ̂ − K̂−1 Âvec
(

K̂−1
)

(18)

It is noteworthy that from (9), the expected value of joint cumulants results of ln L (θ) derivatives
can be calculated. For this reason this methodology is suitable for the Lognormal distribution. If the
analytical solution cannot be obtained, the numerical solution can be used instead.

Next, we ought to calculate the third derivative of the two parameters of the Lognormal
distribution. From (7) and (8), it follows that:

∂3l
∂µ3 = 0;

∂3l
∂σ3 = −2n

σ3 +
n

∑
i=1

12 (ln xi − µ)2

σ5

∂3l
∂σ∂µ2 =

∂3l
∂µ2∂σ

=
∂3l

∂µ∂σ∂µ
=

2n
σ3 (19)

∂3l
∂µ∂σ2 =

∂3l
∂σ2∂µ

=
∂3l

∂σ∂µ∂σ
=

n

∑
i=1

6 (ln xi − µ)

σ4

Due to the higher-order derivatives and observations x, we can obtain the derivatives of cumulants.
From E

(
∑n

i=1 (ln xi − µ)2
)
= nσ2 and E (∑n

i=1 ln xi) = nµ, we have:

k(1)11 = k(1)12 = k(2)12 = k(1)21 = k(2)21 = k(1)22 = 0

k(2)11 =
2n
σ3 ; k(2)22 =

4n
σ3

k111 = k122 = k212 = k221 = 0

k112 = k121 = k211 =
2n
σ3

k222 =
10n
σ3
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The information matrix is

A =

[
0 n

σ3
n
σ3 0

n
σ3 0 0 n

σ3

]
Thus, in the process of MLE, the bias which is to order O

(
n−1) of the estimated values of µ and σ

are expressed, separately, as:
Bias (µ̂) = 0 (20)

Bias (σ̂) = −3σ̂

4n
(21)

Bias-adjusted estimators are then given by:

µ̂BCE = µ̂ =
1
n

n

∑
i=1

ln xi (22)

σ̂BCE = σ̂− Bias (σ̂) =
7

4n2

n

∑
i=1

(
ln xi −

1
n

n

∑
i=1

ln xi

)2

(23)

We observe the bias-corrected estimation (BCE) of µ̂ is 0. According to the behavior of the
Lognormal distribution, we consider that it is related to the linear property of maximum likelihood
estimation of parameter µ. It is to be noted that σ̂BCE is consistent to order O

(
n−2).

3.2. Parametric Bootstrap

Bootstrap method can be divided into parametric method and nonparametric method. When the
distribution of original data is clear, it is generally considered that the efficiency of parametric method
is higher than that of nonparametric method. According to the characteristics of this paper, we decided
to adopt the parameter bootstrap method.

Bootstrap theory is applied to assess the bias of maximum likelihood estimate, carried out in a
parametric framework. Efron introduced the parametric Bootstrap resampling estimation (PBE) in
1982. Suppose random variable X is from distribution function F. Then we randomly select n samples
x = (x1, · · · , xn)

′ from X. And θ = t (F) is a parameter related to function F. The estimator of θ is
θ̂ = s (x). In order to resample, we generate a great quantity pseudo samples x∗ =

(
x∗1 , · · · , x∗n

)′,
and calculate θ̂∗ = s (x∗) respectively. In such a scenario, the factual values generate x∗ of parameters
are MLEs of the θ and x∗ is the data for the second MLEs. Then, the empirical distribution of θ̂∗ can
be applied to assess the distribution function of θ̂. If Fθ is a finite dimensional parameter family of
F, according to the consistency of the distribution, the parameter estimation of F can be obtained by
using a estimator Fθ̂ . The bias of the θ̂ is expressed as:

BF
(
θ̂, θ
)
= EF [s (x)]− θ̂ (F) (24)

where EF [s (x)] is the expectation of F distribution. By substituting Fθ̂ for F, we can get the bias of
parametric bootstrap estimation.

BFθ̂

(
θ̂, θ
)
= EFθ̂

[
θ̂
]
− θ̂ (25)

Based on the original samples, we generate independent bootstrap samples of size B and
calculate the bootstrap estimators for each time as follows

(
θ̂∗(1), · · · , θ̂∗(B)

)
. When B is large enough,

the expected value EFθ̂

(
θ̂
)

is approximately equal to 1
B ∑B

j=1 θ̂∗(j).
The bias-corrected estimators are written as:

B̂
(
θ̂
)
=

1
B

B

∑
j=1

θ̂∗(j) − θ̂ (26)
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where θ̂∗(j) is the MLE of θ∗(j), θ∗(j) is the jth Bootstrap sample. And then the maximum likelihood
estimators are regarded as the true values. Therefore, the estimated value from PBE is defined as:

θ̂PBE = 2θ̂ − 1
B

B

∑
j=1

θ̂∗(j) (27)

Ref. [24] pointed out that since the estimator θ̂PBE is approximate to a constant, it should be called
constant bias correction MLE. Compared with BCE, the form of PCE is more convenient and it does not
involve the joint cumulants of the derivatives, when this methodology realizes a consistent estimator
to second order. However, there is a certain randomness in the process of resampling. This may lead
to the risk of unstable correction results.

