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Abstract: Malware is any malicious program that can attack the security of other computer systems
for various purposes. The threat of malware has significantly increased in recent years. To protect
our computer systems, we need to analyze an executable file to decide whether it is malicious or
not. In this paper, we propose two malware classification methods: malware classification using
Simhash and PCA (MCSP), and malware classification using Simhash and linear transform (MCSLT).
PCA uses the symmetrical covariance matrix. The former method combines Simhash encoding and
PCA, and the latter combines Simhash encoding and linear transform layer. To verify the performance
of our methods, we compared them with basic malware classification using Simhash and CNN
(MCSC) using tanh and relu activation. We used a highly imbalanced dataset with 10,736 samples.
As a result, our MCSP method showed the best performance with a maximum accuracy of 98.74%
and an average accuracy of 98.59%. It showed an average F1 score of 99.2%. In addition, the MCSLT
method showed better performance than MCSC in accuracy and F1 score.

Keywords: malware detection; deep learning; CNN; PCA; dimension reduction; linear transform;
Simhash encoding; LSH; symmetrical covariance matrix

1. Introduction

Malware is any malicious program that threatens other computer security systems by hacking or
stealing personal information for various purposes. There are several methods to check whether a file
is malicious or not: static analysis and dynamic analysis [1]. Static analysis is a method that analyzes
signature-based information to find a possible defect in an executable file. Such methods primarily rely
on pre-processing for pattern recognition because they do not need to run an executable file. On the
other hand, dynamic analysis works with behavioral-based information about an executable file to
find flaws by executing it in a virtual environment.

Nowadays, both analyses have been combined with deep learning techniques, which has yielded
many novel approaches for detecting malware. In particular, static analysis and deep learning techniques
do well together [2—4]. In this case, there are three main approaches. The first one uses an executable
file as input data for the RNN network [2]. In that paper, the author proposed the RNN network
method for classification. The opcode patterns were used as features and a two-stage RNN network
using LSTM (long short-term memory) cell was used as a classifier. This resulted in an area under the
curve (AUC) of over 0.99 and average AUC of 0.987, respectively. N network. Since the length of every
executable file varies, the image file varies. However, because the CNN network takes data of a fixed
length, we need to make them the same size. To solve this problem, cropping and hashing methods
are used [3,4]. For cropping, Nataraj et al. used the binary code of the executable files [3]. The binary
code is mapped to the 8-bit vector, which is the greyscale. As the size of the binary code was different
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for each file, the size of the image is also different. Thus it needs to be cropped to a fixed size so the
image can be used for the CNN classifier. For hashing, Ni et al. used opcode sequences extracted from
the executable files [4]. To make the different lengths of opcode sequences a fixed length of vector,
they applied a hashing method to the opcode sequence. Because all opcodes of the executable file
are mapped to the fixed size of the hash table, this results in the fixed length although the number
of opcodes within file is different. We can use them as a (1-dimensional) vector for the PCA or an
image (2-dimensional) for the CNN classifier. In the case of latter, we have to reshape them. The third
approach is a synthetic way of simultaneously combining the RNN and CNN networks [5]. In that
paper, the author used the RNN network to extract features from malicious code and converted the
features into an image for training the CNN network.

The main contributions of this paper are: (1) we propose a malware classification method that uses
Simhash and PCA (MCSP), which combines Simhash encoding and PCA; (2) we propose a malware
classification method that uses Simhash and linear transform (MCSLT), which combines Simhash
encoding and linear transform layer. The role of the linear transform layer in MCSLT is to mimic the
effect of PCA; (3) we analyzed the cumulative variance according to the N-gram opcode sequence and
found the number of principal components; and (4) the performance of the proposed methods were
measured and obtained the best results among the compared methods.

The organization of this paper is as follows. In Section 2, we discuss the related work: malware
classification using Simhash and CNN (MCSC), n-gram MCSC and PCA. In Section 3, we present
and discuss the results of the Simhash encoding and PCA analysis. We present our experimental
data, environmental setting and results on the performance of the used methods in Section 4. Finally,
we summarize and conclude our overall research in Section 5.

