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Abstract: In the present paper, we firstly discuss the normal biharmonic magnetic particles in
the Heisenberg space. We express new uniform motions and its properties in the Heisenberg
space. Moreover, we obtain a new uniform motion of Fermi-Walker derivative of normal magnetic
biharmonic particles in the Heisenberg space. Finally, we investigate uniformly accelerated motion
(UAM), the unchanged direction motion (UDM), and the uniformly circular motion (UCM) of the
moving normal magnetic biharmonic particles in Heisenberg space.
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1. Introduction

In relativistic physics, mathematical description of the motion of the particle is given by its
kinematics. Kinematic features of a particle moving through a continuous, differentiable curve or
geometric features of the curve itself in space are mostly described by the moving orthogonal frame
such as Frenet-Serret frame, parallel frame, rotation minimizing frame, etc. Generally, the factors
affecting this motion are not discussed with the exception of projectiles and falling bodies. These studies
have been recently improved by considering the quantities that influence the motion, i.e., mass and
force. Thus, dynamics of the motion of the particle can be discussed by using the mathematical
description and geometric characterization in a given space [1,2].

The description of UAM in relativity has been reviewed and the concept of a UAM of a viewer
in standard space time is investigated in-depth in [3]. Approach to the viewer may be noticed as a
Lorentzian, offering a different construction of a stationary regular space. The trajectories of UAM are
shown as the prolongation on the space time of some integral curves of the new vector field defined
on a convinced fiber bundle in the space time.
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Therefore, they found a new geometric approach to provide that an inextensible UAM viewer
does not abandon in a limited appropriate time. The investigation of these motions has an observed
technological and physical fascinate because they correlate to the orbits of some artificial satellites,
planets or stars.

The notion of the UAM was analyzed in detail by giving its novel geometric characterization by
Fuente and Romero [4]. The description of the unchanged direction motion (UDM) was presented
by extending the UAM by Fuente, Romero, and Torres [5]. The intrinsic definition of the uniformly
circular motion (UCM) was given by Fuente, Romero, and Torres as a particular case of a planar
motion [5].

Practically, essential details of the Landau-Hall structure are obtained as among the additional
solution individuals of the Lorentz force formulation. Hence, this as well indicates that magnetic
particles are utilized to resolve a variational issue [6-9].

As it can be seen in the literature, the major patterns to be taken into account were the
situations of magnetic curves in Riemannian spaces and in Riemannian surfaces of constant sectional
curvature consecutively regarding situations of less simple curvature, different signatures, and higher
dimensions [10-13].

Research on magnetic particles have been concentrated on a shifting charged particle,
which usually is free of any kind of exterior force within its motion, in a connected magnetic
field [14-17]. On the other hand, this is genuine to presume that there could possibly be a few
exterior forces impacting the tendencies of the particle including gravitational force, frictional force,
normal force, etc. Simply by encouraged this point, we research new uniform motion of velocity
magnetic biharmonic particles and some vector fields with Fermi—Walker derivative in Heisenberg
space. In [18], we already characterized the frictional magnetic curves on a 3-dimensional Riemannian
manifold by providing a straightforward exposition of physical modeling of special magnetic
trajectories. Considering the Riemannian geometry and standard methods of differential geometry,
we aim to investigate another significant magnetic trajectories on the 3D Riemannian manifold.

2. The Heisenberg Group and Magnetic Particles

Heisenberg group with 3-dimension can easily be mentioned as R3 offered by way of the
subsequent multiplication:

1 1
(%72 (xyz) = X +x7+y2+z— 53y + 52F).

A basis of left invariant vector fields is presented by simply

e — i
1 - ax 7
e = i + x2
27 9y oz
e — 2
> oz
The only non-trivial bracket relations are
[e1, 2] = e5.

We will construct Riemannian metric

h = (dx)? + (dy)2 + (dz — xdy)z.
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The Levi-Civita connection in the Heisenberg group is defined by D. Koszul formula and the Lie
bracket relations we obtain

velel = Vezez = ve3e3 =0,
Ve e = —Vee = %93,
vele3 = ve3e1 = _592/
Ve,@3 = Ve = iel'

A magnetic field B defined on manifold (M", g) is a 2 form such that its new Lorentz force is a
new field ¢ presented by

B, x) =g(@(), ), VY X eX(M").
From Levi—Civita connection, magnetic particles { satisfies
Vol =¢(T).
Also [2], Lorentz force ¢ can be presented by
¢(Y) =B x .

Let « be a regular biharmonic particle and B be a magnetic field in Heisenberg space. We call
the particle «# a normal biharmonic magnetic particle, if the normal field of the particle satisfies the
following Lorenz equation

VsN =¢(N) =B xN.

