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Abstract: This paper deals with a problem the packing polyhex clusters in a regular hexagonal
container. It is a common problem in many applications with various cluster shapes used,
but symmetric polyhex is the most useful in engineering due to its geometrical properties.
Hence, we concentrate on mathematical modeling in such an application, where using the “bee”
tetrahex is chosen for the new Compact Muon Solenoid (CMS) design upgrade, which is one of
four detectors used in Large Hadron Collider (LHC) experiment at European Laboratory for Particle
Physics (CERN). We start from the existing hexagonal containers with hexagonal cells packed inside,
and uniform clustering applied. We compare the center-aligned (CA) and vertex-aligned (VA) models,
analyzing cluster rotations providing the increased packing efficiency. We formally describe the
geometrical properties of clustering approaches and show that cluster sharing is inevitable at the
container border with uniform clustering. In addition, we propose a new vertex-aligned model
decreasing the number of shared clusters in the uniform scenario, but with a smaller number of clusters
contained inside the container. Also, we describe a non-uniform tetrahex cluster packing scheme in
the proposed container model. With the proposed cluster packing solution, it is accomplished that all
clusters are contained inside the container region. Since cluster-sharing is completely avoided at the
container border, the maximal packing efficiency is obtained compared to the existing models.

Keywords: cluster packing; polyhex; regular hexagon; tetrahex

1. Introduction

A problem of packing objects in the container of a given shape is common in many applications such
as computer science, manufacturing, industrial engineering, and production [1]. Various container
types are studied, such as rectangular [2,3], circular [4], or polygonal geometrical shapes [5,6].
Also, problems of embedding many different items are investigated, where the inner components
can be regular circular-like [7] or irregular objects [8,9]. Even though most of the research supports
the approximation of different container shapes with the minor change of the cost function, special
attention is devoted to packing polygons into the circular or polygonal region of interest (ROI) [2,10].
It is crucial in applications such as sensor manufacturing when polygonal sensors are cut out from the
circular wafer [11]. In some cases, inner objects are not independent, in sense, they have to be grouped
in a number of clusters before being embedded inside the container. For example, when polygonal
clusters are formed inside the polygonal area covered with wireless sensor devices to obtain increased
energy efficiency [12].
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Clusters can be packed in the container with various objectives. For example, a cluster layout can
be optimized to increase packing density with maximal distance among clusters [1], or the aim could
be to minimize the size of the container still containing the cluster collection [9]. Our work is similar to
studies that intend to maximize the packed area by embedding as many clusters as possible in the
container area [2,3,10]. Litvinchev et al. [2] studied this problem with the aim of packing a certain
number of circular-like objects such as circles, ellipses, rhombuses, and polygons of known size into
a rectangular shape. Authors approximate containers by regular grids used to simplify the packing
problem. This strategy was introduced earlier by Stoyan and Yaskov [13], who applied a hexagonal
lattice for packing circles by assigning their centers to the nodes of the grid. Similarly, Galiev and
Lisafina [10,14], developed their specific grid-based models for packing a maximal number of equal
and unequal regular objects inside the square or rectangular container. Toledo et al. [15] showed
that using a square grid in the packing problem can simplify even the non-trivial handling of the
geometry required in case of irregular objects. However, we are interested only in regular packing,
which involves standard shapes of objects and containers, unlike the ones where the distance of objects
to the container centroid is not Euclidean [16,17]. In the work of Torres-Escobar et al. [3], the grid is
discretized with a set of points in which circular objects can be assigned such that there are no overlaps
and to maximize the space occupied. The optimal packing of discs in regular rings of uniform circles
with minimal distance is examined in [18]. There are additional researches that utilize the regular
grid of points, but with another packing objective, i.e., to place the fixed-size objects in a container of
minimal size and area [6,19].

In this paper, we concentrate on the goal to pack as many items as possible in the regular hexagonal
container and to determine the maximal number of inner packed clusters. The issue of shared clusters
is only tackled in [13], where authors refer to these as prohibited areas which cause the modification
of the hexagonal lattice packing. We believe that these shared or partial objects should be discussed,
as they cannot be considered the inner packed items. They are unpacked, but they take place in the
container and prevent us from putting the whole cluster inside the container border. They also cause
increased void areas that we want to minimize and maximize the occupied space.

Unlike previous studies where not necessarily the same size of all packed objects is considered,
we focus on the more uniform approach, considering all items to be the same in size and type.
Also, the orthogonally oriented objects are mostly used in former research where objects are identical
[2,7,13,14,16]. If the non-identical items in size and type are given, they are usually free of any
orientation restrictions. Authors in [1,9], for instance, allow free rotations of the polygons and
use separation lines with direct trigonometry in Cartesian coordinates to ensure non-overlapping,
while Lopez and Beasley [17] separate two packing cases with the rotation of objects allowed or not.
We consider the packed items to all have the same orientation but in another context. Naturally, as
pointed out in [4], given the grid approximation of the container, this approach can only handle the
packing of uniformly sized and uniformly oriented items inside a container. Since 4-hexagonal clusters
or polyhex structures are formed by merging hexagonal cells together [20,21], we can examine several
fixed and uniform cluster rotations and obtain the optimal packing solution.