2. Background

2.1. Static, Dynamic and Hybrid Approaches

Static analysis is an approach that analyzes executable files without running them. This method
uses the characteristics of the files, such as the string signature, byte sequence n-grams and opcode
or opcode distribution, etc. Its advantage is that it is simple to construct and implement because we
only need to extract features. However, this method is vulnerable to obfuscation (hiding the original
algorithm and data structures) because it does not run the program.

Dynamic analysis methods analyze the behavioral characteristics of executable files while running
them. Since a file must be executed to detect malware, it needs a virtual environment such as a
simulator or sandbox, etc. It monitors behaviors such as the API call or sign for tainting other files.
The advantage of this approach is that it is good for obfuscation. As many malicious programmers
now use tricks against detection, this method is of interest because it detects malware based on what
execution files actually do. However, it is time-consuming and needs virtual environments.

Nowadays, hybrid approaches, where both static and dynamic methods are combined, have
become a subject of intensive research. That is, static and dynamic features are used for detecting
malware. In [6], the author used the hybrid method to train their classifier with static and dynamic
features. For the static feature, they extracted the opcode sequences using IDA Pro and trained their
model with them. For the dynamic feature, they traced each file with IDA Pro using the “tracing”
feature. After getting actual mnemonic opcodes, they extracted API calls in them. During training,
they trained the model with the opcode sequence and scored it with API calls.

2.2. Simhash, N-Gram, MCSC Image and N-Gram MCSC

Simhash encoding is a local sensitive hash algorithm proposed by Charinikar (2002) and is mainly
used for sequence similarity [7]. That is, similar words will have similar hash values.

The N-gram is a method that groups a given sentence or data as sequences of continuous
combinations [8]. The size of the combination is defined according to N. When grouping data has
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N =1, itis called a “unigram”, N = 2 is a “bigram” and N = 3 is a “trigram”. N-gram is not only used in
natural language processing but also used effectively in malware detection. In [9], the author proposed
multi-level big data mining using natural language processing (NLP) and machine learning (ML)
techniques for detecting Ransom-ware attacks. N-gram and TF-IDF methods were used for making
features and the result is dependent on different sizes of N with an accuracy of 98.59% obtained when
N =3.

The MCSC [4] is an algorithm for malware classification, which converts the executable file into
an image and uses it as input data for the CNN network. We refer to this image an MCSC image.
The overall procedure is shown in Figure 1.
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Figure 1. The overall procedure of malware classification using Simhash and CNN (MCSC) algorithm.

The MCSC method has three phases: feature extraction, visualization, and classification. In feature
extraction, all opcodes are extracted from the code section in the ASM file, which is made by a
disassembler. In the visualization phase, Simhash encoding is undertaken using the opcode sequence.
After encoding, the executable file is represented as a fixed length of binary code. Then, the binary
code is reshaped into the pre-defined size and interpolated with bilinear interpolation, and the CNN
classifier uses it for training.

The original MCSC used several techniques in the step of feature extraction and used SHA-768
simhash encoding, three convolution layers, 2 X 2 filters and 2 max-pooling layers in the classification
step. We only used the same classifier of the MCSC method and interpolation techniques except
major-block selection. The detailed parameters of the classifier of MCSC are shown in Table 1 because
we are concerned with the performance of the classifier. There are three reasons why we used the
SHA-768 in our model. First, it showed the best performance in previous MCSC research. Second,
we want to compare its performance with our methods using a simple technique (PCA). Lastly,
the SHA-768 is composed of SHA-512 and SHA-256, so we can anticipate the effect for the different
scales of encoding.

The N-gram MCSC is a method that combines the N-gram and MCSC images [10]. It applies
the N-gram method to the original opcode sequence (1-gram) to make an N-gram opcode sequence.
We call this the N-gram MCSC image. The N-gram for the opcode sequence reinforces the semantic
meaning of the chunked opcode sequence.
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Table 1. Detailed parameters for the classification in Figure 1.

