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Abstract: In this paper, we propose a two-step iterative algorithm based on projection technique for
solving system of monotone nonlinear equations with convex constraints. The proposed two-step
algorithm uses two search directions which are defined using the well-known Barzilai and Borwein
(BB) spectral parameters.The BB spectral parameters can be viewed as the approximations of Jacobians
with scalar multiple of identity matrices. If the Jacobians are close to symmetric matrices with
clustered eigenvalues then the BB parameters are expected to behave nicely. We present a new
line search technique for generating the separating hyperplane projection step of Solodov and
Svaiter (1998) that generalizes the one used in most of the existing literature. We establish the
convergence result of the algorithm under some suitable assumptions. Preliminary numerical
experiments demonstrate the efficiency and computational advantage of the algorithm over some
existing algorithms designed for solving similar problems. Finally, we apply the proposed algorithm
to solve image deblurring problem.

Keywords: spectral gradient method; nonlinear monotone equations; projection method; line search;
image deblurring

MSC: 65K05; 90C30; 90C06; 90C56; 92C55

1. Introduction

Many problems arising from various applications such as optimization, differential equations,
variational inequalities problems and so on, can be converted into nonlinear system of equations.
Hence the study of iterative algorithms for solving nonlinear equations is of paramount importance
especially when analytical method is not feasible or difficult to implement.

Let F : Rn → Rn be a monotone mapping and Λ be a subset of Rn. We wish to find a point x∗ ∈ Λ,
such that

F(x∗) = 0. (1)
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The feasible set Λ is assumed to nonempty closed and convex. We call problem (1) system of
nonlinear monotone equations with convex constraints. This problem appears as a subproblem
in generalized proximal algorithms with Bregman distance [1]. In addition, some monotone variational
inequality problems of finding y ∈ C for which 〈x − y, F(y)〉 ≥ 0, ∀ x ∈ C can be converted into
systems of monotone equations [2]. Furthermore, l1− norm regularized optimization problems can be
reformulated as monotone nonlinear equations [3].

Consider the following unconstrained optimization problem

min
x∈Rn

f (x), (2)

where f : Rn → R is assumed to be continuous, bounded below and its gradient, denoted by
F, exists. Fermat’s extremum theorem suggests that if a point x∗ is the local minimizer of the
unconstrained optimization problem (2) then problem (1) holds. In addition, suppose x∗ is the
minimizer of problem (2), then problem (1) is the first order necessary condition for the unconstrained
optimization problem (2). This also underlines the importance of problem (1).

Starting from a given initial point x0 ∈ Rn, popular iterative methods, such as Newton’s method,
quasi-Newton method, conjugate gradient method, for solving (2) use an updating rule defined
as follows

xk+1 = xk + αkdk, k = 0, 1, 2, ..., (3)

where αk and dk denote stepsize and search direction respectively.
The search direction in (3) is usually defined as dk = −B−1

k F(xk) where Bk is either the exact
Hessian matrix∇2 f (xk) in the case of Newton’s method or the approximation of the Hessian matrix in
the case of quasi-Newton method. The approximation of the Hessian matrix, Bk, is required to satisfy
the following secant equation

Bksk−1 = yk−1, (4)

sk−1 = xk − xk−1 and yk−1 = F(xk)− F(xk−1).
The Quasi-Newton method was developed to overcome one of the major shortcomings associated

with the famous Newton’s method which is the need to compute second derivative of the objective
function in every iteration. However, it inherits the problem of storing n× n matrices throughout the
iteration process which makes it unsuitable for large scale problems. One of the crucial approaches
developed to overcome the storage problem of the quasi Newton method is the matrix-free method
proposed by Barzilai and Borwein (BB) [4]. The BB method uses (3) to generate the next iterate with
the search direction given by dk = −F(xk) and the stepsize taken as diagonal matrix Dk = τk I which
is supposed to satisfy the secant Equation (4). However, since τk I produces diagonal matrices with
identical diagonal elements, it is usually very difficult to find τk for which D−1

k = τ−1
k I satisfies (4) when

the dimension is greater than one. Consequently, Barzilai and Borwein required D−1
k to approximately

satisfies (4) by finding τk ∈ R which minimizes the following least square problems

min
τ
‖τsk−1 − yk−1‖2, (5)

and
min

τ
‖sk−1 − τyk−1‖2. (6)

The solutions of the minimization problems (5) and (6) are respectively given as

τBB1
k =

‖sk−1‖2

〈yk−1, sk−1〉
and τBB2

k =
〈yk−1, sk−1〉
‖yk−1‖2 . (7)

By Cauchy Schwarz inequality, we see that the stepsize produced by τBB1
k is always greater than or

equal to the one produced by τBB2
k whenever 〈yk−1, sk−1〉 > 0. Barzilai and Borwein proved that
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the iterative scheme (3) with αk = τBB1
k and dk = −F(xk) converges with R-superlinear rate for

two-dimensional strictly convex quadratic problems.
One disadvantage of the BB method, however, is that the stepsizes τBB1

k and τBB2
k may become

negative if the objective function is not convex. Thus, Dai et al. [5] proposed and analyzed the following
positive stepsize

τ̂k =
‖sk−1‖
‖yk−1‖

. (8)

The stepsize (8) is the geometric mean of τBB1
k and τBB2

k . They showed that the iterative scheme (3)
with αk = τ̂k has the same rate of convergence with the stepsize τBB1

k under certain conditions for
two-dimensional strictly convex quadratic functions. Recently, Dai et al. [6] proposed a family of
gradient methods whose stepsize is a convex combination of τBB1

k and τBB2
k . The stepsize is obtained

by solving the following problem

Ψξ(τ) = ‖ξ[(1/τ)sk−1 − yk−1] + (1− ξ)[sk−1 − τyk−1]‖2 . (9)

It was shown that if 0 ≤ ξ ≤ 1 and 〈yk−1, sk−1〉 > 0, then dΨξ (τ)
dτ = 0, has a unique solution in the closed

interval [τBB1
k , τBB2

k ]. They proved that their method is R-superlinearly and R-linearly convergent for
two- dimensional strictly convex quadratics and any finite dimensional case respectively. Convergence
analysis of the BB stepsizes has been explored and interested reader may refer to the following
References [7–12].

On the other hand, the BB method with the stepsize τBB1
k has been extended to solve unconstrained

nonlinear equations by La Cruz and Raydan [13]. Their algorithm is built on the strategy of
nonmonotone line search technique which guarantees the global convergence of the method.
Numerical experiments presented reveal their method competes with some well-established existing
methods. However, their algorithm requires descent directions with respect to the squared norm of
the residual. This means computation of a directional derivative, or its good approximation is needed
at every iteration. Consequently, La Cruz et al. [14] proposed another BB method with a different
nonmonotone line-search technique for solving unconstrained nonlinear equations. Their approach
has advantage because unlike the former, the computations of directional derivatives are completely
avoided. Based on the projection technique of Solodov and Svaiter [15], Zhang and Zhou [16]
proposed an interesting projection spectral method which can be viewed as a modification of the
method given in References [13,14]. They proposed a new line search strategy which does not
require any merit function and takes the monotonicity of F into account. They established the global
convergence of the method under some suitable assumptions and present some numerical experiments
to demonstrate its computational advantage. In Reference [17], Yu et al. extended the method given
by Zhang and Zhou [16] to solve monotone system of nonlinear equations with convex constraints.
Their method is globally convergent under some conditions and preliminary numerical results show
that the method works well and is more suitable compared to the projection method in Reference [18].
Recently, Mohammad and Abubakar [19] proposed a positive spectral method for unconstrained
monotone nonlinear equations based on the projection technique in Reference [15]. The spectral
parameter proposed is a convex combination of modified τBB1

k and τ̂k. Their method works well and
was extended to solve monotone nonlinear equations with convex constraints in Reference [20] as well
as signal and image restoration in Reference [21].