We adopt the idea where the nodes of the regular hexagonal grid are considered as positions for
assigning centers of the hexagonal cells. Similar to Lintzmayer [19], we utilize the hexagon tessellation
method to embed hexagonal cells inside hexagonal ROI. Hexagons are chosen due to their advantages
and nice properties in covering the entire plane [22,23]. We group the inner hexagonal cells into
clusters of four or tetrahexes, to obtain the desired packing result of the polyhex clusters. The process
of forming polyhex clusters is given in Figure 1. Since the shape of the cluster depends on the way
that the cells are merged [20,21], there are seven possible combinations for clustering four hexagons,
forming in total seven different 4-hexagonal clusters.
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Figure 1. Forming the 4-hexagonal clusters: bar, pistol, worm, bee, propeller, arch, wave (Adjusted
from [20,21]).

The research in this paper is application-driven, and a specific engineering application in our
focus is the design upgrade of the new Compact Muon Solenoid (CMS), which is one of four detectors
used in Large Hadron Collider (LHC) experiment at European Laboratory for Particle Physics (CERN).
Namely, the future high granularity calorimeter (HGCAL) of CMS will consist of about 6 million
channels, and not all sensor data could be read and stored for further processing. There are 40 million
events per second, while only a few hundreds of events per second can currently be recorded offline.
CMS uses a trigger system to select the events of interest whose data is stored and analyzed [24].
Also, the bandwidth requirements should be met in order to send the data, so a reduction is applied
in several forms. One of the approaches is based on the detector geometry design, where data reduction
is performed by using the clustering procedure. Hence, detector hexagonal sensor cells are grouped
into larger 4-hexagonal clusters called “trigger cells”. For this purpose, hexagonal sensor modules are
produced and used to cover a detector surface, where each of them contains a set of small hexagonal
sensor energy readout cells grouped in 4-hexagonal clusters [25,26].

Since clusters or “trigger cells” are formed from hexagonal sensors embedded in the
hexagonal HGCAL sensor module, intuitively, clusters should also be packed in the module.
Hence, the mathematical problem in the current engineering context is a problem of packing 4-hexagonal
(tetrahex) rhomboid clusters in the regular hexagonal module (container). The real applicability of the
study is how to solve the packing problem for this specific application. Each container should contain
its own clusters or, at least, the number of shared clusters at the container border should be minimized.
This is to reduce or possibly to avoid communication between boards that are processing data from
each of the neighboring containers separately. Ideally, the cluster plane should remain uniform to keep
the simplicity of the nearest neighbor (NN) algorithm [24].

For our research, we select the densest 4-hexagonal clusters that are the most closely packed,
so only three out of seven combinations could be considered (Figure 2). Since symmetry in forming
“trigger cells” is of great interest for us, we choose clusters with two symmetry axes, approximated by
a rhomboid shape. Furthermore, we are interested in clusters that allow period tessellation with two
translation symmetries in two non-parallel directions. An additional requirement for cluster selection
is the perimeter minimization. According to [27], a polyhex is optimal if it has a minimal perimeter
with respect to all polyhexes with the same number of hexagons. The 4-hexagonal cluster named “bee”
tetrahex allows periodic tessellation, and it is minimal in perimeter and rhomboid in shape. We find
it optimal for our application, and many authors use it due to its broad applicability in engineering
based on its geometry and symmetrical structure [21].

To the best of our knowledge, the problem of packing polyhex clusters composed of the hexagonal
cells inside a regular hexagonal container is addressed for the first time in this paper. The main
contributions are the following: First, the cluster layout for 4-hexagonal clusters packed in the regular
hexagonal container is visualized and analyzed. Then, we investigate two different existing layouts:
the centroid-aligned (CA) and vertex-aligned (VA) models [12,28]. In CA, the container center overlaps
with the center of the central hexagonal cell, while in VA, the container center is at the vertex that
belongs to one of the embedded hexagons. Next, mathematical expressions are derived, providing the
number of full clusters packed in the container, as well as the number of shared clusters at the container
border. Finally, we propose a new VA model (adjusted from [29]) to solve the packing problem such
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that all hexagonal clusters are contained in the inner part of the container, completely avoiding shared
clusters at the container border.

Symmetry 2020, 12, 700 3 of 36 

 

 

Figure 1. Forming the 4-hexagonal clusters: bar, pistol, worm, bee, propeller, arch, wave (Adjusted 
from [20,21]). 

The research in this paper is application-driven, and a specific engineering application in our 
focus is the design upgrade of the new Compact Muon Solenoid (CMS), which is one of four detectors 
used in Large Hadron Collider (LHC) experiment at European Laboratory for Particle Physics 
(CERN). Namely, the future high granularity calorimeter (HGCAL) of CMS will consist of about 6 
million channels, and not all sensor data could be read and stored for further processing. There are 
40 million events per second, while only a few hundreds of events per second can currently be 
recorded offline. CMS uses a trigger system to select the events of interest whose data is stored and 
analyzed [24]. Also, the bandwidth requirements should be met in order to send the data, so a 
reduction is applied in several forms. One of the approaches is based on the detector geometry design, 
where data reduction is performed by using the clustering procedure. Hence, detector hexagonal 
sensor cells are grouped into larger 4-hexagonal clusters called “trigger cells”. For this purpose, 
hexagonal sensor modules are produced and used to cover a detector surface, where each of them 
contains a set of small hexagonal sensor energy readout cells grouped in 4-hexagonal clusters [25,26]. 

Since clusters or “trigger cells” are formed from hexagonal sensors embedded in the hexagonal 
HGCAL sensor module, intuitively, clusters should also be packed in the module. Hence, the 
mathematical problem in the current engineering context is a problem of packing 4-hexagonal 
(tetrahex) rhomboid clusters in the regular hexagonal module (container). The real applicability of 
the study is how to solve the packing problem for this specific application. Each container should 
contain its own clusters or, at least, the number of shared clusters at the container border should be 
minimized. This is to reduce or possibly to avoid communication between boards that are processing 
data from each of the neighboring containers separately. Ideally, the cluster plane should remain 
uniform to keep the simplicity of the nearest neighbor (NN) algorithm [24]. 