Layer (Type) Output Shape Param# Remarks

Conv2d [-1,32,31,31] 160
Tanh [-1,32,31,31] 0
Conv2d [-1, 32,30, 30] 4128
Tanh [-1, 32, 30, 30] 0
MaxPool2d [-1, 32,15, 15] 0
Dropout2d [-1, 32,15, 15] 0
Conv2d [-1,32,14, 14] 4128
Tanh [-1,32, 14, 14] 0
MaxPool2d [-1,32,7,7] 0
Dropout2d [-1,32,7,7] 0
Linear [~1,512] 803,328 |
Tanh [-1,512] 0 |
Linear [-1, 256] 131,328 | FC classifier
Tanh [-1,256] 0 |
Linear [-1,9] 2313 |

2.3. Principal Component Analysis (PCA)

PCA is a method for analyzing given data to find principal components through the distribution
of the data, where the principal components are the direction vectors with sequentially high variances
for the symmetrical covariance matrix of the data [11]. For example, suppose we have two or
three-dimensional data. We can find a line that minimizes the distance from each point of the data to
one straight line. This line is called as the first principle component of the data. Repeating the same
system, we can find the second principle components which are the orthogonal vectors to each other,
and each dimension is not correlated. We can obtain two principle components for two-dimensional
data and three components for three-dimensional data. PCA can be used for many applications as
it applies to many fields. The most popular applications of PCA are dimensionality reduction and
exploratory data analysis [12]. Dimension reduction is used to reduce the dimensions of a given dataset
to a certain size. For dimensionality reduction, we obtain all the principal components of the given
data through PCA, and then the data is projected with the number of principal components that we
desire. The number of components is the reduced dimension for the data. Avoiding the curse of
dimensionality is one of the main advantages of dimension reduction. Exploratory data analysis is used
to understand high-dimensional data using PCA. After finding the principle components, we can see
the degree to which the first principal component can explain the data or how many components are
needed to represent the dataset in the 90% variances. Also, we are able to visualize high-dimensional
data in two or three dimensions.

3. Proposed Methods

3.1. Experimental Dataset

For the classification experiment, we used the Microsoft Challenge dataset [13], which has 9 classes
and a total of 10,868 ASM files. With the exception of the files with no opcode after feature extraction,
we used 10,736 of these files. Table 2 shows the distribution of malware files. It is highly imbalanced,
with the main class being the Kelihos_ver3 virus with almost 3000 files, and a minor class being the
Simda virus with 39 files [14].
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Table 2. The distribution of malware files.

Virus Name Number of Files TYPE
Ramnit 1532 Worm
Lollipop 2470 Adware
Kelihos_ver3 2937 Backdoor
Vundo 447 Trojan
Simda 39 Backdoor
Tracur 732 TrojanDownloader
Kelihos_verl 387 Backdoor
Obfuscator. ACY 1179 Any kind of obfuscated malware
Gatak 1013 Backdoor

In our dataset, there is Obfuscator. ACY category, which consists of any kind of obfuscated malware
such as polymorphism or metamorphism to avoid detection systems. We cannot know what exact
techniques are used. If the model can detect properly, we can say that the model is not vulnerable
to countermeasures.

In our research, we experimented with Simhash (SHA-768) encoding according to the N-gram
opcode sequence. The number of different opcode combinations is used to make N-gram Simhash
encoding. This means that the size of the vocabulary dictionary is different. The vocabulary size of
the N-gram is shown in Table 3. In the case of the 1-gram, the size of the vocabulary dictionary is
231 words (it is the number of different opcodes).

Table 3. The size of the vocabulary dictionary of N-gram.

N-Gram The Size of the Vocabulary Dictionary of N-Gram
1-gram 231

2-gram 24,920

3-gram 24,916

4-gram 24910

3.2. Method 1: Malware Classification Using Simhah Encoding and PCA (MCSP)

Before proposing our methods, we did a principal component analysis (PCA) analysis for Simhash
encoding according to N-gram. We analyzed the variance explained by PCA of each Simhash encoding
because different vocabulary size is mapped to the constant size (768). The results of the PCA analysis
are shown in Table 4 and Figure 2.