Inspired by above contributions, we propose a two step iterative scheme based on the projection
technique for solving system of monotone nonlinear equations with convex constraints. We define two
search directions using Barzilai and Borwein (BB1 and BB2) spectral parameters with modifications.
In addition, we investigate the efficiency of the propose algorithm in restoring blurred images.
The symbols 〈 ·, · 〉 and ‖ · ‖ denote inner product and Euclidean norm respectively. The remaining
part of this paper is organized as follows. In Section 2, we describe the proposed method and its global
convergence. We report numerical experiments to show the efficiency of the algorithm in Section 3.
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We describe the application of the proposed algorithm in Section 4 and give some conclusions as well
as possible future research perspective in Section 5.

2. Two Step Iterative Scheme and Its Convergence Analysis

We begin this section with the following definition.

Definition 1. Let x, y ∈ Rn, a mapping F : Rn → Rn is said to be

(i) monotone if
〈F(x)− F(y), x− y〉 ≥ 0. (10)

(ii) Lipschitzian continuous if there exists L > 0 such that

‖F(x)− F(y)‖ ≤ L‖x− y‖. (11)

From the discussions in the preceding section, we observe that all the methods use the one-step
formula (3) to update their respective sequence of iterates. Let I be an identity map in Rn, if we set
d := (F− I), then formula (3) is closely related to the well-known Mann iterative scheme [22]

uk+1 = uk + αk(F(uk)− uk), (12)

where 0 ≤ αk < 1. Mann iteration has been applied to solve different kind of nonlinear problems
successfully. However, its convergence speed is relatively slow. Different studies have shown that the
famous two-step Ishikawa iterative scheme [23]

vk = (1− αk)uk + αkF(uk),

uk+1 = (1− βk)uk + βkF(vk),
(13)

where αk, βk ∈ [0, 1), converges faster than the one-step Mann iteration.

Let d̄k = (F− I)uk and d̂k = F(vk)− uk, then Ishikawa iterative scheme can be rewritten as follows

vk = uk + αk d̄k,

uk+1 = uk + βk d̂k.
(14)

Based on the fact that the two step Ishikawa iterative scheme has faster convergence speed than
the one-step Mann iterative scheme, in this paper, we propose a new two-step iterative scheme
incorporating nonnegative BB parameters with projection strategy to solve monotone nonlinear
equation with convex constraints. Given a starting point x0 ∈ Λ and αk, βk ∈ (0, 1], we define the
updating formula for the proposed two-step scheme as follows

wk = xk + αkdI
k,

xk+1 = PΛ

[
xk −

〈F(zk), xk − zk〉
‖F(zk)‖2 F(zk)

]
,

(15)

where zk = xk + βkdI I
k , PΛ(·) is a projection operator defined below and

dI
k = −F(xk), if k = 0,

dI
k = −λI(xk)F(xk), if k > 0,

dI I
k = −λI I(wk)F(xk), for k ≥ 0.

(16)
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For simplicity we denote λI(xk) := λI
k and λI I(wk) := λI I

k . The parameters λI
k and λI I

k are modifications
of the BB parameters (7) given as follows

λI
k =

‖sI
k‖

2

〈yI
k , sI

k〉
,

λI I
k =

〈yI I
k , sI I

k 〉
‖yI I

k ‖2 ,
(17)

where 

yI
k = F(xk+1)− F(xk) + rsI

k, r > 0,

yI I
k = F(wk)− F(xk) + tsI I

k , t > 0,

sI
k = xk+1 − xk,

sI I
k = wk − xk.

(18)

Assumption 1. Throughout this paper, we assume the following

(i) The solution set of problem (1) is nonempty.
(ii) The mapping F : Rn → Rn satisfies (10)–(11).

(iii) The sequence {αk} is in (0, 1) such that lim
k→∞

αk = 0.

The following Lemma shows that the spectral parameters (17) are well-defined and bounded.

Lemma 1. Suppose that Assumption 1 holds and t > L > 0, then we have

η ≤ λI
k ≤ µ,

and
δ ≤ λI I

k ≤ γ,

where η = 1
L+r , µ = 1

r , δ = t
(t+L)2 , and γ = t+L

(t−L)2 .

Proof of Lemma 1. The monotonicity of F gives 〈F(xk+1)− F(xk), xk+1 − xk〉 ≥ 0. Therefore, by the
definition of yI

k and yI I
k we have

〈yI
k, sI

k〉 = 〈F(xk+1)− F(xk), sI
k〉+ r〈sI

k, sI
k〉 ≥ r‖sI

k‖
2. (19)

〈yI I
k , sI I

k 〉 = 〈F(wk)− F(xk), sI I
k 〉+ t〈sI I

k , sI I
k 〉 ≥ t‖sI I

k ‖
2. (20)

On the other hand, by (11) and Cauchy Schwarz inequality, we have

〈yI
k, sI

k〉 = 〈F(xk+1)− F(xk), sI
k〉+ r〈sI

k, sI
k〉 ≤ (L + r)‖sI

k‖
2. (21)

〈yI I
k , sI I

k 〉 = 〈F(wk)− F(xk), sI I
k 〉+ t〈sI I

k , sI I
k 〉 ≤ (t + L)‖sI I

k ‖
2. (22)

‖yI I
k ‖ = ‖F(wk)− F(xk) + t(wk − xk)‖ ≤ (t + L)‖sI I

k ‖. (23)

Also since t > L, from (23) we can have

(t− L)‖sI I
k ‖ ≤ ‖F(wk)− F(xk) + t(wk − xk)‖ ≤ (t + L)‖sI I

k ‖. (24)

Therefore, by (19) and (21) we have

1
L + r

≤
‖sI

k‖
2

〈yI
k, sI

k〉
≤ 1

r
,
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and from (20), (22) and (24) we have

t
(t + L)2 ≤

〈yI I
k , sI I

k 〉
‖yI I

k ‖2
≤ t + L

(t− L)2 .

Remark 1. We give the following remarks

(i) From Lemma 1, it is not difficult to see that the two search directions dI
k and dI I

k satisfy the descent condition.
That is, {

〈dI
k, F(xk)〉 ≤ −η‖F(xk)‖2

〈dI I
k , F(xk)〉 ≤ −δ‖F(xk)‖2.

(25)

(ii) The two search directions dI
k and dI I

k satisfy the following inequalities{
η‖F(xk)‖ ≤ ‖dI

k‖ ≤ µ‖F(xk)‖
δ‖F(xk)‖ ≤ ‖dI I

k ‖ ≤ γ‖F(xk)‖.
(26)

Next, we describe the projection operator in (15) which is usually used in iterative algorithms for
solving problems such as fixed point problem, variational inequality problem, and so on. Let x ∈ Rn

and define an operator PΛ : Rn → Λ by PΛ(x) = argmin{‖x− y‖ : y ∈ Λ}. The operator PΛ is called a
projection onto the feasible set Λ and it enjoys the nonexpansive property, that is, ‖PΛ(x)− PΛ(y)‖ ≤
‖x− y‖, ∀ x, y ∈ Rn. If y ∈ Λ, then PΛ(y) = y and therefore, we have

‖PΛ(x)− y‖ ≤ ‖x− y‖. (27)

We now state the steps of the proposed algorithm which we call two-step spectral gradient method.