For our research, we select the densest 4-hexagonal clusters that are the most closely packed, so 
only three out of seven combinations could be considered (Figure 2). Since symmetry in forming 
“trigger cells” is of great interest for us, we choose clusters with two symmetry axes, approximated 
by a rhomboid shape. Furthermore, we are interested in clusters that allow period tessellation with 
two translation symmetries in two non-parallel directions. An additional requirement for cluster 
selection is the perimeter minimization. According to [27], a polyhex is optimal if it has a minimal 
perimeter with respect to all polyhexes with the same number of hexagons. The 4-hexagonal cluster 
named “bee” tetrahex allows periodic tessellation, and it is minimal in perimeter and rhomboid in 
shape. We find it optimal for our application, and many authors use it due to its broad applicability 
in engineering based on its geometry and symmetrical structure [21]. 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Selected 4-hexagonal cluster candidates. (a) pistol with no symmetry axes; (b) bee with two
symmetry axes; (c) propeller with three symmetry axes.

The paper is organized as follows. Section 2 provides the problem formulation and theoretical
background on forming hexagonal clusters and their uniform tessellation with various cluster
orientations. Next, the research methodology is formulated. Clustering with the existing models
from the literature and the proposed geometrical model are presented in Sections 3 and 4 respectively.
Section 5 summarizes the results with the discussion on the efficiency of architectures used for cluster
packing and their comparison. Section 6 deals with the limitations of the study. The conclusion is
given in Section 7 followed by the references used.

2. Problem Formulation

2.1. Formal Definition of Cluster Packing

A problem of packing polyhex clusters in the hexagonal region can be formally described as
follows. First, a plane is hexagonally tessellated by using a regular hexagonal grid. Then, the same
plane is covered with another regular hexagonal grid at a larger scale. These hexagons represent the
regular hexagonal packing container. The size of hexagons in this new grid is defined by its (double)
apothem expressed in the number of smaller hexagons (from the base tessellation).

Finally, the small hexagons are packed in 4-hexagonal clusters, as shown in Figure 3. Clusters are
forming a regular cluster grid or cluster plane, and the center of the defined plane must overlap with
the center of one of the hexagons contained in 4-hexagonal cluster. Possibly, all clusters must be inside
the container such that their packing is efficient.
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2.2. Cluster Plane Uniformity and Cluster Orientations

We define the cluster plane to be uniform if all clusters obtain the same orientation and size (area).
The uniformity of the plane has the nice property that all the distance from the central cluster to all NN
clusters is the same as given in Figure 4. With the hexagon of side length a, the center of the central

cluster has coordinates S0(
3a
√

3
4 , 3a

4 ) and distance to all NN cluster centers is d = 2a
√

3.
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Clusters can have various orientations in the cluster plane, and we examine the possibilities with
the rotation angles of step 60◦ (30◦, 90◦, 150◦, 210◦, 270◦, 330◦). The example in Figure 4 represents the
basic 30◦ angle of the 4-hexagonal cluster, and the remaining orientations are given in Figure 5.
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2.3. Research Problems

A problem of forming 4-hexagonal clusters is expressed by the following problem formulations:

• Problem 1. How to cluster the tessellated plane of hexagonal cells, such that the cluster plane
remains uniform?

# Is it possible to enclose all clusters inside a regular hexagonal container by using the
existing models from the literature?

# How to calculate the total number of inner clusters inside the container and the total
number of shared clusters at the container border?

• Problem 2. How to derive a model from obtaining a new structure for hexagonal clustering,
with clusters entirely embedded inside the container while keeping the cluster plane uniform?

• Problem 3. What is the efficiency of the proposed geometrical structure compared to the existing
models in terms of the total number of packed clusters inside the container?

2.4. Research Context

In order to solve the above-formulated research problems, we concentrate on “bee” tetrahex
clusters, having the minimal perimeter and that are rhomboid in shape (Figure 2b). It is assumed
in our analysis that clustering starts with the central cluster contained in (0, 0), i.e., that the clustering
center overlaps with the center of the container (CA architecture), or with the cell that is closest to
the container center (VA architecture). We consider the cluster orientations in the packing procedure,
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as shown in Figure 5. Our main intention with cluster packing is to keep the cluster plane uniform so
that all clusters are the same in area and orientation, and the distance from the central cluster to its
NNs its constant.

We apply clustering with existing models from the literature, CA, and VA structures, and we
propose a VA model that enables all clusters to be packed in the container, with no partial clusters
shared at the border. We calculate the number of different container types provided by each of the
architectures when containers with the packed hexagonal clusters are tessellated, where our aim is to
have a single container type. Also, our intention is to derive mathematical expressions from calculating
the number of full (inner packed) and shared (border) clusters so that we can evaluate that indeed the
proposed model is more efficient than the existing ones.

3. Clustering with the Existing Models

The two default variants of multi-resolution hexagonal grids that are often used in the literature
are CA model, where small hexagonal cells share their midpoints with the container, and VA model,
where the small-cell vertex overlaps with the container centroid [22,28,30].

We apply a hexagonal tessellation approach to solve a packing problem of hexagonal clusters inside
a regular hexagonal container. The basis is a regular hexagonal grid whose points are used as centers
of the hexagonal cells. This is needed because, for cells to be clustered together, the container must
consist of hexagonal cells packed inside (Figure 6). Next, the hexagonal ROIs must be tessellated in the
higher-resolution grid, to examine the cluster plane uniformity when hexagonal clusters are formed.