In Figure 2, we visualized the cumulative variance according to the number of axes and marked
the point for 95% explained variance of the N-gram. As shown in Table 4, the number of PCA axes
for 95% explained variance of the 1-gram, 2-gram 3-gram and the 4-gram were 141, 316, 441 and 510,
respectively. This indicated that we can reduce each of them by maintaining the 95 % variance of the
768-dimensional Simhash encoding. The number of PCA axes for 90% explained variance for the
1-gram, 2-gram 3-gram and the 4-gram were 53, 162, 278 and 358, respectively.

Table 4. The number of principal component analysis (PCA) axis for explained variance against the
total variance.

The Number of PCA Axis\N-Gram 1-Gram 2-Gram 3-Gram 4-Gram

The number of PCA axis for 95% explained variance 141 316 441 510
The number of PCA axis for 90% explained variance 53 162 278 358
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Figure 2. The graph of cumulative variances according to the number of axes.

Based on the above results, we propose a malware classification method using Simhash encoding
and PCA (MCSP). The overall procedure of the MCSP method is shown in Figure 3.

Extraction Simhash encoding (Image)

ASM || Opcode
file sequence

PCA classification

1 512 256 9
Result of PCA FC Layer (Classifier)

[emmm————————————

Figure 3. The overall procedure of the malware classification using Simhash and PCA (MCSP) method.

As shown in Figure 3, the MCSP method includes three steps: extraction, Simhash encoding,
and PCA classification. In the extraction step, the opcodes sequence is extracted from an asm file.
In the Simhash encoding step, the extracted opcode is encoded through Simhash (SHA-768). It is
a multi-hash with SHA-512 and SHA-256 [15]. In the PCA classification step, the 768-dimensional
Simhash encoding is reduced to 512-dimensional sequences by using the PCA algorithm. The reason
for reducing Simhash encoding to 512 dimensions is to ensure that the total variance in the reduced
data exceeds at least 95% variance. After that, the transformed sequence is used as an input feature for
a fully connected (FC) classifier.

3.3. Method 2: Malware Classification Using Simhash Encoding and Linear Transformation Layer (MCSLT)

We propose another method for malware classification by using Simhash encoding and linear
transform layer (MCSLT). It mimics the role of PCA by using a neural network with two layers, which
are layers without an activation function. This transforming layer is known as the linear transform
(LT) layer. The overall procedure of the MCSLT method is shown in Figure 4.
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As can be seen in Figure 4, MCSLT works in three steps: extraction, Simhash encoding and
LT classification. The first two steps are the same as the MCSP method. The Simhash encoding is
used as the input for the LT layer. We think the first layer of LT reveals another coordinate system
and the second layer of LT reduces the dimension. The intention is to let the model learn another
coordinate system and reduce the dimension automatically. That is, LT layers are used to find a linear
transformation similar to the PCA. The output of the LT layer is used as input features for the same FC
layer as the MCSP method.

Extraction Simhash encoding (Image)
e ————————— -1 [ e e e e e e s e e e i
1 1 1 i
1 1 : 768 1
| Opcode |! I i
1| AsM - PC I — | SHA 768 — 1 '
: file sequence || | i
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b 1 S — I. ..... L
same (No transformation)
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| l !
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i — - [— - —_ 1
LT classification | | :
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: 1 768 512 4 s12 256 9 |
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I .
: Tlﬁ:;:.::_m FC Layer (Classifier) i
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Figure 4. The overall procedure of the malware classification using Simhash and linear transform
(MCSLT) method.

4. Experimental Results

We split the dataset into train and test datasets at a proportion of 8:2. Our hardware setting was
Intel i7-7600 k, 64 GB memory and 2 Nvidia GeForce GTX 1080 Ti. We implemented the proposed
methods with Python 3.6 and Pytorch 1.1.0 in the Jupyter Notebook environment, but we only used
1 gpu for these experiments.

The used Simhash encoding was a multi-hashing method: SHA-768. The SHA-768 consists of
SHA-512 and SHA-256. After encoding the N-gram opcode sequence with the SHA-512 and the
SHA-256, we combined the outputs. It is the binary sequence of 768 sizes.