3. Uniform Motion for Normal Biharmonic Magnetic Particles

In this part, we characterize the uniformly motion of moving charged particles with unit speed
velocity magnetic biharmonic particles. We obtain necessary and sufficient provisions that have to
be satisfied with the biharmonic particle with Frenet curvatures of world line of magnetic particles.
We present the following definitions of UDM, UAM, and UCM [19,20].

Definition 1. Let V{ “ be Fermi-Walker derivative associated with Levi Civita connection V of h.
Fermi—Walker derivative is defined by

VYR =VsR—h (T, R) VsT + h(VsT, R)T,

where R is any vector field along with the particle, h is metric, T is the tangent field, V is the derivative
operator [20].

Definition 2. The field X observes a UAM iff
vI¥ (V) =0.
Definition 3. The field X observes a UDM iff
|VSX|2 = constant,

and )
‘V{w(VSX)’ = constant.
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Definition 4. The field X observes a UCM iff
vI(VX| T VeX) = 0.

Lemma 1. ¢ (T) is Fermi—-Walker parallel iff

/
(5W+X (@0 cos? ®F 2+ sin &F 2(v + d°)] — % sin2df 2) = 0,
o+x' 4
(—%[‘DOFU cos ® — cos ®F 3 sin® @] + %F sin®(®° +v)) =0,
/
(_“”H'X [vF sin®(®° + v) + % cos ®sin 2 3] — %(sdDOF cos®) =0,

where [ = sing,v = cos 0.

Proof. Fermi-Walker definition of ¢ (T) is obtained by

vIYe(T) = (

5 /
% [@° cos? DF 2 4 sin® O 2 (D0 + v)]

) S+x'
—% cos ®F 2 sin d)e; + (—%[qDOFUCOSCD

5
— cos ®f 3 sin® @] + % sin®f (®° 4 v))e,

5 /
+(_w ;—X [vsin®f (®° + v) + cos® @
3 X9 40
X Fsin®(s)] — ZCD cos OF )es.

It provides us the theorem. [

Lemma 2. ¢ (N) is Fermi—Walker parallel iff
O 1m0 cere b2 o w2 do 2 (0 &% 2
(;[CD cos” ®F~ +sin” OF < (P —f—v)]—wv—acosq)F sin®) =0
5o 5.2 ?2 0
fa[CD Fvcos® — cos ®F ° sin” @] — wfF cos D + EFsqu(CD +v))=0

(

(

—g [vsin ®F (0 + v) + cos? ®F 2 sin D] — wsin F —P°F cos @) = 0.

Proof. Fermi-Walker derivative of ¢ (N) is given by

)
V{“QP(N) = (E[CDOCOSZCDFZ—FsianDFZ(dJO+v)]—wv
——cosPF smCID)el—l—(——[CID F vcos®
w w

52
— cos Of 3 sin? @] — wcos DF + o sin ®f (®°

0 [vsin ®F (0 + v) + cos® df 3

+o))er+(—2

52
x sin @] — a)sinCDF—ECDO cos ®F )es.

By using parallelism we obtain lemma. [
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Lemma 3. ¢ (B) is Fermi—Walker parallel iff

(T[CDO cos®> ®f 2 +sin ®F 2(®° 4 v)] — x'v) =0

2
(%[@OFUCOSQ—COS(DFB sin> @] — x' cos®F ) =0
2
(a[vsinQF(Cbo +0) + cos> D 3sin®] — x'sin®f ) =0

Proof. From Fermi-Walker derivative we have following.

2

V{wcp (B) = (—7@0 cos? ®F 2 + sin® @F (D + v)] — x'v)e;
52
—i—(;[CDOFU cos @ — cos PF 3 sin? @] — x’ cos DF e,

2

6
+(Z[vsind>F(<1>0 4 v) 4 cos? ®F 3 sin®| — x’ sin Df )es.

This completes the proof. [

3.1. Uniformly Accelerated Motion (LIAM)

In this detail, we recognize UAM in Heisenberg space.
¢ (T) observes UAM iff
(é(x” — x0?)[@° cos? DF 2 + sin® F 2(@° + v)]
1
——(0x' + 0(wd+x)) cos OF 2sin®) = 0,
_ " _ 52\ [0 _ 3.0
( (X" — x6%)[®"F vcos @ — cos OF ” sin” D)

+=(0x + 6(wd+)")) sin®F (®° +v)) =0,

g|—mEl-
—_

(_Z(X” — x8*)[vsin®F (@° + v) + cos?

x[3sin®] — = (6x + d(wd+x"))P° cos ®F ) = 0.

1
w
By using the Fermi-Walker derivative and the following equation we have the above system.