Remark 2. We quickly note the following remarks

(i) We claim that there exists a step-size βk satisfying the line search (1) for any k ≥ 0. Suppose on the
contrary that there exists some k0 such that for any i = 0, 1, 2, ..., the line search (1) is not satisfied, that is

− 〈F(xk0 + κ$id(wk0)), d(wk0)〉 < σκ$i‖d(wk0)‖
2‖F(xk0 + κ$id(wk0))‖

1/c. (28)

Since F is continuous and λI I
k is bounded for all k, letting i→ ∞ yields

‖F(xk0)‖ ≤ 0. (29)

It is clear that the inequality (29) cannot hold. Hence the line search (1) is well-defined.
(ii) The line search defined by (1) is more general than that of Reference [24].

(iii) It follows from (15) and Assumption 1 that lim
k→∞
‖wk − xk‖ = 0.

The next Lemma is very crucial to the convergence of Algorithm 1.



Symmetry 2020, 12, 874 7 of 20

Algorithm 1: Two-Step Spectral Gradient Projection Method (TSSP)

Input: Given x0 ∈ Λ, 0 < κ ≤ 1, r, t > 0, σ, $ ∈ (0, 1) and {αk} ∈ (0, 1). Set k = 0.
Step 1: Compute dI

k using (16).
if dI

k = 0, then
xk is a solution and the iteration process stops.

end
Step 2: Compute wk = xk + αkdI

k.
Step 3: Compute dI I

k using (16).
Step 4: Define a set {κ, κ$, κ$2, · · · , κ$n},
while

−〈F(xk + κ$idI I
k ), dI I

k 〉 ≥ σκ$i‖dI I
k ‖

2‖F(xk + κ$idI I
k )‖1/c, c ≥ 1,

do
set βk = κ$i where i is the smallest nonegative integer.

end
Step 5: Set zk = xk + βkdI I

k ,
if zk ∈ Λ and ‖F(zk)‖ = 0, then

stop,
else

xk+1 = PΛ

[
xk −

〈F(zk), xk − zk〉
‖F(zk)‖2 F(zk)

]
.

end
Step 6: Set k := k + 1 and go to Step 1.

Lemma 2. Let the Assumption 1 holds, then the sequences {wk}, {zk} and {xk} generated by Algorithm 1 are
bounded. In addition, there exist some positive constants m1, m2 and m3 such that

‖F(xk)‖ ≤ m1

‖F(wk)‖ ≤ m2

‖F(zk)‖ ≤ m3.

(30)

Furthermore,
lim
k→∞

βk‖dI I
k ‖ = 0, (31)

and
lim
k→∞
‖xk+1 − xk‖ = 0. (32)

Proof of Lemma 2. Let x∗ be a solution of problem (1), then by monotonicity of F, we have

〈F(zk), xk − x∗〉 = 〈F(zk), xk − zk + zk − x∗〉
= 〈F(zk), xk − zk〉+ 〈F(zk)− F(x∗), zk − x∗〉
≥ 〈F(zk), xk − zk〉.

(33)
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By the definition of xk+1, and (33) we have

‖xk+1 − x∗‖2 =

∥∥∥∥PΛ

[
xk −

〈F(zk), xk − zk〉
‖F(zk)‖2 F(zk)

]
− x∗

∥∥∥∥2

≤
∥∥∥∥xk − x∗ − 〈F(zk), xk − zk〉

‖F(zk)‖2 F(zk)

∥∥∥∥2

= ‖xk − x∗‖2 − 2
〈F(zk), xk − zk〉
‖F(zk)‖2 〈F(zk), xk − x∗〉+ 〈F(zk), xk − zk〉2

‖F(zk)‖2

≤ ‖xk − x∗‖2 − 2
〈F(zk), xk − zk〉
‖F(zk)‖2 〈F(zk), xk − zk〉+

〈F(zk), xk − zk〉2
‖F(zk)‖2

= ‖xk − x∗‖2 − 〈F(zk), xk − zk〉2
‖F(zk)‖2

≤ ‖xk − x∗‖2.

(34)

This implies that ‖xk − x∗‖ ≤ ‖x0 − x∗‖ for all k, and therefore the sequence {xk} is bounded and
lim
k→∞
‖xk − x∗‖ exists. Let m1 be a positive constant such that ‖x0− x∗‖ = m1/L, since F is Lipschitzian

continuous, we have

‖F(xk)‖ = ‖F(xk)− F(x∗)‖
≤ L‖xk − x∗‖
≤ L‖x0 − x∗‖
= m1.

(35)

It follows from (26), that ‖dI
k‖ ≤ µm1 and ‖dI I

k ‖ ≤ γm1. It further follows from (15) that {wk} is
bounded. By Lipschitzian continuity of F, there exists m2 > 0 such that ‖F(wk)‖ ≤ m2.

Since {dI I
k } is bounded, it follows from the definition zk that {zk} is also bounded. By Lipschitzian

continuity of F, there exists some constant m3 for which

‖F(zk)‖ ≤ m3. (36)

Since the stepsize βk in Step 4 of Algorithm 1 satisfies βk ≤ 1, ∀ k, then from (1), we have

σ2β4
k‖d

I I
k ‖

4‖F(zk)‖2/c ≤ σ2β2
k‖d

I I
k ‖

4‖F(zk)‖2/c ≤ 〈F(zk), βkdI I
k 〉

2.

Combining with (34) gives

σ2β4
k‖d

I I
k ‖

4‖F(zk)‖2/c

‖F(zk)‖2 ≤
〈F(zk), βkdI I

k 〉
2

‖F(zk)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (37)

By (36) and (37), we have

σ2β4
k‖d

I I
k ‖

4 ≤ ‖F(zk)‖2− 2
c

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
≤ m2− 2

c
3

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

Taking limit gives
σ2 lim

k→∞
β4

k‖d
I I
k ‖

4 = 0. (38)

Hence, it holds that
lim
k→∞

βk‖dI I
k ‖ = 0. (39)
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This together with the definition of zk in Step 5 of Algorithm 1 yields

lim
k→∞
‖zk − xk‖ = 0. (40)

By the property of projection (27), we have

lim
k→∞
‖xk+1 − xk‖ = lim

k→∞

∥∥∥∥PΛ

[
xk −

〈F(zk), xk − zk〉
‖F(zk)‖2 F(zk)

]
− xk

∥∥∥∥
≤ lim

k→∞

∥∥∥∥xk −
〈F(zk), xk − zk〉
‖F(zk)‖2 F(zk)− xk

∥∥∥∥
≤ lim

k→∞
‖xk − zk‖

= 0.

(41)

Theorem 1. Let {xk} be the sequence generated by Algorithm 1. Suppose that Assumption 1 holds, then the
sequence {xk} converges to a point x∗ which satisfies F(x∗) = 0.