To compare the performance of the proposed methods, we used the fully connected (FC) classifier.
The overall procedure is shown in Figure 5.

Extraction Simhash encoding (Image)

FC Layer (Classifier)

1
1
i
SHA-768 —» b= = =
:
1
1

512 256 9
Figure 5. The overall procedure of the fully connected (FC) classifier.

The FC classifier is a simple classifier that uses Simhash encoding as an input feature for the FC
layer. The FC layer consists of three dense layers that are 512, 256 and 9 sequentially. Each layer used
the relu activation function. This is different to the original MCSC, which used the tanh function for
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activation, which is symmetric with respect to the original and its derivation is also symmetric. It is
only used to measure the basic performance of Simhash encoding.

In the case of MCSC, it reshaped the Simhash encoding into a 32 x 24 image. Then, bi-linear
interpolation was applied to make 32 X 32 square images. The interpolated image is used as input data
for the CNN structure as shown in Figure 1. The neural network of MCSC consists of 3 convolutional
layers using a 2 X 2 filter, tangent hyperbolic activation function and 2 max-pooling layers. This flattens
the output of convolution layers and uses the fully connected layers.

In our experiment, we used the basic MCSC method. That is, we did not use any optimization
technique in the original study. We also used the two versions of the MCSC method. The first is
tanhMCSC, which uses the tanh activation function in the FC classifier and the second is the reluMCSC,
which uses the relu activation function in the FC classifier.

The number of parameters for all of the compared methods, is shown in Table 5. The number of
parameters for the classifier layers was calculated like this: 133,641 = (512 + 1) X 256 + (256 + 1) x 9.
In the case of the FC classifier, we need additional parameters: that is 393,728 = (768 + 1) x 512.
Therefore, the total number of parameters is 527,369 as shown in Table 5. The total number of MCSC,
MCSP and MCSLT’ parameters are 945,385, 396,297 and 1,477,641, respectively. As a result, MCSP has
the fewest parameters with a total of 396,297. However, MCSLT has 1.5 and 2.8 times more parameters
than MCSC and FC classifier.

Table 5. The total number of parameters according to the method.

Methods FC Classifier MCSC MCSP MCSLT
(tanh, relu)
Model + Classifier lavers 393,728 + 811,744 + 262,656 + 1246976 +
Y 133,641 133,641 133,641 133,641
The total number of parameters 527,369 945,385 396,297 1,477,641

For hyper-parameters of the convolutional neural networks, we assumed the batch size was 64,
the epoch was 500, the learning rate was 0.005 and the loss function was cross-entropy. For other
models, we used the same batch size, epoch, loss function but the learning rate was 0.0001.

In order to compare the accuracy of the compared methods, we conducted the experiments
30 times for each method. Therefore, we can use a parametric test that is based on the normality of data.
The accuracy boxplot for all of the compared methods is shown in Figure 6. In addition, the average
and maximum accuracy for them is shown in Table 6.
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Figure 6. The accuracy boxplot of all compared methods.
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Table 6. The accuracy for all compared methods.

N-Gram\Methods FC Classifier tanhMCSC reluMCSC MCSP MCSLT

Mean 94.73 94.40 94.48 95.13 94.95

1-gram Max 95.07 94.65 94.79 95.30 95.16
Std 0.0020 0.0012 0.0017 0.0007 0.0011

Mean 97.47 97.53 97.60 98.16 97.95

2-gram Max 97.86 98.04 97.91 98.42 98.28
Std 0.0018 0.0018 0.0014 0.0007 0.0017

Mean 97.21 97.80 97.80 98.60 98.04

3-gram Max 97.22 98.09 98.00 98.74 98.46
Std 0.0031 0.0014 0.0016 0.0008 0.0019

Mean 96.71 97.46 97.60 98.47 97.85

4-gram Max 97.63 97.81 97.81 98.56 98.23
Std 0.0033 0.0018 0.0014 0.0005 0.0020

According to Table 6, the FC classifier showed an average accuracy of 94.73%, 97.47%, 97.21%
and 96.71% for 1-gram, 2-gram, 3-gram and 4-gram Simhash encoding, respectively. The tanhMCSC
showed 94.40%, 97.53%, 97.80% and 97.46%, respectively. The reluMCSC showed 94.48%, 97.60%,
97.80% and 97.60%, respectively. The MCSP showed 95.13%, 98.16%, 98.60% and 98.47%, and he
MCSLT showed 94.95%, 97.95%, 98.04% and 97.85%, respectively.