(5 /
worx [@° cos? df 2

6
Vs (T) = (—wzv—%COSCDFZSinq)—F

()
+sin? ®F 2(®° + v)])e; + (—w? cos P(s)F + % sin ®f (Y

5 /
+v) — %[CDOFU cos ® — cos PF > sin” @] )e,
6 S+x'
—(w?sin®F + %@0 cos dF + ;X [vsin®

X[ (D + v) + cos® OF 2 sin P))es.
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This gives us the subsequent equation

(%(7(" — x6H)[®° cos? DF 2 + sin? ®F 2(D° 4 v)] — = (5)

1
+6(wd+x")) cos ®F 2sinP)e; + (—5()(” — x6%)[®°F v cos

VIV (T) =

1
— cos ®F 3sin® @] + 5(5)(’ + 0(wd+x")) sin®F (®° + v))ey
1
+(—5(7(” — x8%)[vsin ®F (®° 4 v) + cos? @

x 3 sin @] (6x" + 8(wd+x"))D° cos DF )es.

1
w
The ¢ (N) observes a UAM iff
& 2 Lo, o 0 e br2 4 cin dr2(@d
(—acoquF sm<I>—5(w +6%)6 x [@" cos® ®F * + sin” ®F *(®° + v)]) =0,
2

1
(%sin@F(@O +v) +

Z(w2 + 62)8[@°F v cos D — cos DF 3 sin® P]) = 0,

2
1
(f%qDO cos df + 5(“’2 + 02)8[vsin ®F (®° + v) 4 cos? Bf 3 sin ®]) = 0.

By using Fermi-Walker derivative and following equation we have above system.

2
1
v{“’wp (N) = (—% cos df sin® — a(w2 +6%)5[@° cos® Of 2 + sin® f (DY
2
1
+v)])er + (% sin®f (® 4 v) + a(wz +0%)8[®°F v cos

2 1
— cos Of 3 sin? @])e; + (—%QDO cos OF + a(w2 + 0%)6[v sin @
X [ (®° + v) + cos? ®F % sin ))e;.

The ¢ (B) observes a UAM iff

(xX"v+ %(—X'w—i—é‘q’) cos ®F 2 sin ®— x6[P° cos® df 2
+sin? ®sin? o(®° 4 v)]) =0,
(X" cos®F — %(—X/w—l—ég) sin®f (P + v)
+x8[@°F v cos ® — cos DF 3 sin? @) = 0,
(X" sin®F + %(—X'w—i—é?’)d)() cos ®F 4 xd[vsin ®F (P°

+0) 4 cos? ®f 2 sin ®]) = 0.

From the Fermi-Walker derivative and the following equation, we have the above system.

VIV B) = (Xv+ %(—X’w—i—ég’) cos ®F 2 sin ®— x5[P° cos® f 2
+sin® & 2(®° + v)])e; + (x” cos PF — é(—x’wﬂfj)
x sin®f (P° + v) + x[@°F v cos ® — cos Df >
x sin® ®])e; + (X sin®f + 5(—)(’(0%—53)@0 cos ®F +xd[v
x sin®f (P + v) + cos® f 3 sin D] )es.
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Figure 1 demonstrates the magnetic trajectories of N-magnetic particle with UAM.

Figure 1. Magnetic trajectories of the N-magnetic particle with UAM.

3.2. Unchanged Direction Motion (UDM)

In this detail, we recognize UDM in Heisenberg space.
¢ (T) observes UDM iff

5 !/
(—w?v — %5 cos df 2sin® + %[QDO cos® O 2 + sin? &F 2(d°

X6

+0))? + (—w? cos OF + o sin®f (0 4 v)

/
—w(s%[CDOFU cos @ — cos ®F 3 sin? @)% 4 (w? sin PF

)
+%d>0 cos ®f +

5 /!
@ ;X [vsin®F (D0 + v) + cos® F 3 sin @])?=ry,

and

! (6x'

(X" — x6%)[®° cos? ®F 2 4 sin® &F 2(D° + v)] — -

1
@
+6(wd+x")) cos DF 2 sin )2 + (—é(x” — x8*)[®°F vcos ®

1
— cos ®F 3sin® @] + a(&x’ + 8(wd+x')) sin ®F (®° 4 v))?

L (X" — x0*) [vsin ®F (®° + v) + cos® Of 3 sin D]

+(—5

1
—— (01" +0(wd+x)) @ cos ®F )? =1,

where 71, 7p are constants.
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The ¢ (N) observes a UDM iff

W2+ 82
(wv +

w? + 52

+0)])2 + ( sin®f (®° + v) — wcos DF — g[q)OFv

w? 4 62

X cos @ — cos Of 2 sin? @)% + (wsin OF + @0 cos PF

+g[v sin®f (P + v) 4 cos® O 3sin ®])? = r3,

and

2
1
(f% cos df 2sind — a(wz + 6%)5[®° cos® Of 2 + sin? F 2(P°

2
F0)] 4 (S sin@r (@0 4 0) + (w4 8)5[@0F v
3 2 B2 6% 0 L
X cos @ — cos Pf 7 sin” P|)” + (—;@ cos®F + a(w
+6%)0[vsin ®F (P° + v) + cos® DF 3 sin P])? = 1y,
where r3, 4 are constants.
The ¢ (B) observes a UDM iff