Symmetry 2020, 12, 700 6 of 36 

 

container center (VA architecture). We consider the cluster orientations in the packing procedure, as 
shown in Figure 5. Our main intention with cluster packing is to keep the cluster plane uniform so 
that all clusters are the same in area and orientation, and the distance from the central cluster to its 
NNs its constant. 

We apply clustering with existing models from the literature, CA, and VA structures, and we 
propose a VA model that enables all clusters to be packed in the container, with no partial clusters 
shared at the border. We calculate the number of different container types provided by each of the 
architectures when containers with the packed hexagonal clusters are tessellated, where our aim is to 
have a single container type. Also, our intention is to derive mathematical expressions from 
calculating the number of full (inner packed) and shared (border) clusters so that we can evaluate 
that indeed the proposed model is more efficient than the existing ones. 

3. Clustering with the Existing Models 

The two default variants of multi-resolution hexagonal grids that are often used in the literature 
are CA model, where small hexagonal cells share their midpoints with the container, and VA model, 
where the small-cell vertex overlaps with the container centroid [22,28,30]. 

We apply a hexagonal tessellation approach to solve a packing problem of hexagonal clusters 
inside a regular hexagonal container. The basis is a regular hexagonal grid whose points are used as 
centers of the hexagonal cells. This is needed because, for cells to be clustered together, the container 
must consist of hexagonal cells packed inside (Figure 6). Next, the hexagonal ROIs must be tessellated 
in the higher-resolution grid, to examine the cluster plane uniformity when hexagonal clusters are 
formed. 

 
Figure 6. Multi-resolution hexagonal grids. CA architecture (up) and VA architecture (down) 
(Adjusted from [28,30]). 

We must choose the center of clustering accordingly. In the case of CA architecture, the center 
of clustering is straightforward; it is the center of the container (the center of a central hexagon). In 
VA architecture, the three central hexagons meet in the vertex that is a container center, and one of 
them needs to be chosen as a clustering center. There are three possibilities (Figure 7): cluster center-
left (position A), cluster center-right (position B), and cluster center-down (position C). These three 
cases can be narrowed to only two since the selection A and B would give the same structure due to 
the symmetry of the container. 
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We must choose the center of clustering accordingly. In the case of CA architecture, the center of
clustering is straightforward; it is the center of the container (the center of a central hexagon). In VA
architecture, the three central hexagons meet in the vertex that is a container center, and one of them
needs to be chosen as a clustering center. There are three possibilities (Figure 7): cluster center-left
(position A), cluster center-right (position B), and cluster center-down (position C). These three cases
can be narrowed to only two since the selection A and B would give the same structure due to the
symmetry of the container.

Considering the cluster rotations, in CA architecture, there are three pairs of clusters with different
orientations having the same clustering structure. Those cluster orientation pairs are 30◦ and 210◦, 90◦

and 270◦, 150◦ and 330◦. It is straightforward that the second clustering architecture in each pair is
obtained by rotation of the first one for 180◦. On the other hand, in the VA model, depending on the
cluster center position, two different cases can be distinguished. For the cluster center moved down,
the orientations 30◦, 150◦, 210◦, and 330◦ all have the same clustering structure, while for cluster center
moved left, the structure for orientations 30◦, 90◦, 210◦ and 270◦ is constant.
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3.1. Centroid-Aligned Architecture

The formal description of the architectures for subdividing a container into a set of smaller
hexagons is adopted from [12]. Authors show that the following proposition is valid:

Proposition 1. For each R/n subdivision in the centroid-aligned container, the number of equal hexagonal cells
packed inside is n2, where n is the subdivision level (Figure 8).

Proof. Refer to [12]. �
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We adopt the described CA architecture and form 4-hexagonal clusters inside with using the
existing model. We divide the model into two classes, depending on whether the subdivision level n is
odd or even. We refer to those classes CAodd and CAeven, respectively. Considering the requirement of
the cluster plane uniformity, we examine all the cluster rotations from Figure 5.

3.1.1. Packing 4-Hexagonal Clusters in the Even-Sized CA Container

Let the architecture be CAeven, and the container size n = 2k, k ∈ N. Let us consider forming
4-hexagonal clusters in the uniform clustering approach and packing the clusters in the regular
hexagonal container of even size CAeven.

Proposition 2. If CAeven containers are arranged in a tessellated manner, for default orientation (α = 30◦) they
all have a single clustering structure.

Proof. The cluster contains two pairs of hexagons that are arranged in two adjacent rows like it is
shown in Figure 9a. When the container size is even number (measured as the number of small
hexagons at the double apothem), an integer number of hexagon pairs are positioned between two
opposite hexagon sides, which results in the same clustering structure. �

Proposition 3. No matter of the cluster rotation, there is a single structure of the tessellated CAeven containers
with the inner packed cluster items, i.e., in Proposition 2, the rotation invariance is valid.
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Proof. The cluster contains two pairs of hexagons that are arranged in two adjacent rows like it is 
shown in Figure 9a. When the container size is even number (measured as the number of small 
hexagons at the double apothem), an integer number of hexagon pairs are positioned between two 
opposite hexagon sides, which results in the same clustering structure. □ 

(a) α = 30° (b) α = 90° (c) α = 150°

Figure 9. 4-hexagonal CA clustering result for even container n = 6 and cluster orientation 30°, 90°, 
150°. A single container type N is shown. 

Proposition 3. No matter of the cluster rotation, there is a single structure of the tessellated 𝐶𝐴௘௩௘௡ containers 
with the inner packed cluster items, i.e., in Proposition 2, the rotation invariance is valid. 