Proof of Theorem 1. We begin by proving that

lim inf
k→∞

‖F(xk)‖ = 0. (42)

Suppose on the contrary that (42) does not hold, then there exists q > 0 for which

‖F(xk)‖ ≥ q, ∀ k ≥ 0. (43)

If βk 6= κ, since Algorithm 1 uses a backtracking process to compute βk starting from κ, then $−1βk
does not satisfy (1), that is,

− 〈F(xk + $−1βkdI I
k ), dI I

k 〉 < σ$−1βk‖dI I
k ‖

2‖F(xk + $−1βkdI I
k )‖1/c. (44)

Consequently, we have from Remark 1 (i),

δ‖F(xk)‖2 ≤ −〈dI I
k , F(xk)〉

= −〈dI I
k , F(xk)− F(xk + $−1βkdI I

k ) + F(xk + $−1βkdI I
k )〉

= −〈dI I
k , F(xk)− F(xk + $−1βkdI I

k )〉 − 〈dI I
k , F(xk + $−1βkdI I

k )〉
< −〈dI I

k , F(xk)− F(xk + $−1βkdI I
k )〉+ σ$−1βk‖dI I

k ‖
2‖F(xk + $−1βkdI I

k )‖1/c

≤ ‖dI I
k ‖‖F(xk + $−1βkdI I

k )− F(xk)‖+ σ$−1βk‖dI I
k ‖

2‖F(xk + $−1βkdI I
k )‖1/c

≤ L‖dI I
k ‖‖xk + $−1βkdI I

k − xk‖+ σ$−1βk‖dI I
k ‖

2‖F(xk + $−1βkdI I
k )‖1/c

≤ L$−1βk‖dI I
k ‖

2 + σ$−1βk‖dI I
k ‖

2‖F(xk + $−1βkdI I
k )‖1/c

≤ (L$−1m4 + σ$−1m4m1/c
5 )βk‖dI I

k ‖,

where ‖F(xk + $−1βkdI I
k )‖ is bounded above by a positive constant m5. This means

βk‖dI I
k ‖ ≥

$δ‖F(xk)‖2

m4(L + σm1/c
5 )

≥ $δq2

m4(L + σm1/c
5 )

.
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Taking limit on both sides as k→ ∞, we have

lim
k→∞

βk‖dI I
k ‖ > 0. (45)

This contradicts (39). Hence (42) must hold. Now, since F is continuous and the sequence {xk} is
bounded, then there is some accumulation point of {xk} say x∗ for which ‖F(x∗)‖ = 0. By boundedness
of {xk}, we can find subsequence {xkj

} of {xk} for which lim
j→∞
‖xkj
− x∗‖ = 0. From the proof of

Lemma 2, we know that lim
k→∞
‖xk − x∗‖ exists. Therefore, we can conclude that lim

k→∞
‖xk − x∗‖ = 0 and

the proof is complete.

3. Numerical Results and Comparison

Attention is now turn to numerical experiments. The experiment is divided into two parts.
The first experiment aims to explore the role of the parameter c in the definition of the line search (1).
On the other hand, the second experiment discusses the computational advantage of the proposed
method in comparison with two existing methods. The two existing methods are:

(i) Spectral gradient projection method for monotone nonlinear equations with convex constraints
proposed by Yu et al. [17].

(ii) Two spectral gradient projection methods for constrained equations and their linear convergence
rate proposed by Liu and Duan [25]. This method has two algorithms i.e., Algorithm 2.1 and
Algorithm 2.2. We only compare our proposed method with Algorithm 2.1 since Algorithm 2.2 is
similar with that Yu et al. [17].

These two methods were chosen because their search directions are defined based on the BB
parameters. For convenience, we respectively denote the two methods by SGPM and TSGP. Algorithm 1
TSSP is implemented using the following parameters κ = 1, σ = 0.01, $ = 0.5, r = t = 0.01,
and αk =

1
(k+1)2 . The parameters used for the SGPM and TSGP methods were taken respectively from

References [17] and [25]. The metrics used for the comparison are: number of iterations (ITER), number
of function evaluations (FVAL) and CPU time (TIME). In the course of the experiments, we solved six
benchmark test problems using six (6) different starting points (see Table 1) by varying the number
of dimension. The test problems are denoted by Pi, i = 1, 2, 3, 4, 5, 6. Since the proposed algorithm is
derivative-free, the test problems include two nonsmooth problems. The three solvers were coded in
MATLAB R2017a and run on a PC with intel Core(TM) i5-8250u processor with 4 GB of RAM and CPU
1.60 GHZ. The MATLAB code for the TSSP algorithm is available in https://github.com/aliyumagsu/
TSSP_Algorithm. The iteration process is terminated whenever the inequality ‖F(xk)‖ ≤ 10−6 or
‖F(zk)‖ ≤ 10−6 is satisfied and failure is declared whenever the number of iterations exceeds 1000
and the terminating criterion mentioned above has not been satisfied.

First experiment. This experiment discusses the role of the parameter c in the definition of the line
search (1) with regards to the performance of the TSSP algorithm. We solved all the test Problems 1–6
with dimension n = 1000, using all the given initial guesses in Table 1 by varying the values of c.
That is, c = {1, 2, 3, 4, 5}. The comparison is based on ITER, FVAL and norm of the objective function,
(NORM), where the experimental results are presented in Table 2. CPU time results are omitted
in Table 2 because virtually all are less than 1 s. The results obtained reveal that the parameter c
slightly affected the performance of TSSP algorithm when solving Problems 2 and 6. For problem 2,
Algorithm 1 TSSP recorded least ITER and FVAL when c = 4 and 5 while different ITER and FVAL
values recorded for different values of c may be associated with the random starting points chosen
independently by MATLAB. However, extensive numerical experiment is needed to investigate the
role of the parameter c in the performance of the TSSP algorithm.

Second experiment. This experiment presents the computational advantage of the proposed
method in comparison with the two existing methods mentioned above based on ITER, FVAL and
TIME. All the test problems 1− 6 were solved using the starting points in Table 1 with three (3) different

https://github.com/aliyumagsu/TSSP_Algorithm
https://github.com/aliyumagsu/TSSP_Algorithm
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dimensions n = 1000, 50,000 and 100,000. In this experiment, we take c = 2. The results obtained by
each solver are reported in Tables 3 and 4. The NORM results presented in Tables 3 and 4 show that
each solver successfully obtained solutions of all the test Problems 1–6. However, it is clear that the
TSSP algorithm obtained the solutions of virtually all the test problems with least ITER, FVAL and
TIME. These information are summarized in Figures 1–3 based on the Dolan and Moré performance
profile [26]. This performance profile tells the percentage win by each solver. In all the experiments,
we see from Figures 1–3 that the proposed TSSP algorithm performs better with higher percentage win
based on ITER, FVAL and TIME for solving all the test problems. In fact, the TSSP algorithm recorded
100 percent least FVAL for all the test problems.

Table 1. Starting points used for the test problems.

Starting Points (SP) Values

x1 (0.1, 0.1, 0.1, · · · , 0.1)T

x2 ( 1
2 , 1

22 , 1
23 , · · · , 1

2n )T

x3 (2, 2, . . . , 2)T

x4 (1, 1
2 , 1

3 , · · · , 1
n )

T

x5 (1− 1
n , 1− 2

n , 1− 3
n , · · · , 0)T

x6 rand(0, 1)

We use the following test problems where F(x) = ( f1(x), f2(x), · · · , fn(x))T , and x =

(x1, x2, · · · , xn)T .

Problem 1 ([27]).
f1(x) = ex1 − 1

fi(x) = exi + xi−1 − 1, i = 1, 2, · · · , n− 1,

where Λ = Rn
+.

Problem 2 ([28]).
fi(xi) = log(xi + 1)− xi

n
, i = 1, 2, · · · , n,

where Λ = {x ∈ Rn :
n
∑

i=1
xi ≤ n, xi > −1, i = 1, 2, · · · , n}.

Problem 3 ([29]).
fi(x) = 2xi − sin |xi|, i = 1, 2, · · · , n,

where Λ = Rn
+.