4. Simulation Results

Based on different sample sizes and the true value of parameters, the effect of the maximum
likelihood estimation, analytic correction method and parametric Bootstrap resampling method are
compared in a Monte Carlo experiment. root mean squared errors (RMSEs) and average biases are
criteria for the assessment. In the process of research, we notice that the characteristics of the Inverse
Gaussian distribution are similar to those of the Lognormal distribution. After calculation, we observe
that the bias of maximum likelihood algorithm of µ from the Inverse Gaussian distribution is also
equal to zero. Therefore, we evaluate λ̂ from three approaches in the Inverse Gaussian distribution
as well.

By considering the density curve shown in Figures 1 and 2, different parameter values in the
Lognormal distribution and Inverse Gaussian distribution can be selected. We have considered sample
sizes of 10, 20, 30, 40, 50 and µ = 0.5, 1, 1.5, 2 and σ, λ = 0.5, 1, 1.5, 2, 3, 5. Using inverse transformation
method, pseudo-random samples are generated. Nevertheless, the Lognormal distribution does not
have the form of cumulative distribution function(c.d.f). So we generate random numbers of the
normal distribution and then take their index.

Figure 1. The Lognormal probability density curve with various values of µ and σ.
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Figure 2. The Inverse Gaussian probability density curve with various values of µ and λ.

We use Monte Carlo method for 10,000 repetitions, and use 5000 re-samples to construct bootstrap
bias correction. The first two tables are from the Lognormal distribution, and the data of the last two
tables are simulated by the Inverse Gaussian distribution.

For results discussion of above methods, we consider the theoretical θ̂ bias, defined as shown:

Bias
(
θ̂
)
= E

(
θ̂ − θ

)
(28)

In the process of Monte Carlo simulation, we need to bring specific values into the formula. The
average bias and RMSE of θ̂MLE, θ̂BCE and θ̂PBE of the sample are defined as

Bias
(
θ̂
)
=

1
M

M

∑
i=1

(
θ̂i − θ

)
(29)

RMSE
(
θ̂
)
=

√√√√ 1
M

M

∑
i=1

(
θ̂i − θ

)2
(30)

where M is the number of simulations. In this paper, M equals 10,000. If scholars need relevant codes,
they can send an email to 17271075@bjtu.edu.cn.

Figures 3 and 4 describe the average µ̂ and σ̂ biases of simulated data from the sample size of
the Lognormal distribution, and Figures 5 and 6 suggest RMSEs of µ̂ and σ̂ from the Lognormal
distribution, separately. Based on simulation data, Figures 7 and 8 depict the bias from the Inverse
Gaussian distribution. Figures 9 and 10 show RMSEs from Inverse Gaussian distribution.
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Figure 3. The bias of average µ̂ with the Lognormal distribution.

Figure 4. The bias of average σ̂ with the Lognormal distribution.
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Figure 5. RMSE of µ̂ with the Lognormal distribution.

Figure 6. RMSE of σ̂ with the Lognormal distribution.
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Figure 7. Average bias of µ̂ with the Inverse Gaussian distribution.

Figure 8. Average bias of λ̂ with the Inverse Gaussian distribution.
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Figure 9. RMSE of µ̂ with the Inverse Gaussian distribution.

Figure 10. RMSE of λ̂ with the Inverse Gaussian distribution.

From Tables 1 and 2, we can observe that the bias of µMLE is much smaller than that of σMLE,
so it is reasonable that Cox-Snell methodology can only reduce the bias of estimator σ. Therefore,
we mainly consider the bias correction of σ. The bias of σMCE and σPBE is always smaller than that of
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σMLE; the bias of σMCE is usually smaller than that of σPBE. In general, with the increasing of sample
sizes n, the bias of all estimators of σ is close to zero.

Table 1. Relative bias of the Lognormal Distribution (µ = 0.5).

Estimated Values of µ Estimated Values of σ

σ n MLE PBE MLE BCE PBE

0.5 10 −0.0004 (0.1565) −0.0016 (0.1457) −0.0397 (0.1169) −0.0052 (0.1183) −0.0054 (0.1014)
20 −0.0005 (0.1111) −0.0002 (0.1037) −0.0192 (0.0801) −0.0012 (0.0807) −0.0014 (0.0742)
30 0.0011 (0.0907) 0.0008 (0.0892) −0.0123 (0.0654) −0.0001 (0.0658) −0.0003 (0.0635)
40 −0.0002 (0.0783) −0.0002 (0.0771) −0.0097 (0.0568) −0.0005 (0.0570) −0.0011 (0.0548)
50 0.0005 (0.0698) 0.0002 (0.0696) −0.0070 (0.0502) 0.0004 (0.0505) 0.0012 (0.0497)

100 0.0005 (0.0497) 0.0001 (0.0495) −0.0039 (0.0353) −0.0001 (0.0353) −0.0002 (0.0352)
200 −0.0002 (0.0352) −0.0003 (0.0356) −0.0018 (0.0249) 0.0001 (0.0249) 0.0000 (0.0248)