2
((*X’ + wé)v — x cos ®[2sin qu%[q)O cos2 df 2

+sin® ®F 2(®° +v)])? + ((—x" + wd) cos PF
2
+xsin®F (@0 +v) + %[CPOFU cos
—cos ®F 3sin? @))% + ((—x' + wd) sin®f — D cos PF

52
—i—;[v sin®f (@ + v) 4 cos® ®F 3sin @)% = rs,

and
(xX"v+ é(—x’w—i—ﬁ) cos ®F 2 sin @— x6[P° cos® f 2
1
+sin? ®F 2(®° + v)])? + (" cos ®PF — 5(—)(’w+53) sin ®f (@Y
+0) + x8[®°F v cos @ — cos PF ® sin® D)2
1
+(x" sin®F + a(—x’w+53)d>0 cos OF +xd[vsin ®
F (D + v) + cos® DF 3sin D)) = rg,

where 15, 1g are constants.

Figure 2 demonstrates the magnetic trajectories of N-magnetic particle with UDM.

F (@ +v)

+cos®> ®F 3 sin®] — — (5x' + d(wd+x')) P cos®F)) =0,

1
w

where 8 = | V¢ (T)| .

0 cos ®f 2sin d(s) — %[dbo cos®> ®f 2 4 sin? df (Y

8of 12
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The ¢ (N) observes a UCM iff

2, 52
0 cos ®f 2sin® — g[dﬁ cos® df 2

2
+sin? ®F 2(®° +v)]) + zp(—% cos ®F 2 sin

(—¢/(wo + =

—%(wz +6%)6[®° cos? ®F 2 + sin? P 2(PY +v)])) =0,

2 462 )
W't sin®f (®° 4 v) — wcos dF — —[®°F vcos P

P

+(y'(

52
— cos Of 2 sin® @) + 1/)(; sin®f (®° + v)

1
+5(w2 + (52)(5[<I>OFU cos ® — cos PF 3 sin® @) =0,

w? + 62

6
+(—¢'(wsin®F + @ cos O + a[v sin®f (% +v)

52
+ cos? ®F 3sin @) + 1,0(—;@0 cos®F

+%(w2 +0%)8[vsin ®F (®° + v) 4 cos® Df 2 sin®])) =0,

where ¢ = |Vs¢ (N)| ! Figure 3 demonstrates the magnetic trajectories of N-magnetic particle with
UCM.
The ¢ (B) observes a UCM iff

2
(X' ((=x" + wé)v — x cos of2 Sind)—%[CDO cos® dF 2

+sin? @F 2(° + v)]) + x(x"v + %(—x’w—i—ég’) cos ®f 2sin @
—x0[@° cos® @ sin? g + sin® OF 2(®Y 4 v)])) =0,

+(X' (=)' + wd) cos ®F + xsin®F (®° 4 v) + i}j[qDOFUCOSq)

— cos @F 3 sin® @) + x(x" cos ®F — %(—X’a)—l—é‘q’) sin ®f (Y
+0) + x3[®°F v cos D — cos DF 3sin’ @) =0,

+ (X (=)' + wd) sin®F — x®° cos dF + i—z[vsinCI)F(CDO +v)

+ cos? ®F 3sin®) + x(x" sin®F + é(—x’w—i—&?’)@o cos ®F

+x0[vsin®F (®° + v) + cos? ®F 3sin ®@])) = 0,

where x = |V (N)| 7"
Figures 4 and 5 demonstrate the magnetic trajectories of N-magnetic particle with UCM.
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Figure 2. Magnetic trajectories of the N-magnetic particle with UAM.

Figure 4. Magnetic trajectories of the N-magnetic particle with UCM.
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Figure 5. Magnetic trajectories of the N-magnetic particle with UCM.
4. Conclusions

In this work, we investigate the special type of magnetic trajectories such that it corresponds to
a moving charged particle in an associated magnetic field in Heisenberg space. This study differs
from the former studies in the literature since it is considered in the Heisenberg space. We consider
uniformly accelerated motion (UAM), the unchanged direction motion (UDM), and the uniformly
circular motion (UCM) of the moving normal magnetic biharmonic particles in Heisenberg space.

In future studies, we will investigate the physical implications of the external force on a charged
particle by obtaining different trajectories in different space time structures such as considering
Heisenberg space time, de Sitter space time, Anti de Sitter space time, etc. Finally, this study leads up
to the research of classifying the magnetic trajectories associated with characterizing moving binormal
biharmonic magnetic particles in de Sitter space.
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