Problem 4 ([30]).
fi(x) = exi − 1, i = 1, 2, · · · , n,

where Λ = Rn
+.

Problem 5 ([29]).
f1(x) = x1 − ecos(h(x1+x2))

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), i = 1, 2, · · · , n− 1,

fn(x) = xn − ecos(h(xn−1+xn)),

where h = 1
n+1 and Λ = Rn

+.

Problem 6 ([31]).
fi(x) = xi − sin(|xi − 1|), i = 1, 2, · · · , n− 1,
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where Λ = {x ∈ Rn :
n
∑

i=1
xi ≤ n, xi ≥ −1, i = 1, 2, · · · , n}.
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Figure 1. Dolan and Moré performance profile with respect to number of iterations.
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Figure 2. Dolan and Moré performance profile with respect to number of function evaluation.
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Figure 3. Dolan and Moré performance profile with respect to CPU time.
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Table 2. Numerical results showing the effect of the parameter c in the line search.

c 1 2 3 4 5

SP ITER FVAL NORM ITER FVAL NORM ITER FVAL NORM ITER FVAL NORM ITER FVAL NORM

P1

x1 4 6 2.18 × 10−7 4 6 2.18 × 10−7 4 6 2.18 × 10−7 4 6 2.18 × 10−7 4 6 2.18 × 10−7

x2 7 9 2.82 × 10−7 7 9 2.82 × 10−7 7 9 2.82 × 10−7 7 9 2.82 × 10−7 7 9 2.82 × 10−7

x3 5 7 1.05 × 10−7 5 7 1.05 × 10−7 5 7 1.05 × 10−7 5 7 1.05 × 10−7 5 7 1.05 × 10−7

x4 7 9 6.34 × 10−8 7 9 6.34 × 10−8 7 9 6.34 × 10−8 7 9 6.34 × 10−8 7 9 6.34 × 10−8

x5 7 9 6.13 × 10−8 7 9 6.13 × 10−8 7 9 6.13 × 10−8 7 9 6.13 × 10−8 7 9 6.13 × 10−8

x6 7 9 2.77 × 10−8 7 9 1.94 × 10−8 7 9 2.3 × 10−8 7 9 3.63 × 10−8 7 9 1.94 × 10−8

P2

x1 3 5 2.41 × 10−8 3 5 2.41 × 10−8 3 5 2.41 × 10−8 3 5 2.41 × 10−8 3 5 2.41 × 10−8

x2 8 10 5.09 × 10−8 8 10 5.09 × 10−8 8 10 5.09 × 10−8 8 10 5.09 × 10−8 8 10 5.09 × 10−8

x3 8 10 1.23 × 10−7 8 10 1.23 × 10−7 8 10 1.23 × 10−7 8 10 1.23 × 10−7 9 11 1.49 × 10−7

x4 9 11 1.53 × 10−7 9 11 1.53 × 10−7 9 11 1.53 × 10−7 9 11 1.53 × 10−7 9 11 1.53 × 10−7

x5 10 12 5.81 × 10−8 10 12 5.81 × 10−8 10 12 5.81 × 10−8 9 11 3.45 × 10−7 9 11 3.45 × 10−7

x6 10 12 4.97 × 10−8 10 12 6.04 × 10−8 10 12 5.27 × 10−8 9 11 3.51 × 10−7 9 11 3.49 × 10−7

P3

x1 3 5 4.03 × 10−8 3 5 4.03 × 10−8 3 5 4.03 × 10−8 3 5 4.03 × 10−8 3 5 4.03 × 10−8

x2 3 5 1.19 × 10−7 3 5 1.19 × 10−7 3 5 1.19 × 10−7 3 5 1.19 × 10−7 3 5 1.19 × 10−7

x3 4 6 8.27 × 10−7 4 6 8.27 × 10−7 4 6 8.27 × 10−7 4 6 8.27 × 10−7 4 6 8.27 × 10−7

x4 4 6 2.12 × 10−8 4 6 2.12 × 10−8 4 6 2.12 × 10−8 4 6 2.12 × 10−8 4 6 2.12 × 10−8

x5 5 7 1.46 × 10−7 5 7 1.46 × 10−7 5 7 1.46 × 10−7 5 7 1.46 × 10−7 5 7 1.46 × 10−7

x6 5 7 1.46 × 10−7 5 7 1.44 × 10−7 5 7 9.49 × 10−8 5 7 1.37 × 10−7 5 7 1.88 × 10−7

P4

x1 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
x2 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
x3 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
x4 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
x5 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
x6 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

P5

x1 3 5 7.96 × 10−7 3 5 7.96 × 10−7 3 5 7.96 × 10−7 3 5 7.96 × 10−7 3 5 7.96 × 10−7

x2 3 5 8.26 × 10−7 3 5 8.26 × 10−7 3 5 8.26 × 10−7 3 5 8.26 × 10−7 3 5 8.26 × 10−7

x3 3 5 2.18 × 10−7 3 5 2.18 × 10−7 3 5 2.18 × 10−7 3 5 2.18 × 10−7 3 5 2.18 × 10−7

x4 3 5 8.24 × 10−7 3 5 8.24 × 10−7 3 5 8.24 × 10−7 3 5 8.24 × 10−7 3 5 8.24 × 10−7

x5 3 5 6.8 × 10−7 3 5 6.8 × 10−7 3 5 6.8 × 10−7 3 5 6.8 × 10−7 3 5 6.8 × 10−7

x6 3 5 6.77 × 10−7 3 5 6.81 × 10−7 3 5 6.8 × 10−7 3 5 6.79 × 10−7 3 5 6.87 × 10−7

P6

x1 3 5 1.07 × 10−7 3 5 1.07 × 10−7 3 5 1.07 × 10−7 3 5 1.07 × 10−7 3 5 1.07 × 10−7

x2 9 11 8.56 × 10−9 9 11 8.56 × 10−9 8 10 7.89 × 10−7 8 10 7.89 × 10−7 8 10 7.89 × 10−7

x3 4 6 1.15 × 10−8 4 6 1.15 × 10−8 4 6 1.15 × 10−8 4 6 1.15 × 10−8 4 6 1.15 × 10−8

x4 11 13 1.26 × 10−7 11 13 1.26 × 10−7 11 13 1.26 × 10−7 10 12 8.08 × 10−8 10 12 8.08 × 10−8

x5 10 12 9.99 × 10−9 10 12 9.99 × 10−9 10 12 9.99 × 10−9 10 12 9.99 × 10−9 10 12 9.99 × 10−9

x6 10 12 2.72 × 10−8 10 12 1.67 × 10−8 9 11 1.46 × 10−7 10 12 2.84 × 10−8 10 12 3.82 × 10−8
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Table 3. Numerical results obtained by each solver.