1 10 −0.0027 (0.3156) −0.0025 (0.2897) −0.0788 (0.2353) −0.0097 (0.2386) −0.0103 (0.2031)
20 −0.0003 (0.2224) −0.0016 (0.2115) −0.0380 (0.1601) −0.0020 (0.1614) −0.0021 (0.1519)
30 0.0022 (0.1836) 0.0047 (0.1788) −0.0245 (0.1316) −0.0001 (0.1325) −0.0017 (0.1272)
40 0.0019 (0.1571) 0.0018 (0.1552) −0.0180 (0.1133) 0.0004 (0.1140) 0.0014 (0.1100)
50 −0.0006 (0.1411) −0.0011 (0.1385) −0.0160 (0.1000) −0.0012 (0.1002) −0.0025 (0.0973)

100 0.0010 (0.1003) 0.0016 (0.0988) −0.0076 (0.0703) −0.0001 (0.0704) 0.0007 (0.0696)
200 0.0003 (0.0702) 0.0017 (0.0710) −0.0039 (0.0503) −0.0002 (0.0504) 0.0001 (0.0495)

1.5 10 0.0063 (0.4731) 0.0026 (0.4361) −0.1215 (0.3481) −0.0181 (0.3511) −0.0185 (0.3066)
20 0.0007 (0.3313) 0.0001 (0.3202) −0.0538 (0.2401) 0.0005 (0.2428) 0.0028 (0.2287)
30 −0.0006 (0.2729) −0.0007 (0.2720) −0.0403 (0.1982) −0.0038 (0.1990) −0.0390 (0.1964)
40 0.0027 (0.2415) 0.0054 (0.2371) −0.0285 (0.1688) −0.0009 (0.1695) −0.0040 (0.1637)
50 0.0026 (0.2137) 0.0026 (0.2093) −0.0226 (0.1509) −0.0005 (0.1514) 0.0010 (0.1470)

100 0.0001 (0.1538) −0.0018 (0.1499) −0.0106 (0.1069) 0.0006 (0.1072) 0.0014 (0.1054 )
200 −0.0005 (0.1070) −0.0017 (0.1054) −0.0063 (0.0744) −0.0007 (0.0744) −0.0014 (0.0741)

2 10 −0.0155 (0.6346) −0.0117 (0.5812) −0.1585 (0.4703) −0.0204 (0.4764) −0.0158 (0.4114)
20 0.0077 (0.4493) 0.0044 (0.4325) −0.0729 (0.3219) −0.0006 (0.3253) 0.0019 (0.3001)
30 0.0018 (0.3654) 0.0050 (0.3519) −0.0499 (0.2622) −0.0011 (0.2638) −0.0026 (0.2492)
40 0.0047 (0.3141) 0.0046 (0.3111) −0.0377 (0.2234) −0.0009 (0.2244) −0.0009 (0.2185)
50 −0.0031 (0.2796) 0.0011 (0.2782) −0.0293 (0.2027) 0.0003 (0.2036) −0.0011 (0.1973)

100 0.0009 (0.1984) 0.0041 (0.1988) −0.0170 (0.1429) −0.0022 (0.1429) −0.0022 (0.1419)
200 −0.0024 (0.1395) 0.0006 (0.1409) −0.0072 (0.1013) 0.0002 (0.1014) 0.0009 (0.1003)

3 10 −0.0178 (0.9540) −0.0042 (0.8750) −0.2406 (0.7005) −0.0337 (0.7080) −0.0325 (0.6084)
20 −0.0111 (0.6683) −0.0117 (0.6280) −0.1138 (0.4822) −0.0056 (0.4862) −0.0147 (0.4408)
30 −0.0076 (0.5479) −0.0088 (0.5337) −0.0782 (0.4014) −0.0051 (0.4036) −0.0053 (0.3756)
40 −0.0054 (0.4764) −0.0039 (0.4663) −0.0540 (0.3341) 0.0013 (0.3359) 0.0046 (0.3292)
50 0.0032 (0.4253) 0.0049 (0.4185) −0.0449 (0.3033) −0.0006 (0.3045) 0.0044 (0.2958)

100 −0.0015 (0.3014) 0.0004 (0.2988) −0.0226 (0.2135) −0.0003 (0.2139) −0.0020 (0.2128)
200 −0.0037 (0.2109) −0.0019 (0.2124) −0.0117 (0.1505) −0.0005 (0.1506) 0.0022 (0.1491)

5 10 −0.0067 (1.5798) −0.0171 (1.4447) −0.3956 (1.1619) −0.0503 (1.1755) −0.0564 (1.0163)
20 0.0190 (1.1307) −0.0029 (1.0635) −0.1941 (0.7986) −0.0139 (0.8039) −0.0146 (0.7546)
30 0.0003 (0.9126) −0.0063 (0.8852) −0.1284 (0.6549) −0.0066 (0.6583) −0.0097 (0.6306)
40 0.0066 (0.7806) 0.0103 (0.7809) −0.0961 (0.5655) −0.0041 (0.5678) −0.0103 (0.5504)
50 0.0053 (0.8570) 0.0002 (0.6820) −0.1139 (0.6093) −0.0406 (0.6089) −0.0423 (0.4889)

100 −0.0026 (0.4970) 0.0044 (0.4953) −0.0364 (0.3561) 0.0008 (0.3569) −0.0016 (0.3479)
200 0.0054 (0.3525) 0.0095 (0.3499) −0.0223 (0.2507) −0.0036 (0.2507) −0.0038 (0.2478)
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Table 2. Relative bias of the Lognormal Distribution (µ = 1).