Proof. We denote a single container type as container N (Figure 9). According to Proposition 2, 𝐶𝐴ୣ୴ୣ୬  containers with 30° orientation will have a single clustering structure. Cluster rotation is 
available for rotation angles of step 60°. Since a container shape is a regular hexagon, it has rotational 
symmetry (of order six) with rotation angle 60°. Hence, a container structure remains constant 
independent of the cluster orientation. □ 

Clustering results from Figure 10 are summarized in Table 1, providing the number of the 
packed inner full clusters inside the container and shared clusters at the border, when the default 30° 
cluster orientation is considered. 

(a) n = 6 (b) n = 8 (c) n = 10

Figure 10. 4-hexagonal CA clustering result for even container size and cluster orientation 30°. 

Table 1. Even container size in the 4-hexagonal CA clustering model. 

Container Size (n) #Full (Inner) Clusters #Border (Shared) Clusters 
6 5 10
8 10 13

10 17 17
12 27 20

N 

Figure 9. 4-hexagonal CA clustering result for even container n = 6 and cluster orientation 30◦, 90◦,
150◦. A single container type N is shown.

Proof. We denote a single container type as container N (Figure 9). According to Proposition 2, CAeven

containers with 30◦ orientation will have a single clustering structure. Cluster rotation is available for
rotation angles of step 60◦. Since a container shape is a regular hexagon, it has rotational symmetry
(of order six) with rotation angle 60◦. Hence, a container structure remains constant independent of
the cluster orientation. �

Clustering results from Figure 10 are summarized in Table 1, providing the number of the packed
inner full clusters inside the container and shared clusters at the border, when the default 30◦ cluster
orientation is considered.
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available for rotation angles of step 60°. Since a container shape is a regular hexagon, it has rotational 
symmetry (of order six) with rotation angle 60°. Hence, a container structure remains constant 
independent of the cluster orientation. □ 
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Figure 10. 4-hexagonal CA clustering result for even container size and cluster orientation 30°. 

Table 1. Even container size in the 4-hexagonal CA clustering model. 

Container Size (n) #Full (Inner) Clusters #Border (Shared) Clusters 
6 5 10
8 10 13

10 17 17
12 27 20

N 

Figure 10. 4-hexagonal CA clustering result for even container size and cluster orientation 30◦.

Table 1. Even container size in the 4-hexagonal CA clustering model.

Container Size (n) #Full (Inner) Clusters #Border (Shared) Clusters

6 5 10
8 10 13

10 17 17
12 27 20
14 38 23
16 51 27

Let us derive a single algebraic expression that covers all even container sizes for calculating the
number of inner packed cluster items:

N f ull = (n/2− 1)2 + bn/6c (1)
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Authors in [12] prove that as the levels of subdivision n increase, the sub-cells inside (in a one-sixth
of a hexagonal container) increase by one for every three levels. This means that there are several
sub-clustering architectures inside the larger class CAeven. Motivated by that finding, and the clustering
visualizations such as the ones in Figure 10, we conclude that the clustering structure depends on
whether the container size n is a multiple of three, i.e., we can divide the CAeven class in three
sub-classes CAeven(r) based on the remainder of dividing by three (marked with r), where n = 3k + r,
k ∈ N, r ∈ {0, 1, 2}.

Proposition 4. There will always be three different clustering structures depending if the even CA container size
n is a multiple of 3.

Proof. Having a container of size n, the distance from the center of the container to any vertex is equal
to n ∗ d, where d is the diameter of a small hexagon. Depending on the n value, the path from container
center to container vertex is the sequence of vertices A (beginning of the hexagon), B (center of the
hexagon), C (end of the hexagon), A, B . . . like is shown in Figure 11. �
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Positions A, B, C alternate sequentially with the increase of container size. Therefore, it is
possible to distinguish three different container vertex positions that result in three different clustering
architectures depending on the remainder r of dividing n by three. Note that this is valid for any cluster
rotation. The recursive formula is valid, covering all CA even containers independent on their type:

N f ulli+1 =

{
N f ulli + ni, f or r = 0
N f ulli + ni − 1, else

(2)

In Equation (2), the index i is an iteration number in the recursion i ∈ N0, with the initial conditions
n0 = 4 and N f ull0 = 1. Additionally, we derive separate algebraic expressions for calculating the
number of inner packed and shared clusters for each architecture type CAeven(r).

The number of full clusters N f ull is:

N f ull =


(3n2

− 10n + 12)/12, i f r = 0
(3n2

− 10n + 4)/12, i f r = 1
(3n2

− 10n + 8)/12, i f r = 2
(3)

The number of shared clusters Nshared is calculated with the following formula:

Nshared =


(5n)/3, i f r = 0

(5n + 1)/3, i f r = 1
(5n− 1)/3, i f r = 2

(4)

Cluster Rotation Invariance: As it can be seen in Figure 9, the number of inner clusters N f ull and
Nshared is constant for all cluster rotations (refer to Proposition 3).
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3.1.2. Packing 4-Hexagonal Clusters in the Odd-Sized CA Container

Let the architecture be CAodd, and the container size n = 2k + 1, k ∈ N. Let us consider forming
4-hexagonal clusters in the uniform clustering approach and packing the clusters in the regular
hexagonal container of odd size CAodd.

Proposition 5. If CAodd containers are arranged in a tessellated manner, for default orientation (α = 30◦) there
are two types of clustering container structures.