TSSP SGPM TSGP

Problem DIM SP ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

P1

1000

x1 4 6 0.23423 2.18 × 10−7 5 11 0.071452 1.98 × 10−7 10 21 0.027483 4.81 × 10−7

x2 7 9 0.024129 2.82 × 10−7 21 43 0.020705 8.07 × 10−7 16 33 0.00993 7.7 × 10−7

x3 5 7 0.00479 1.05 × 10−7 8 17 0.005439 9.35 × 10−9 14 29 0.006688 7.24 × 10−7

x4 7 9 0.006348 6.34 × 10−8 22 45 0.007646 6.66 × 10−7 10 21 0.006682 8.79 × 10−7

x5 7 9 0.007179 6.13 × 10−8 7 15 0.005533 2.11 × 10−8 8 17 0.007977 9.36 × 10−7

x6 7 9 0.01028 3.35 × 10−8 7 15 0.008546 2.31 × 10−8 14 29 0.006145 6.95 × 10−7

50,000

x1 4 6 0.065863 6.63 × 10−8 5 11 0.06618 3.18 × 10−7 11 23 0.26178 8.02 × 10−7

x2 7 9 0.06825 2.82 × 10−7 21 43 0.16873 8.07 × 10−7 16 33 0.23724 7.7 × 10−7

x3 5 7 0.1091 7.38 × 10−7 8 17 0.092683 6.61 × 10−8 16 33 0.19828 7.44 × 10−7

x4 7 9 0.07815 6.35 × 10−8 22 45 0.19587 6.67 × 10−7 10 21 0.11777 8.72 × 10−7

x5 8 10 0.090836 8 × 10−9 7 15 0.052803 1.34 × 10−7 17 35 0.212 7.38 × 10−7

x6 8 10 0.081964 6.53 × 10−9 7 15 0.049061 1.32 × 10−7 16 33 0.17428 8.9 × 10−7

100,000

x1 4 6 0.10587 7.46 × 10−8 5 11 0.12233 4.34 × 10−7 12 25 0.35698 4.49 × 10−7

x2 7 9 0.13938 2.82 × 10−7 21 43 0.36669 8.07 × 10−7 16 33 0.53382 7.7 × 10−7

x3 6 8 0.17202 5.19 × 10−9 8 17 0.15426 9.34 × 10−8 17 35 0.58949 4.19 × 10−7

x4 7 9 0.15223 6.35 × 10−8 22 45 0.473 6.67 × 10−7 10 21 0.24947 8.72 × 10−7

x5 8 10 0.22073 1.13 × 10−8 7 15 0.1036 1.9 × 10−7 18 37 0.46019 4.18 × 10−7

x6 8 10 0.15584 1.18 × 10−8 7 15 0.1035 1.94 × 10−7 17 35 0.51277 7.07 × 10−7

P2

1000

x1 3 5 0.053692 2.41 × 10−8 19 39 0.022091 6.53 × 10−7 14 29 0.009273 9.17 × 10−7

x2 8 10 0.006247 5.09 × 10−8 19 39 0.008377 5.84 × 10−7 14 29 0.01022 7.19 × 10−7

x3 8 10 0.007091 1.23 × 10−7 24 49 0.009118 7.53 × 10−7 19 39 0.0171 5.49 × 10−7

x4 9 11 0.006962 1.53 × 10−7 20 41 0.00765 7.01 × 10−7 15 31 0.011734 7.44 × 10−7

x5 10 12 0.010053 5.81 × 10−8 23 47 0.010398 9.51 × 10−7 17 35 0.012062 9.65 × 10−7

x6 10 12 0.00733 7.06 × 10−8 23 47 0.009659 9.64 × 10−7 17 35 0.015027 9.61 × 10−7

50,000

x1 3 5 0.058732 1.71 × 10−7 22 45 0.27095 1.14 × 10−8 17 35 0.26277 4.05 × 10−7

x2 8 10 0.1112 5.09 × 10−8 19 39 0.17143 5.86 × 10−7 14 29 0.2504 7.22 × 10−7

x3 8 10 0.11157 8.68 × 10−7 27 55 0.33645 1.35 × 10−8 21 43 0.44285 6.23 × 10−7

x4 9 11 0.11286 1.52 × 10−7 20 41 0.18758 7.05 × 10−7 15 31 0.26827 7.49 × 10−7

x5 10 12 0.13738 4.2 × 10−7 26 53 0.24905 8.68 × 10−7 20 41 0.32368 4.36 × 10−7

x6 10 12 0.15618 4.3 × 10−7 26 53 0.36605 8.69 × 10−7 20 41 0.31156 4.35 × 10−7

100,000

x1 3 5 0.091277 2.42 × 10−7 21 43 0.41274 3.2 × 10−8 17 35 0.55481 5.73 × 10−7

x2 8 10 0.19525 5.09 × 10−8 19 39 0.35045 5.86 × 10−7 14 29 0.48308 7.22 × 10−7

x3 9 11 0.27631 1.21 × 10−8 27 55 0.628 1.91 × 10−8 21 43 0.66514 8.81 × 10−7

x4 9 11 0.32755 1.52 × 10−7 20 41 0.44064 7.05 × 10−7 15 31 0.48698 7.49 × 10−7

x5 10 12 0.25909 5.94 × 10−7 27 55 0.54056 6.2 × 10−7 20 41 0.74411 6.16 × 10−7

x6 10 12 0.28941 5.64 × 10−7 27 55 0.57984 6.19 × 10−7 20 41 0.66926 6.16 × 10−7

P3

1000

x1 3 5 0.027505 4.03 × 10−8 5 11 0.004418 1.97 × 10−8 11 23 0.004932 4.32 × 10−7

x2 3 5 0.002243 1.19 × 10−7 5 11 0.004881 3.84 × 10−8 8 17 0.006148 5.84 × 10−7

x3 4 6 0.003901 8.27 × 10−7 6 13 0.00328 4.62 × 10−7 13 27 0.010201 6.63 × 10−7

x4 4 6 0.002999 2.12 × 10−8 5 11 0.002216 3.93 × 10−7 11 23 0.007859 9.11 × 10−7

x5 5 7 0.004183 1.46 × 10−7 6 13 0.002305 4.67 × 10−8 14 29 0.009221 8.68 × 10−7

x6 5 7 0.002517 1.08 × 10−7 6 13 0.002634 4.62 × 10−8 14 29 0.007964 8.55 × 10−7

50,000

x1 3 5 0.037839 2.85 × 10−7 5 11 0.046813 1.39 × 10−7 13 27 0.3024 4.88 × 10−7

x2 3 5 0.043702 1.19 × 10−7 5 11 0.075547 3.84 × 10−8 8 17 0.13 5.84 × 10−7

x3 5 7 0.067654 5.79 × 10−8 7 15 0.053226 3.24 × 10−8 15 31 0.2087 7.48 × 10−7

x4 4 6 0.043413 2.13 × 10−8 5 11 0.041688 3.93 × 10−7 11 23 0.20256 9.12 × 10−7

x5 6 8 0.05719 1.03 × 10−8 6 13 0.052196 3.31 × 10−7 16 33 0.31984 9.81 × 10−7

x6 6 8 0.080035 1.01 × 10−8 6 13 0.047676 3.31 × 10−7 16 33 0.31002 9.75 × 10−7

100,000

x1 3 5 0.074948 4.03 × 10−7 5 11 0.095503 1.97 × 10−7 13 27 0.38401 6.89 × 10−7

x2 3 5 0.068017 1.19 × 10−7 5 11 0.070957 3.84 × 10−8 8 17 0.18947 5.84 × 10−7

x3 5 7 0.26113 8.19 × 10−8 7 15 0.13652 4.58 × 10−8 16 33 0.51768 4.22 × 10−7

x4 4 6 0.13668 2.13 × 10−8 5 11 0.073903 3.93 × 10−7 11 23 0.31674 9.12 × 10−7

x5 6 8 0.16527 1.46 × 10−8 6 13 0.080572 4.68 × 10−7 17 35 0.46576 5.54 × 10−7

x6 6 8 0.15469 1.5 × 10−8 6 13 0.1035 4.68 × 10−7 17 35 0.49075 5.52 × 10−7

Table 4. Numerical results obtained by each solver.