Estimated Values of µ Estimated Values of σ

σ n MLE PBE MLE BCE PBE

0.5 10 −0.0017 (0.1578) −0.0029 (0.1459) −0.0405 (0.1165) −0.0061 (0.1175) −0.0077 (0.1020)
20 0.0005 (0.1127) −0.0001 (0.1084) −0.0188 (0.0798) −0.0007 (0.0805) −0.0019 (0.0765)
30 −0.0009 (0.0912) −0.0005 (0.0896) −0.0128 (0.0657) −0.0006 (0.0660) −0.0010 (0.0622)
40 −0.0013 (0.0793) −0.0004 (0.0777) −0.0103 (0.0568) −0.0011 (0.0569) −0.0017 (0.0552)
50 0.0014 (0.0706) 0.0004 (0.0696) −0.0070 (0.0501) 0.0004 (0.0503) 0.0003 (0.0487)

100 0.0005 (0.0501) 0.0017 (0.0498) −0.0040 (0.0356) −0.0003 (0.0356) 0.0002 (0.0353)
200 0.0001 (0.0349) 0.0003 (0.0349) −0.0019 (0.0251) 0.0000 (0.0251) 0.0000 (0.0250)

1 10 −0.0001 (0.3153) −0.0010 (0.2940) −0.0777 (0.2305) −0.0085 (0.2335) −0.0077 (0.2041)
20 0.0020 (0.2238) 0.0054 (0.2133) −0.0428 (0.1645) −0.0069 (0.1649) −0.0072 (0.1513)
30 −0.0005 (0.1845) −0.0021 (0.1784) −0.0264 (0.1321) −0.0021 (0.1326) −0.0060 (0.1260)
40 −0.0007 (0.1585) −0.0050 (0.1552) −0.0198 (0.1123) −0.0014 (0.1126) −0.0032 (0.1093)
50 0.0013 (0.1412) 0.0025 (0.1400) −0.0143 (0.1015) 0.0005 (0.1020) 0.0003 (0.0988)

100 0.0004 (0.1005) −0.0006 (0.0993) −0.0080 (0.0715) −0.0006 (0.0716) −0.0005 (0.0696)
200 0.0006 (0.0713) 0.0013 (0.0709) −0.0035 (0.0502) 0.0003 (0.0503) 0.0006 (0.0492)

1.5 10 0.0107 (0.4745) 0.0003 (0.4378) −0.1152 (0.3509) −0.0113 (0.3565) −0.0135 (0.3074)
20 0.0031 (0.3329) 0.0000 (0.2082) −0.0530 (0.2402) 0.0013 (0.2431) 0.0035 (0.1601)
30 0.0012 (0.2726) 0.0005 (0.2653) −0.0369 (0.1956) −0.0003 (0.1969) 0.0006 (0.1878)
40 0.0039 (0.2389) 0.0028 (0.2337) −0.0279 (0.1703) −0.0003 (0.1711) 0.0017 (0.1640)
50 0.0024 (0.2117) 0.0023 (0.2074) −0.0218 (0.1518) 0.0004 (0.1525) 0.0011 (0.1475)

100 −0.0009 (0.1495) 0.0013 (0.1515) −0.0101 (0.1060) 0.0010 (0.1063) −0.0002 (0.1057)
200 0.0008 (0.1071) 0.0012 (0.1056) −0.0052 (0.0752) 0.0004 (0.0753) −0.0001 (0.0751)

2 10 0.0004 (0.6372) 0.0015 (0.5848) −0.1437 (0.4732) −0.0045 (0.4846) −0.0056 (0.4046)
20 −0.0004 (0.4465) −0.0005 (0.4284) −0.0747 (0.3238) −0.0025 (0.3269) 0.0004 (0.2989)
30 −0.0077 (0.3638) −0.0135 (0.3541) −0.0504 (0.2639) −0.0017 (0.2655) −0.0039 (0.2514)
40 −0.0007 (0.3119) 0.0037 (0.3102) −0.0381 (0.2250) −0.0014 (0.2259) −0.0042 (0.2201)
50 −0.0002 (0.2835) 0.0010 (0.2781) −0.0294 (0.2028) 0.0002 (0.2037) 0.0022 (0.1945)

100 −0.0003 (0.2034) −0.0011 (0.1963) −0.0172 (0.1435) −0.0023 (0.1435) −0.0037 (0.1395)
200 0.0021 (0.1412) −0.0008 (0.1421) −0.0053 (0.1000) 0.0021 (0.1003) 0.0039 (0.1006)

3 10 −0.0189 (0.9378) −0.0130 (0.8784) −0.2282 (0.7011) −0.0203 (0.7130) −0.0184 (0.6159)
20 −0.0053 (0.6702) −0.0109 (0.6482) −0.1147 (0.4835) −0.0065 (0.4874) −0.0126 (0.4558)
30 0.0073 (0.5433) 0.0056 (0.5271) −0.0803 (0.3909) −0.0074 (0.3922) −0.0119 (0.3782)
40 0.0011 (0.4658) 0.0102 (0.4595) −0.0580 (0.3399) −0.0028 (0.3412) −0.0059 (0.3279)
50 0.0052 (0.4251) 0.0070 (0.4235) −0.0454 (0.3017) −0.0010 (0.3027) −0.0044 (0.2954)