Proof. The cluster contains two pairs of hexagons that are arranged in two adjacent rows.
When a container size is an odd number, the width of two adjacent clusters is even number (Figure 12),
which means that the third cluster will have the same structure as the first one. �
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Therefore, clusters in the current cluster row have two different structures that alternate (M and N
in Figure 13). Clusters in adjacent rows have the same structure but rotated for 180◦.
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Figure 13. 4-hexagonal CA clustering result for odd container n = 7 and cluster orientation 30◦, 90◦,
150◦. Two container types N and M are shown.

Proposition 6. No matter which cluster rotation is considered, there will be two clustering container types when
CAodd containers with the inner packed cluster items are tessellated, i.e., in Proposition 5, the rotational invariance
is valid.

Proof. Like in Proposition 3, cluster rotation with angles of step 60◦ packed in the container with
rotational symmetry (of order six) with an angle of rotation 60◦ results in the same clustering structure
when rotated again for the step of 60◦ angle. Consequently, there will always be two types of clustering
containers invariant of the cluster orientation. �

Clustering results from Figure 14 are summarized in Table 2, providing the number of packed
inner full clusters inside the container and shared clusters at the border. It is done for both container
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types N and M, where the calculated numbers are denoted as N f ull and M f ull, and cluster orientation
30◦ are considered.
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Table 2. Odd container size in the 4-hexagonal CA clustering model.

Container Size (n)
#Full (Inner) Clusters #Border (Shared) Clusters

Nfull Mfull Nshared Mshared

5 3 2 9 9
7 6 7 13 11
9 12 14 18 15
11 21 21 21 19
13 30 32 25 21
15 42 45 30 25

Again, by using the same approach, we divide the CAodd class in three sub-classes CAodd(r) based
on the remainder of dividing by three, where n = 3k + r, k ∈ N, r ∈ {0, 1, 2}. Also, there will always be
three different clustering structures depending if the odd CA container size n is a multiple of three
(refer to Proposition 4). The recursive formula is valid for N f ull:

N f ulli+1 =


N f ulli + ni − 1, f or r = 0
N f ulli + ni−1, f or r = 1
N f ulli + ni, f or r = 2

(5)

In Equation (5), the index i is an iteration number in the recursion i ∈ N0, with the initial conditions
n0 = 3 and N f ull0 = 0.

The number of clusters inside the central container N is:

N f ull =

(n2
− 4n + 7)/4, i f r = 2

(n2
− 4n + 3)/4, else

(6)

and formula for M f ull is obtained:

M f ull =


(3n2

− 10n + 15)/12, i f r = 0
(3n2

− 10n + 7)/12 , i f r = 1
(3n2

− 10n− 1)/12, i f r = 2
(7)

Next, the number of shared clusters Nshared and Mshared is derived, respectively:

Nshared =

2n, i f r = 0

2n− 1, else
(8)
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Mshared =


(5n)/3, i f r = 0

(5n− 2)/3 , i f r = 1
(5n + 2)/3, i f r = 2

(9)

Cluster Rotation Invariance: As can be seen in Figure 13, the number of inner clusters N f ull, M f ull,
and Nshared, Mshared is constant for all cluster rotations (refer to Propositions 5 and 6).

3.2. Vertex-Aligned Architecture

We use VA architecture derived from the CA model, where the container is moved such that its
center does not overlap with the center but with the vertex of the central hexagonal cell (Figure 15).
By applying the same notation of the R/n subdivision adopted from [12], we conclude that the same
Proposition 1 about the total number of inner-packed equal hexagonal cells’ number is valid.
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We adopt the described VA architecture and form 4-hexagonal clusters inside with using this
existing model. Again, we divide the model into two classes, depending on whether the subdivision
level n is odd or even. We refer to those classes VAodd and VAeven, respectively. Considering the
requirement of the cluster plane uniformity, we examine all the cluster rotations from Figure 5.

3.2.1. Packing 4-Hexagonal Clusters in the Even-Sized VA Container

Let the architecture be VAeven, and the container size n = 2k, k ∈ N. Let us consider forming
4-hexagonal clusters in the uniform clustering approach and packing the clusters in the regular
hexagonal container of even size VAeven.

Proposition 7. If VAeven containers are arranged in a tessellated manner, for default orientation (α = 30◦) they
all have a single clustering structure.

Proof. Refer to Proposition 2. �

Proposition 8. No matter which cluster rotation is considered, there will be a single structure of the tessellated
VAeven containers with the inner packed clusters, i.e., in Proposition 7, rotation invariance is valid.

Proof. Refer to Proposition 2 and 3. �

Proposition 9. No matter which center of clustering is considered (center moved down, or center moved
left/right), there will be a single structure of the tessellated VAeven containers with the inner packed cluster items.

Proof. The tessellation is independent of the clustering center position. Therefore, the structure of the
containers remains the same. �

VA architecture with different cluster center position is shown on Figures 16 and 17. Quantitative
properties of the clustering results from Figures 18 and 19 are summarized in Table 3, providing the
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number of the packed inner full clusters inside the container and shared clusters at the border, when the
default 30◦ cluster orientation is considered.

Table 3. Even container size in the 4-hexagonal VA clustering model.

Container Size (n) #Full (Inner) Clusters #Border (Shared) Clusters

6 4 11
8 9 15

10 16 20
12 25 23
14 36 27
16 49 32

We derive a single algebraic expression for all even VA container sizes for calculating the number
of packed cluster items:

N f ull = (n/2− 1)2 (10)

Despite a single Equation (10) is derived, the clustering structure still depends on whether
the container size n is a multiple of three. It is because the same Proposition 1 is valid in VA as
in a centralized case. Therefore, we can divide the VAeven class into three sub-classes VAeven(r)
based on the remainder of dividing by three (marked with r), where n = 3k + r, k ∈ N, r ∈ {0, 1, 2}.
Also, there will always be three different clustering structures depending if the even VA container size
n is a multiple of 3 (refer to Proposition 4).