To examine whether the compared methods were statistically different, we calculated the analysis of
variance (ANOVA), except for the FC classifier [16]. There was a significant difference (p value < 0.000)
in the 1-gram and 2-gram Simhash encoding. In the post-hoc analysis, we used the Scheffe method
with a 95% confidence level. As a result, we found three groups: tanhMCSC and reluMCSC, MCSLIT,
MCSP (in the order of their performance). There was a significant difference (p value < 0.000) for
the 3-gram, which resulted in four groups being identified: reluMCSC, tanhMCSC, MCSLT, MCSP.
There was a significant difference (p value < 0.000) for the 4-gram and four groups were identified:
tanhMCSC, reluMCSC, MCSLT, MCSP.

With regard to accuracy, the MCSP method showed the best performance in spite using 2.4 times
fewer parameters than the MCSC method and 3.7 times fewer parameters than MCSLT. In the case of
MCSLT, it performed better than MCSCs for all N-grams. However, it used 1.6 times more parameters
than the MCSC method.

We considered the problem of multi-class classification as several binary classification problems
for each malware family. So, Precision, Recall and F1 score are common evaluation methods in
classification problems. In multi-class classification, there are macro- and micro-average methods [17].
For example, suppose there are k classes, then, micro-averaging for Precision is calculated by the

following formula.
TP1+...+ TP

PREmicro = p 2 TP, 1 Py + ... + EP; M)
Macro-averaging for Precision is calculated by the following formula.
PRE, 000 = PRE; + k + PREg @)
The F1 score is calculated by the following formula.
Fl — 2 * Precision * Reall 3)

Precision + Reall

In addition to accuracy, we measured the F1 score by using micro-averaging to evaluate the results
for 30 run times. These are shown in Figure 7 and Table 7. We found the scores by using the function
sklearn.merics.precision_ recall_fscore_support (..., ..., average = ‘micro’). In this case, all metrics
(Precision, Recall and F1 score) are the same. Therefore, we can also regard the results shown in
Figure 7 and Table 7 as Precision or Recall.
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Table 7. The Average F1 score using micro-averaging for all compared methods.
. Lolli Kelihos_ . Kelihos_ Obfuscator. Mean Weighted
Methods Ramnit pop ver3 Vundo Simda  Tracur verl ACY Gatak Score Mean Score
tanhMCSC ~ 0.8193 09539 09999 09924 08524  0.9005 1 09159 09868 09357 09357
lLoram TelUMCSC 08417 09574 1 09924 08571  0.9084 1 0.9185 09859 09372 09694
& MCSP 08213 09699 1 09981 08571 0918 1 09281 09948 09431 09696
MCSLT 08146 09676 1 09936 08571 09126 1 0.9328 09924 09412 09685
tanhMCSC 09556 09814 1 09962  0.8095 09267 1 0.9425 09826 09549  0.9549
pooram  TeUMCSC 09565 0.981 1 09951 08429 09336 1 0.9432 09832 09595 09779
& MCSP 0963 09868 1 1 09333 09397 1 0.9555 09948 09748  0.9869
MCSLT 09611 09834 1 09951 09476 0932  0.9982 0957 0989 09737  0.9861
tanhMCSC 09643 09767 09984 09788 07143 09724 09958 0953 0979 09481  0.9481
dgram TEUMCSC 09608 09731 09988 09742 07333 09756 09970 0.9503 09782 09490 09719
& MCSP 09717 09897 1 1 09857 09795 09848 0.9592 09892 09844  0.9920
MCSLT 09603 09842 09997 09898 07524 09749 09873 0.9536 09844 09541 09745
tanhMCSC 09647 09782 09971 09697 07762 09231  0.9855 0.9583 09763 09477 0.9477
toram TEUMCSC 09592 09784 09988 09723 09000 09260 09891 0.9667 09763  0.963 0.9802
& MCSP 09779 09886 1 09886  0.6857 09797 09945 0.9595 09796 09505 09716
MCSLT 09658 09844 0998 09784 07429 09562  0.9909 0.9525 0978 09497 09718