100 0.0010 (0.2969) −0.0040 (0.2969) −0.0170 (0.2121) 0.0054 (0.2131) 0.0061 (0.2117)
200 0.0010 (0.2121) 0.0019 (0.2093) −0.0117 (0.1497) −0.0005 (0.1498) 0.0001 (0.1495)

5 10 0.0081 (1.6029) −0.0017 (1.4537) −0.3971 (1.1656) −0.0519 (1.1792) −0.0386 (1.0179)
20 0.0119 (1.1173) 0.0149 (1.0621) −0.1820 (0.7977) −0.0013 (0.8057) −0.0103 (0.7652)
30 0.0023 (0.9137) −0.0064 (0.8932) −0.1423 (0.6625) −0.0209 (0.6636) −0.0249 (0.6232)
40 0.0120 (0.7890) 0.0226 (0.7687) −0.0929 (0.5646) −0.0009 (0.5674) −0.0021 (0.5418)
50 0.0084 (0.7026) 0.0045 (0.6932) −0.0925 (0.5101) −0.0189 (0.5095) −0.0258 (0.4866)

100 0.0045 (0.4963) 0.0046 (0.4943) −0.0364 (0.3588) 0.0009 (0.3596) 0.0061 (0.3464)
200 −0.0018 (0.3594) 0.0004 (0.3529) −0.0182 (0.2536) 0.0004 (0.2539) −0.0043 (0.2485)

Tables 3 and 4 show the corresponding results of the Inverse Gaussian distribution. These results
and those of the Lognormal distribution have similarities, besides that the performance of analytic
bais correction is better. Although the bias of λMLE of Inverse Gaussian distribution is larger than that
of lognormal distribution, the bias of λBCE of Inverse Gaussian distribution is smaller than that of the
Lognormal distribution.
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Table 3. Relative bias of the Inverse Gaussian Distribution (µ = 1.5).

Estimated Values of µ Estimated Values of λ

λ n MLE PBE MLE BCE PBE

0.5 10 0.0061 (0.8295) 0.0027 (0.6985) 0.2039 (0.4752) −0.0073 (0.3005) −0.0965 (0.6231)
20 −0.0086 (0.5775) −0.0121 (0.5298) 0.0905 (0.2370) 0.0019 (0.1862) −0.0121 (0.2489)
30 0.0022 (0.4738) −0.0041 (0.4523) 0.0573 (0.1683) 0.0016 (0.1425) −0.0035 (0.1730)
40 0.0021 (0.4149) 0.0016 (0.3909) 0.0420 (0.1351) 0.0013 (0.1188) −0.0029 (0.1402)
50 0.0029 (0.3677) 0.0026 (0.3563) 0.0310 (0.1156) −0.0009 (0.1047) −0.0027 (0.1197)

100 0.0031 (0.2623) 0.0047 (0.2523) 0.0173 (0.0771) 0.0018 (0.0729) 0.0023 (0.757)
200 −0.0002 (0.1838) 0.0012 (0.1833) 0.0071 (0.0521) −0.0005 (0.0508) −0.0005 (0.0527)

1 10 −0.0006 (0.5780) −0.0040 (1.1158) 0.4233 (0.9881) −0.0037 (0.6250) −0.1833 (1.7218)
20 0.0012 (0.4122) −0.0009 (1.0698) 0.1705 (0.4580) −0.0051 (0.3613) −0.0283 (0.6777)
30 0.0071 (0.3381) 0.0103 (1.0549) 0.1090 (0.3339) −0.0019 (0.2840) −0.0118 (0.4469)
40 −0.0001 (0.2910) −0.0019 (1.0407) 0.0827 (0.2712) 0.0015 (0.2390) −0.0352 (0.3790)
50 0.0019 (0.2610) −0.0007 (1.0332) 0.0626 (0.2330) −0.0012 (0.2110) −0.0077 (0.2888)

100 0.0021 (0.1837) −0.0005 (0.1797) 0.0317 (0.1544) 0.0008 (0.1466) −0.0009 (0.1546)
200 0.0036 (0.1296) 0.0031 (0.1304) 0.0140 (0.1035) −0.0012 (0.1010) 0.0002 (0.1039)

1.5 10 −0.0052 (0.4718) −0.0032 (0.3917) 0.6475 (1.4887) 0.0032 (0.9384) −0.2753 (1.9174)
20 −0.0021 (0.3375) −0.0032 (0.3096) 0.2618 (0.6950) −0.0025 (0.6950) −0.0484 (0.7522)
30 0.0035 (0.2723) 0.0036 (0.2621) 0.1604 (0.4940) −0.0057 (0.4206) −0.0232 (0.5240)
40 0.0077 (0.2437) 0.0084 (0.2302) 0.1190 (0.4028) −0.0024 (0.3560) −0.0133 (0.4175)
50 −0.0009 (0.2122) 0.0016 (0.2057) 0.0912 (0.3466) −0.0043 (0.3144) −0.0096 (0.3554)

100 −0.0014 (0.1510) 0.0022 (0.1467) 0.0461 (0.2317) −0.0003 (0.2203) −0.0009 (0.2325)
200 −0.0002 (0.1063) −0.0004 (0.1043) 0.0213 (0.1559) −0.0016 (0.1521) −0.0035 (0.1568)