We derive formulas for calculating the number of shared clusters for each architecture type
VAeven(r). The number of shared hexagonal clusters on the container border Nshared is:

Nshared =

2n, i f r = 1

2n− 1, else
(11)

Cluster Rotation Invariance: As it can be seen in Figure 16 (for cluster center down) and Figure 17
(for cluster center left), the number of inner clusters N f ull and Nshared is not the same for all cluster
rotations. The rotation invariance is summarized in Table 4. The existing formulas are applied in almost
all cases, while for cluster rotation angle α = 270◦ and the architecture moved down, the following
formula is used to calculate the number of full clusters:

N f ull =


(3n2

− 10n)/12, i f r = 0
(3n2

− 10n + 16)/12 , i f r = 1
(3n2

− 10n + 8)/12, i f r = 2
(12)

Table 4. The cluster rotation invariance for VAeven architectures.

VAeven Moved Down VAeven Moved Left

N f ull, Nshared N f ull, Nshared
α = 30◦ Formula (10), (11) Formula (10), (11)
α = 90◦ Formula (1), (4) Formula (10), (11)
α = 270◦ Formula (12), (9) Formula (10), (11)
α = 150◦ Formula (10), (11) Formula (12), (9)
α = 330◦ Formula (10), (11) Formula (1), (4)
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(central cluster position left).

3.2.2. Packing 4-Hexagonal Clusters in the Odd-Sized VA Container

Let the architecture be VAodd, and the container size n = 2k + 1, k ∈ N. Let us consider forming
4-hexagonal clusters in the uniform clustering approach and packing the clusters in the regular
hexagonal container of odd size VAodd.

Proposition 10. There are three types of clustering container structures when VAodd containers with packed
cluster items are arranged in a tessellated manner for default orientation (α = 30◦).

Proof. Like Proposition 5, if container size is an odd number, the width of two adjacent clusters
is even number meaning that the third cluster will have the same structure as the first one.
Therefore, clusters in the current cluster row have two different structures (N and M). Clusters
in the adjacent row also have two different structures that alternate, but one of them is reflectively
symmetrical with one of structures N or M. Hence, altogether, there are three types of clustering
container structures. �

Proposition 11. No matter which cluster rotation is considered, there will be three clustering container
types when VAodd containers with the inner packed cluster items are tessellated, i.e., the Proposition 10 is
rotation invariant (Figure 20).
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Figure 20. 4-hexagonal VA clustering result for odd container n = 7 and cluster orientation 30◦, 90◦,
270◦. Three container types N, M, and E are shown (central cluster position down).

Proof. Refer to Proposition 6. �

Proposition 12. No matter which center of clustering is considered (center moved down, or center moved
left/right), there will be three different structures of the tessellated VAeven containers with the inner packed cluster
items (Figure 21).
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Proof. Refer to Proposition 9. �
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Clustering results from Figures 22 and 23 are summarized in Table 5, providing the number of the
packed inner full clusters inside the container and shared clusters at the border. It is shown for all
three container types N, M, and E, denoted as N f ull, M f ull, and E f ull, where the default α = 30◦ cluster
orientation is considered. Also, there will always be three different clustering structures depending if
the odd VA container size n is a multiple of three (refer to Proposition 4).
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Table 5. Odd container size in the 4-hexagonal VA clustering model.

Container Size (n)
#Full (Inner) Clusters #Border (Shared) Clusters

Nfull Mfull Efull Nshared Mshared Eshared

5 3 1 3 8 10 9
7 7 7 6 12 12 15
9 13 13 12 15 18 16

11 22 19 21 18 22 21
13 32 31 30 22 24 27
15 44 43 42 25 30 28

Again, by using the same approach, we divide the VAodd class in three sub-classes VAodd(r)
based on the remainder of dividing by 3, where n = 3k + r, k ∈ N, r ∈ {0, 1, 2}. The recursive formula
is valid for N f ull:

N f ulli+1 =

{
N f ulli + ni, f or r = 2
N f ulli + ni − 1, else

(13)

In Equation (13), the index i is an iteration number in the recursion, i ∈ N0, with the initial
conditions n0 = 3 and N f ull0 = 0.

The number of full hexagonal clusters N f ull packed inside the container is:

N f ull =


(3n2

− 10n + 3)/12, i f r = 0
(3n2

− 10n + 7)/12 , i f r = 1
(3n2

− 10n + 11)/12, i f r = 2
(14)

E f ull is calculated in formula (6), while formulas for calculating M f ull are:

M f ull =

{
(n2
− 4n− 1)/4, i f r = 2

(n2
− 4n + 7)/4, else

(15)

Next, the number of shared clusters for each container type, i.e., Nshared, Mshared and Eshared is
derived in continuation:

Nshared =


(5n)/3, i f r = 0

(5n + 1)/3 , i f r = 1
(5n− 1)/3, i f r = 2

(16)

Mshared =

2n− 2, i f r = 1

2n, else
(17)

Eshared =


2n− 2, i f r = 0

2n + 1 , i f r = 1
2n− 1, i f r = 2

(18)

Cluster Rotation Invariance: As it can be seen in Figure 20 (for cluster center down) and Figure 21
(for cluster center left), the number of inner clusters N f ull, M f ull, E f ull and Nshared, Mshared, Eshared is not
the same for all cluster rotations. The rotation invariance is summarized in Table 6, where we can see
that formulas are permutated depending on the chosen N, M and E type.
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Table 6. The cluster rotation invariance for VAodd architectures.