For the 1-gram, the average micro F1 score of the tanhMCSC method were 81.93%, 95.39%,
99.99%, 99.24%, 85.24%, 90.05% 100%, 91.59% and 91.85% according to malware classes ranging from
Ramnit through to Gatak. The mean F1 score of the tanhMCSC method was 93.57%. For the 1-gram
Simhash encoding, the mean F1 score for the four compared methods were 93.57%, 93.72%, 94.31%,
and 94.12%, respectively. In Table 7, we added the last column (shaded column), which shows the
weighted macro F1 score. We found this score by using the function sklearn.merics.f1_score( ..., ...,
average = ‘'weighted’). We plotted the values of the last two columns in Table 7, the mean F1 score and
the mean weighted F1 score, according to N-gram for the compared methods in Figure 8.
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tanhMCSC J X tanhMCSC
reluMCSC X reluMCSC
093 e MCSP e MCSP
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Mean weighted macro score
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Mean (Precision, Recall, F1) score

1-gram 2-gram 3-gram 4-gram 1-gram 2-gram 3-gram 4-gram

(a) (b)

Figure 8. Mean (Precision, Recall, F1) score (a) and mean weighted macro score (b) for compared methods.

Our data is highly imbalanced, therefore, the weighted macro F1 score seemed to be the right
metric to evaluate. Our MCSP and MCSLT showed better performance than the tanhMCSC method
for all N-gram Simhash encoding. Our methods performed better than the reluMCSC method for the
1-gram, 2-gram and 3-gram. However, they showed a lesser performance for the 4-gram.

From the viewpoint of the weighted macro F1 score, MCSP showed the best performance with a
value of 99.2% for the 3-gram. The MCSLT model showed the best performance with a value of 98.61%
for the 2-gram, although, this value is less than the MCSP method. In the case of reluMCSC, the model
showed the best performance with a value of 98.02% for the 4-gram.

5. Conclusions

In this paper, we proposed two malware classification methods known as the MCSP and MCSLT
methods. The MCSP method classifies malware using Simhash encoding and PCA. It encoded the
opcode sequences of ASM files to Simhash encoding and applied the PCA method to them. The MCSLT
method applies the LT layer to Simhash encoding. The LT layer consists of two fully connected layers
that mimic the linear transformation, which is similar to PCA.

The Microsoft Challenge public dataset was used to evaluate the performance of tanhMCSC,
reluMCSC and the two proposed methods. With regard to the number of parameters for each model,
our MCSP model is efficient because it has a simple structure compared to MCSCs that use CNN
and it has fewer parameters than them. However, our MCSLT model has 1.6 times more parameters
than MCSCs.

With regard to performance, we measured accuracy and F1 score using a micro-average and
weighted macro-average. We conducted 30 experiments for Simhash encodings that are derived from
the 1-gram, 2-gram, 3-gram and 4-gram opcode sequences. As a result of the experiments, the MCSP
had the best maximum accuracy of 98.74% and an average accuracy of 98.58% for the 3-gram Simhash
encoding. From the viewpoint of the F1 score using the weighted macro-average, the MCSP and
MCSLT showed better performance than the tanhMCSC method for all N-gram Simhash encoding.
Our proposed methods showed better performance than the reluMCSC method for the 1-gram, 2-gram
and 3-gram. However, they showed less performance for the 4-gram.

The strengths of this paper are that we tackled a subject of current intensive research, the algorithms
are very simple, and our methods have computational advantages compared to the existing methods.
However, the main limitation of the study is that we did not use the label information for data.
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