2 10 −0.0029 (0.4141) −0.0065 (0.3449) 0.8525 (1.9553) −0.0033 (1.2318) −0.3479 (2.5164)
20 −0.0008 (0.2882) −0.0025 (0.2693) 0.3493 (0.9358) −0.0031 (0.7380) −0.0694 (1.0276)
30 −0.0013 (0.2358) −0.0004 (0.2259) 0.2173 (0.6581) −0.0044 (0.5591) −0.0304 (0.7010)
40 0.0014 (0.2043) 0.0013 (0.1977) 0.1616 (0.5389) −0.0005 (0.4755) −0.0137 (0.5544)
50 0.0011 (0.1841) 0.0022 (0.1779) 0.1248 (0.4656) −0.0027 (0.4216) −0.0186 (0.4714)

100 0.0012 (0.1301) 0.0013 (0.1279) 0.0627 (0.3034) 0.0008 (0.2880) −0.0006 (0.3061)
200 −0.0024 (0.0913) −0.0018 (0.0916) 0.0324 (0.2068) 0.0019 (0.2011) 0.0018 (0.2082)

3 10 0.0005 (0.3318) −0.0004 (0.2799) 1.3145 (2.9997) 0.0202 (1.8875) −0.5668 (4.1916)
20 −0.0041 (0.2358) −0.0052 (0.2210) 0.5145 (1.3654) −0.0127 (1.0751) −0.1172 (1.5008)
30 −0.0011 (0.1969) 0.0018 (0.1833) 0.3292 (0.9950) −0.0037 (0.8451) −0.0455 (1.0610)
40 −0.0020 (0.1646) −0.0028 (0.1607) 0.2419 (0.8150) −0.0013 (0.7200) −0.0342 (0.8453)
50 −0.0009 (0.1490) 0.0013 (0.1446) 0.1972 (0.6995) 0.0053 (0.6309) −0.0123 (0.7154)

100 −0.0005 (0.1058) −0.0010 (0.1051) 0.0932 (0.4585) 0.0004 (0.4354) −0.0085 (0.4633)
200 0.0006 (0.0741) 0.0001 (0.0743) 0.0489 (0.3134) 0.0032 (0.3049) 0.0048 (0.3160)

5 10 0.0002 (0.2573) 0.0012 (0.2178) 2.1432 (5.0168) 0.0002 (3.1752) −0.8969 (6.1953)
20 −0.0013 (0.1810) −0.0018 (0.1678) 0.8727 (2.3070) −0.0082 (1.8152) −0.1818 (2.5416)
30 0.0006 (0.1492) 0.0000 (0.1428) 0.5536 (1.6833) −0.0018 (1.4307) −0.0596 (1.7358)
40 0.0023 (0.1313) 0.0014 (0.1260) 0.4105 (1.3708) 0.0047 (1.2098) −0.0528 (1.4204)
50 −0.0014 (0.1160) −0.0030 (0.1123) 0.3203 (1.1740) 0.0011 (1.0617) −0.0226 (1.1967)

100 −0.0002 (0.0816) −0.0013 (0.0806) 0.1510 (0.7644) −0.0035 (0.7369) 0.0020 (0.7712)
200 0.0000 (0.0585) 0.0010 (0.0573) 0.0840 (0.5228) 0.0077 (0.5082) −0.0010 (0.5285)
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Table 4. Relative bias of the Inverse Gaussian Distribution (µ = 2).

Estimated Values of µ Estimated Values of λ

λ n MLE PBE MLE BCE PBE

0.5 10 0.0052 (1.2541) 0.0154 (1.0644) 0.2153 (0.5266) 0.0007 (0.3364) −0.0802 (0.6240)
20 0.0119 (0.9175) 0.0132 (0.8291) 0.0923 (0.2351) 0.0035 (0.1838) −0.0122 (0.2497)
30 0.0015 (0.7315) 0.0073 (0.6930) 0.0550 (0.1637) −0.0005 (0.1388) −0.0080 (0.1723)
40 −0.0081 (0.6274) −0.0045 (0.6061) 0.0417 (0.1360) 0.0011 (0.1197) −0.0031 (0.1390)
50 0.0034 (0.5693) −0.0047 (0.5515) 0.0309 (0.1169) −0.0010 (0.1059) −0.0033 (0.1177)

100 −0.0016 (0.3958) −0.0019 (0.3992) 0.0156 (0.0764) 0.0001 (0.0725) −0.0014 (0.0786)
200 −0.0010 (0.2828) −0.0050 (0.2826) 0.0081 (0.0524) 0.0005 (0.0510) 0.0012 (0.0524)

1 10 0.0024 (0.9028) 0.0098 (0.7389) 0.4289 (1.0224) 0.0003 (0.6497) −0.1991 (1.3692)
20 0.0078 (0.6393) 0.0204 (0.5906) 0.1789 (0.4701) 0.0020 (0.3696) −0.0394 (0.5385)
30 −0.0032 (0.5168) −0.0074 (0.4865) 0.1137 (0.3376) 0.0023 (0.2861) −0.0111 (0.3477)
40 −0.0028 (0.4461) −0.0027 (0.4236) 0.0844 (0.2728) 0.0031 (0.2400) −0.0026 (0.2747)
50 0.0029 (0.4029) 0.0037 (0.3859) 0.0655 (0.2332) 0.0015 (0.2104) −0.0023 (0.2378)