TSSP SGPM TSGP

Problem DIM SP ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

P4

1000

x1 1 2 0.024999 0 1 3 0.002082 0 1 3 0.002665 0
x2 1 2 0.00153 0 1 3 0.001492 0 10 21 0.013708 6.89 × 10−7

x3 1 2 0.002033 0 1 3 0.001752 0 1 3 0.003047 0
x4 1 2 0.001605 0 11 23 0.00416 8.04 × 10−7 1 3 0.001204 0
x5 1 2 0.001898 0 20 41 0.006966 6.33 × 10−7 17 35 0.024513 5.22 × 10−7

x6 1 2 0.002199 0 20 41 0.005064 6.89 × 10−7 17 35 0.009568 5.82 × 10−7

50,000

x1 1 2 0.009816 0 1 3 0.02162 0 1 3 0.027567 0
x2 1 2 0.015792 0 1 3 0.010298 0 10 21 0.11697 6.89 × 10−7

x3 1 2 0.019539 0 1 3 0.009652 0 1 3 0.04943 0
x4 1 2 0.022933 0 11 23 0.087566 7.32 × 10−7 1 3 0.016433 0
x5 1 2 0.014115 0 23 47 0.15224 5.8 × 10−7 19 39 0.25956 5.87 × 10−7

x6 1 2 0.015431 0 23 47 0.17212 5.81 × 10−7 19 39 0.34396 5.8 × 10−7

100,000

x1 1 2 0.029333 0 1 3 0.018075 0 1 3 0.027167 0
x2 1 2 0.029502 0 1 3 0.021229 0 10 21 0.20962 6.89 × 10−7

x3 1 2 0.029413 0 1 3 0.029106 0 1 3 0.042574 0
x4 1 2 0.029978 0 11 23 0.15785 7.32 × 10−7 1 3 0.029647 0
x5 1 2 0.024201 0 23 47 0.37503 8.2 × 10−7 19 39 0.46268 8.31 × 10−7

x6 1 2 0.023344 0 23 47 0.30268 8.28 × 10−7 19 39 0.44689 8.24 × 10−7
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Table 4. Cont.

TSSP SGPM TSGP

Problem DIM SP ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

P5

1000

x1 3 5 0.026584 7.96 × 10−7 22 45 0.012781 4.76 × 10−7 20 41 0.02354 8.85 × 10−7

x2 3 5 0.003513 8.26 × 10−7 21 43 0.021446 9.78 × 10−7 20 41 0.026418 9.18 × 10−7

x3 3 5 0.003116 2.18 × 10−7 20 41 0.011601 5.12 × 10−7 19 39 0.02013 6.08 × 10−7

x4 3 5 0.002986 8.24 × 10−7 24 49 0.008455 1.26 × 10−7 20 41 0.038547 9.16 × 10−7

x5 3 5 0.003386 6.8 × 10−7 26 53 0.015125 2.64 × 10−8 20 41 0.021084 7.56 × 10−7

x6 3 5 0.003238 6.8 × 10−7 26 53 0.014889 2.67 × 10−8 20 41 0.019351 7.56 × 10−7

50,000

x1 6 8 0.10841 7.24 × 10−7 18 37 0.28111 1.99 × 10−8 22 45 0.63837 9.98 × 10−7

x2 6 8 0.12008 7.52 × 10−7 19 39 0.35252 5.32 × 10−7 23 47 0.59083 4.14 × 10−7

x3 4 6 0.091808 7.79 × 10−7 17 35 0.24494 5.52 × 10−7 21 43 0.61762 6.85 × 10−7

x4 6 8 0.10356 7.52 × 10−7 19 39 0.26199 1.04 × 10−8 23 47 0.58276 4.14 × 10−7

x5 6 8 0.1118 6.19 × 10−7 22 45 0.42086 5.64 × 10−8 22 45 0.68866 8.53 × 10−7

x6 6 8 0.13042 6.19 × 10−7 20 41 0.30457 2.21 × 10−7 22 45 0.57108 8.53 × 10−7

100,000

x1 7 9 0.3991 5.17 × 10−7 17 35 0.53229 5.58 × 10−8 23 47 1.4183 5.64 × 10−7

x2 7 9 0.33016 5.37 × 10−7 19 39 0.70642 7.53 × 10−7 23 47 1.2936 5.85 × 10−7

x3 5 7 0.22423 5.57 × 10−7 17 35 0.53979 7.8 × 10−7 21 43 1.0728 9.69 × 10−7

x4 7 9 0.31926 5.37 × 10−7 18 37 0.59493 2.92 × 10−8 23 47 1.3459 5.85 × 10−7

x5 6 8 0.25384 8.75 × 10−7 19 39 0.69354 1.21 × 10−8 23 47 1.2682 4.82 × 10−7

x6 6 8 0.37171 8.75 × 10−7 20 41 0.62058 3.13 × 10−7 23 47 1.3007 4.82 × 10−7

P6

1000

x1 3 5 0.010955 1.07 × 10−7 23 47 0.01257 6.93 × 10−7 19 39 0.015919 4.69 × 10−7

x2 9 11 0.006 8.56 × 10−9 23 47 0.012384 9.68 × 10−7 19 39 0.01716 5.74 × 10−7

x3 4 6 0.006474 1.15 × 10−8 6 13 0.002199 2.21 × 10−7 13 27 0.009428 8.36 × 10−7

x4 11 13 0.008502 1.26 × 10−7 23 47 0.013556 9.78 × 10−7 19 39 0.012728 5.69 × 10−7

x5 10 12 0.010102 9.99 × 10−9 7 15 0.004183 2.36 × 10−7 19 39 0.010011 4.42 × 10−7

x6 10 12 0.007011 7.27 × 10−9 7 15 0.006891 2.93 × 10−7 19 39 0.009542 4.06 × 10−7

50,000

x1 3 5 0.061255 7.6 × 10−7 24 49 0.23097 2.6 × 10−8 21 43 0.32775 5.28 × 10−7

x2 11 13 0.13565 2.66 × 10−7 25 51 0.23841 1.83 × 10−8 21 43 0.34316 6.46 × 10−7

x3 4 6 0.062462 8.1 × 10−8 7 15 0.065855 8.32 × 10−9 15 31 0.25529 9.4 × 10−7

x4 14 16 0.20446 1.62 × 10−8 26 53 0.26012 8.69 × 10−7 21 43 0.31348 6.46 × 10−7

x5 10 12 0.14657 7.62 × 10−8 8 17 0.071141 8.94 × 10−9 21 43 0.34669 5.05 × 10−7

x6 10 12 0.15597 7.06 × 10−8 8 17 0.091229 8.84 × 10−9 21 43 0.35675 5.27 × 10−7

100,000

x1 4 6 0.11184 5.71 × 10−9 24 49 0.57769 3.68 × 10−8 21 43 0.62764 7.47 × 10−7

x2 14 16 0.44177 1.79 × 10−7 25 51 0.45188 2.59 × 10−8 21 43 0.6427 9.14 × 10−7

x3 4 6 0.20305 1.15 × 10−7 7 15 0.14039 1.18 × 10−8 16 33 0.51687 5.3 × 10−7

x4 14 16 0.30629 1.42 × 10−7 27 55 0.49475 6.18 × 10−7 21 43 0.65503 9.14 × 10−7

x5 9 11 0.18947 2.07 × 10−8 8 17 0.13416 1.26 × 10−8 21 43 0.67669 7.15 × 10−7

x6 9 11 0.25267 2.25 × 10−8 8 17 0.16038 1.25 × 10−8 21 43 0.67886 7.17 × 10−7

4. Applications in Image Deblurring

In this section, we apply the proposed Algorithm 1 to solve problems arising from compressive
sensing, particularly image deblurring. Consider the following least square problem with `1−
regularization term