100 0.0020 (0.2832) 0.0050 (0.2749) 0.0318 (0.1502) 0.0008 (0.1424) −0.0026 (0.1544)
200 −0.0010 (0.1998) 10.0001 (0.2081) 0.0146 (0.1026) −0.0006 (0.1000) −0.0011 (0.1060)

1.5 10 −0.0096 (0.7235) −0.0101 (0.6045) 0.6555 (1.5574) 0.0088 (0.9889) −0.2797 (1.9456)
20 −0.0065 (0.5132) −0.0058 (0.4728) 0.2560 (0.6852) −0.007 (0.5403) −0.0409 (0.7412)
30 −0.0053 (0.4206) −0.0101 (0.3999) 0.1603 (0.4961) −0.0057 (0.4226) −0.0245 (0.5240)
40 0.0004 (0.3620) −0.0080 (0.3515) 0.1204 (0.3989) −0.0011 (0.3518) −0.0117 (0.4165)
50 −0.0018 (0.3244) −0.0039 (0.3179) 0.0962 (0.3482) 0.0005 (0.3145) −0.0086 (0.3597)

100 0.0030 (0.2295) 0.0050 (0.2256) 0.0462 (0.2300) −0.0002 (0.2186) −0.0051 (0.2336)
200 0.0000 (0.1643) 0.0020 (0.1628) 0.0250 (0.1566) 0.0021 (0.1523) 0.0000 (0.1568)

2 10 0.0044 (0.6325) 0.0043 (0.5254) 0.8800 (1.9928) 0.0160 (1.2517) −0.3845 (2.7104)
20 −0.0003 (0.4509) −0.0016 (0.4148) 0.3677 (0.9390) 0.0125 (0.7346) −0.0336 (1.0306)
30 0.0016 (0.3714) 0.0052 (0.3465) 0.2142 (0.6591) −0.0072 (0.5610) −0.0334 (0.6794)
40 −0.0016 (0.3127) 0.0005 (0.3017) 0.1695 (0.5477) 0.0068 (0.4818) −0.0075 (0.5587)
50 −0.0050 (0.2798) −0.0066 (0.2720) 0.1222 (0.4573) −0.0051 (0.4143) −0.0118 (0.4780)

100 −0.0030 (0.1958) −0.0003 (0.1947) 0.0600 (0.3027) −0.0018 (0.2878) −0.0030 (0.3089)
200 0.0040 (0.1412) 0.0050 (0.1400) 0.0270 (0.2076) −0.0034 (0.2027) −0.0060 (0.2067)

3 10 0.0045 (0.5156) −0.0009 (0.4389) 1.3224 (3.1669) 0.0257 (2.0145) −0.4900 (3.8990)
20 0.0078 (0.3650) 0.0043 (0.3397) 0.5275 (1.4140) −0.0016 (1.1151) −0.0865 (1.5160)
30 0.0061 (0.2980) 0.0068 (0.2847) 0.3272 (0.9918) −0.0055 (0.8427) −0.0372 (1.0443)
40 0.0049 (0.2616) 0.0024 (0.2535) 0.2348 (0.7988) −0.0078 (0.7063) −0.0192 (0.8340)
50 0.0044 (0.2328) 0.0045 (0.2218) 0.1926 (0.7040) 0.0010 (0.6365) −0.0190 (0.7207)

100 0.0030 (0.1647) 0.0020 (0.1610) 0.0900 (0.4533) −0.0027 (0.4309) −0.0030 (0.4604)
200 0.0010 (0.1158) 0.0000 (0.1152) 0.0450 (0.3139) −0.0007 (0.3060) 0.0030 (0.3144)

5 10 0.0067 (0.4045) 0.0028 (0.3379) 2.1461 (5.0474) 0.0023 (3.1979) −0.8892 (6.5675)
20 −0.0007 (0.2810) −0.0030 (0.2598) 0.9148 (2.3543) 0.0276 (1.8441) −0.0821 (2.5338)
30 −0.0060 (0.2305) −0.0064 (0.2187) 0.5494 (1.6525) −0.0055 (1.4027) −0.0812 (1.7656)
40 −0.0046 (0.1993) −0.0050 (0.1935) 0.4105 (1.3474) 0.0047 (1.1872) −0.0078 (1.3849)
50 0.0013 (0.1784) 0.0026 (0.1731) 0.3039 (1.1707) −0.0143 (1.0628) −0.0032 (1.1782)

100 −0.0010 (0.1266) −0.0010 (0.1247) 0.1450 (0.7583) −0.0094 (0.7221) −0.0090 (0.7630)
200 0.0000 (0.0900) 0.0010 (0.0903) 0.0660 (0.5171) −0.0100 (0.5053) −0.0160 (0.5169)

We also show the Lognormal distribution and the Inverse Gaussian distribution parameters
estimation when the size is 50 by using the boxplots. Boxplots can convey more information than
tables. Figures 11 and 12 show that the parameter estimators are closer to the real values through
the bias corrected method. At the same time, Cox Snell method can reduce the range of parameter
estimates to a certain extent.
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Figure 11. Parameter estimations of the Lognormal distribution with µ = 1, σ = 5.

Figure 12. Parameter estimations of the Inverse Gaussian distribution with µ = 1, λ = 5.

We change parameter values and carry out repeated experiments. It is observed that the
result will not change with the change of parameter setting, which shows that Cox-Snell method
is robust. In the process of bias correction, the focus of calculation is to find Fisher information matrix.
For most distribution functions, this is easy to calculate. In terms of the usability of existing software,
we mainly use optim package in R language. This package is efficient and concise, and is suitable for
practical calculation.

On this basis, in almost all cases considered, the analytical Cox-Snell method is superior to the
bootstrap method and the classical maximum likelihood algorithm. BCE and PBE also reduce the
RMSE in the Inverse Gaussian distribution. Therefore, when the standards to measure the correction
effect are consistent, it can be determined that the improved estimator is nearer to the real value of
parameter than the uncorrected estimator. Maximum likelihood estimators of µ in the Lognormal
distribution and the Inverse Gaussian distribution are unbiased and efficient. In the process of analysis,
we find that consistent estimation of µ is general, when k12 and k21 equal to zero in the expected
information matrix. In this case, we can obtain that the bias of maximum likelihood estimator is zero
by using Cox and Snell method.

5. Example Illustration

In this part, we use a few actual data to verify whether we can obtain estimators with
smaller biases by adopting the Cox-Snell approach and the parameter bootstrap resampling method.
The experimental data comes from the daily trading volume of Shanghai stock market in 2002.
Data sourced from China Securities Regulatory Commission. We first adopt the maximum likelihood
estimation to fit the actual data, and then use the analytic method. Since the estimator of µ has little
difference in various methods, we mainly focus on the correction effect of σ estimation. Figure 13
depicts the fitting of the Lognormal probability density at different estimators of µ and σ. Table 5
shows that for σ, the lowest RMSE is given by the biased MLE whereas PBE gives the highest RMSE.
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We also observe that BCE of σ is the largest and MLE of σ is the smallest, which is in accordance
with the simulation results. Therefore, we have additional evidence that the behavior of the bias
correction estimation is superior. It is worth noting that there are obvious differences in the estimators
of σ, which illustrate that in the case of small sample size, bias correction is still necessary due to the
effective information contained in the correction method.

Figure 13. Estimated fitted density functions of the daily trading volume in Shanghai.

To evaluate the degree of figures fitting the Lognormal distribution, we use Kolmogorov-Smirnov
(KS) test to calculate D-values and p-values with different parameter values. It is observed that p-values
of KS in analytic bias-corrected method derive higher values than MLEs and parametric Bootstrap
bias correction and D-values are the opposite. So we have every reason to believe that analytical bias
correction can get extremely useful results.

Table 5. Estimated values of parameters of µ and σ (root mean squared error).

Estimators µ σ D-Value p-Value

MLE 7.0742 0.4144 (0.0398) 0.1157 0.4561
BCE 7.0742 0.4203 (0.0403) 0.1148 0.4655
PBE 7.0783 0.4167 (0.0427) 0.1190 0.4202

6. Conclusions

The Lognormal distribution and Inverse Gaussian distribution are applied in a broad variety of
fields. In practice, the maximum likelihood method is the most used method for these distributions.
In this article, we employ the bias-adjusted method recommended by Cox and Snell to increase the
accuracy of MLE. We obtain concrete analytical expressions of O

(
n−1) for the biases and then use these

data to construct the biases of the prospective estimated values which are of O
(
n−2). Additionally,

we have compared a different bias-corrected approach based on Bootstrap resampling. According to
the simulation results, we consider that the µ̂ of two distributions is close to the true value through
classical MLEs. When we focus on the other parameter, it is noted that Bootstrap resampling bias
correction is not as efficient as Cox-Snell modification in aspect of average bias as well as error of root
mean squared, especially in the Inverse Gaussian distribution. In particular, when the sample size
increases and the parameter value decreases, the correction effect is better. The bias correction proposed
by Cox and Snell is heartily recommended in estimating the Lognormal distribution parameters and
the Inverse Gaussian distribution, which is often met in the context of reliability analysis.

In the future work, wild bootstrap is worth considering. In this method, the random weight
is generated independent of the model bias and multiplied by the residual to simulate the actual
bias distribution. It is suitable for regression analysis the model with heteroskedasticity. In practical
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analysis, it is characterized by weighted residuals rather than data pairs. Now in the bivariate setting
of unknown (µ, σ), it is not a priori clear how to combine coordinate-wise accuracy measures for the
two components, but depending on this choice different bias weights result optimal and will lead
to different rankings of procedures. And the normal distribution is closely related to the lognormal
distribution, so the bias corrected method is also suitable for the normal distribution. As we know,
that the MLE is asymptotic, but there is no specific research to prove that Cox-Snell method is also
asymptotic. We think it’s worth thinking about in the future work. Then, the Phase-Type distributions
are widely used, including many commonly used distributions, such as Erlang, Hypo-empirical
and Coxian distributions. Readers can refer to [25]. This distribution can correct some inaccuracies
of Weibull distribution in terms of physics. The Phase-Type distributions are non-negative type
distributions and have two unknown parameters, which are worth studying in the future work.
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