min
x

1
2
‖y− Ex‖2

2 + µ‖x‖1, (46)

where x ∈ Rn is the underlying images, y ∈ Rk is the observed images, E ∈ Rk×n (k << n),
linear operator, is an m × n blurring matrix, and the parameter µ > 0. Problem (46) is of great
importance because it appears in many areas of applications arising from compressive sensing.
Recently, problem (46) has been investigated by many researchers and different kinds of iterative
algorithms have been proposed in the literature [3,32–35]. Many algorithms for solving (46) fall into
two categories namely: algorithms that required differentiability assumption and algorithms that
are derivative free. Since `1−norm is a nonsmooth function, algorithms that require the assumption
of differentiabilty are not suitable for problem (46) in its original form. Consequently, either ‖x‖1 is
approximated with some smooth function or problem (46) is reformulated into an equivalent problem.
For instance, Figueiredo et al. [3] translate problem (46) into convex quadratic program as follows.
For any x ∈ Rn, we can find some vectors, say u, v ∈ Rn such that

x = u− v, u ≥ 0, v ≥ 0,
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where ui = max{0, xi}, vi = max{0,−xi} for all i = 1, 2, ..., n. Thus, we can write ‖x‖1 = eT
n (u + v),

where en is an n−dimensional vector with all elements one. Therefore, we can rewrite problem (46) as

min
u,v

1
2
‖y− E(u− v)‖2

2 + µeT
n (u + v).

s.t u ≥ 0, v ≥ 0
(47)

Furthermore, if we let q = [u v]T , then from Reference [3], we can write (47) as the following

min
q

1
2

qTGq + cTq,

s.t q ≥ 0,
(48)

where c = µe2n +

(
−b
b

)
, b = ETy, G =

(
ETE −ET E
−ETE ET E

)
. It is not difficult to see that G is a

positive semi-definite matrix.
In Reference [36], the resulted constrained minimization problem (48) is further translated into

the following linear variable inequality problem{
Find q ∈ Rn such that

〈Gq + c, q′ − q〉 ≥ 0, ∀ q′ ≥ 0.
(49)

Since the feasible region of q is Rn, problem (49) is equivalent to the following linear
complementary problem 

Find q ∈ Rn such that

q ≥ 0,

Gq + c ≥ 0,

〈Gq + c, q〉 = 0.

(50)

We can see that the point q ∈ Rn is a solution of the above linear complementary problem (50) if and
only if it satisfies the following system of nonlinear equation

F(q) := min{q, Gq + c} = 0. (51)

The mapping F is a vector-valued and the “min” operator denotes the componentwise minimum of
two vectors. Interestingly, Lemma 3 of Reference [37] and Lemma 2.2 of Reference [36] show that the
mapping F satisfies Assumption 1 (ii) i.e., is Lipschitzian continuity and monotonicity. Therefore our
proposed TSSP algorithm can be applied to solve it.

Image Deblurring Experiment

We tested the performance of the two-step TSSP algorithm in restoring some blurred images
in comparison with the one-step spectral gradient method for `1 problems in compressed sensing
(SGCS) [36]. The images used for the experiment are the well-known gray test images namely: Lena,
House, Pepper, Camera man and Barbara where the size of each image is given in Table 5. The
following metrics are used to assess the performance and quality of restoration by each algorithm
tested: number of iteration (ITER), CPU time in seconds (TIME), signal-to-noise-ratio (SNR) which is
defined as

SNR = 20× log10

(
‖x̄‖
‖x− x̄‖

)
,

and the structural similarity (SSIM) index that measure the similarity between the original image and
the restored image [38] for each of the two experiments. The MATLAB implementation of the SSIM
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index can be obtained at http://www.cns.nyu.edu/~lcv/ssim/. To achieve fairness in comparison,
each code was run from same initial point x0 = ETy and terminate when

| fk − fk−1|
| fk−1|

< 10−5,

where fk is the merit function evaluation at xk, with f (xk) =
1
2‖y− Exk‖2

2 + µ‖xk‖1. The parameters
used for both TSSP and SGCS in this experiment come from Reference [36] except for c = 1 in the line
search (1) and αk = (0.999k)× (105 + ‖F(x0)‖2).

The original, blurred and restored images by each algorithm are given in Figure 4. The two
tested algorithms restored the blurred images successfully with different speed and level of quality.
The results of the restoration by each algorithm are reported in Table 5. We see from Table 5 that TSSP
restored all the five images with less ITER. Taking TIME into consideration, we see that though the
SGCS is faster in restoring two of the images (i.e., Camera man and Barbara), TSSP is faster in restoring
the remaining three images (i.e., Lena, House and Pepper). In addition, the SNR and SSIM values
recorded by each algorithm revealed that TSSP restored the five blurred images with slightly better
quality than SGCS except for Camera man. Taking everything together, this experiment shows that
the two-step TSSP can deal with the `1 regularization problems effectively and can be a favourable
alternative for image reconstruction.

Table 5. Test results for TSSP and SGCS in image restoration.

TSSP SGCS

Image Size ITER TIME(s) SNR SSIM ITER TIME(s) SNR SSIM

Lena 256 × 256 113 8.84 24.25 0.90 218 11.09 23.70 0.90
House 256 × 256 121 16.53 22.86 0.87 235 17.47 23.61 0.87
Pepper 256 × 256 100 8.69 27.58 0.89 167 12.05 27.02 0.89
Camera man 256 × 256 21 2.20 20.33 0.84 28 2.19 20.56 0.84
Barbara 512 × 512 22 12.69 19.16 0.76 23 11.08 19.16 0.76

Original

Blurred

TSSP

SGCS

Original

Blurred

TSSP

SGCS

Original

Blurred

TSSP

SGCS

Original

Blurred

TSSP

SGCS

Original

Blurred

TSSP

SGCS

Figure 4. The original images (first row), the blurred images (second row), the restored images by
methods TSSP (third row) and SGCS (last row).

http://www.cns.nyu.edu/~lcv/ssim/
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5. Conclusions

This paper presents an efficient derivative-free iterative algorithm called TSSP for nonlinear
monotone equations. It utilizes a two-step approach that incorporates the well-known BB parameters
with a projection strategy. We showed that the TSSP converges globally under the Lipschitzian and
monotonicity assumptions. Also, we proposed a new line search that is more general than the one
proposed by Cheng in Reference [24], able to include the line search by Cheng as a special case.
Preliminary numerical results reported in Table 2 shows that the parameter c introduced in the new
line search defined by (1) may have some effect on the performance of the proposed algorithm.
Numerical results presented revealed that the proposed TSSP algorithm has computational advantage
and performs better than the two existing algorithms in References [17,25]. These results indicate that
the two-step BB-like algorithm is superior to the existing one-step BB-like algorithms, especially on
solving nonlinear equations. It is worth emphasizing that the TSSP algorithm improves existing results
on monotone nonlinear equations. The results obtained in Section 3 show that the TSSP algorithm
possessed excellent numerical performances with evidence of efficiently solving all the test problems
considered with minimal number of iterations and function evaluations. The numerical results reported
from the experiments of deblurring two-dimensional images from their limited measurements have
shown that the two-step algorithm TSSP competes favorably with the one-step SGCS algorithm.
Future work includes the extension of TSSP algorithm on different forms of optimization frameworks
and applications such as nonlinear least-squares problems [39,40], neural networks [41,42] and machine
learning [43,44].
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