VAodd Moved Down VAodd Moved Left

N f ull, M f ull, E f ull, Nshared, Mshared, Eshared N f ull, M f ull, E f ull, Nshared, Mshared, Eshared

α = 30◦ Formula (14), (15), (6), (16), (17), (18) Formula (6), (15), (14), (18), (17), (16)
α = 90◦ Formula (15), (6), (14), (17), (18), (16) Formula (6), (15), (14), (18), (17), (16)

α = 270◦ Formula (6), (15), (14), (18), (17), (16) Formula (6), (15), (14), (18), (17), (16)

α = 150◦ Formula (14), (15), (6), (16), (17), (18) Formula (6), (15), (14), (18), (17), (16)

α = 330◦ Formula (14), (15), (6), (16), (17), (18) Formula (15), (6), (14), (17), (18), (16)

4. The Proposed Vertex-Aligned Architecture

4.1. General Description

We propose a structure for more efficient packing of the 4-hexagonal clusters in the regular
hexagonal container. It is adapted from [29], where its formal definition is described. Namely, the model
can be referred to as H(D), where D = 8k, k ∈ N is a total number of inner small hexagonal edges,
situated on the circumscribed circle diameter of the hexagonal container. Example for D = 8 and the
corresponding tessellation results are given in Figure 24.
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orientations having the same clustering structure are the first one 30°, 150° and 270° and the other 
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4.2. Uniform Clustering with the Proposed Model

We propose a uniform clustering with the proposed model. Again, like in the case of CA and
VA, we choose one of the hexagonal cells that is closest to the real container center to be the clustering
center. As shown in Figure 25, we have three possibilities: central cluster position down, central cluster
position left (symmetric to position right), and central cluster position up.
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It can be seen, for instance, in Figure 25a that there will be some compromises at the container
border. Namely, instead of four full hexagons forming the 4-hexagonal cluster, some clusters at the
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container border will be smaller in area, as they consist of two full hexagons and two truncated hexagon
pieces (Figure 26). However, the difference in the cluster area is acceptable (9.1%). Also, there are voids
on some container edges, given in the form of several cut-out triangles.
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4.2.1. The 4-Hexagonal Cluster Rotations

If we consider the cluster rotations for this type of architecture, depending of the cluster center
position, different cases can be distinguished. For the cluster center position down, two groups of
orientations having the same clustering structure are the first one 30◦, 150◦ and 270◦ and the other one
90◦, 210◦ and 330◦. In the case of cluster center position left, there are three (groups of) orientations
having the same structure: 30◦, then 90◦, 150◦, 270◦, and 330◦ are the same, and the third type is 210◦

orientation. Finally, for cluster center position up, there are three possible (groups of) orientations with
constant structure: 30◦, then 90◦, 150◦, 210◦, and 330◦ having the same structure, and the last one type
is 270◦ orientation.

4.2.2. The Geometrical Properties and Derived Formulas

Let the architecture be H(D), and the container size D = 8k, k ∈ N. Let us consider forming
4-hexagonal clusters in the uniform clustering approach and packing the clusters in the proposed
regular hexagonal container.

Proposition 13. If H(D) containers are arranged in a tessellated manner, for default orientation (α = 30◦),
they all have a single clustering structure.

Proof. Like in the case of even-sized CA container type, since D = 8k, the H(D) container contains
even number of hexagons between two opposite hexagon sides. Therefore, all containers in the current
container column have the same structure (Figure 27a). The containers in adjacent columns are the
same as the previous one but translated, as shown in Figure 27b. �
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Proposition 14. No matter which cluster rotation is considered, there will be a single structure of the tessellated
H(D) containers with the inner packed cluster items, i.e., in Proposition 13, rotation invariance is valid.

Proof. Refer to Proposition 3. �

Proposition 15. No matter which center of clustering is considered (center moved down/up, or center moved
left/right), there will be a single structure of the tessellated H(D) containers with the inner packed cluster items.
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Proof. The tessellation is independent of the clustering center position. Therefore, the choice of
clustering center doesn’t have an influence on the containers structure (Figures 28–30). �
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Clustering results from Figure 31 are summarized in Table 7, providing the number of inner full
clusters packed inside the container and the number of shared clusters at the border, when the default
30◦ cluster orientation is considered.
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Figure 31. 4-hexagonal H(D) clustering result for container size D = {8, 16, 24} and cluster orientation
30◦ (central cluster position down).

Table 7. The proposed 4-hexagonal H(D) clustering model.

Container Size (D) #Full (Inner) Clusters #Border (Shared) Clusters

8 2 2
16 10 4
24 24 6
32 44 8
40 70 10

An algebraic expression for calculating the number of inner packed cluster items is as follows:

N f ull =
(
3D2
− 8D

)
/64 (19)

Also, the number of shared clusters at the container border is calculated as:

Nshared = D/4 (20)

Clustering results from Figure 32 are summarized in Table 8, providing the number of the inner
full clusters packed inside the container and the number of shared clusters at the border, when the
default 30◦ cluster orientation is considered.
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Figure 32. 4-hexagonal H(D) clustering result for container size D = {8, 16, 24} and cluster orientation 
30° (central cluster position left). 

Table 8. The proposed 4-hexagonal 𝐻(𝐷) clustering model. 

Container Size (D) #Full (Inner) Clusters #Border (Shared) Clusters 
8 1 6 

16 7 12 
24 19 18 
32 37 24 
40 61 30 

An algebraic expression for calculating the number of inner packed cluster items is as follows: 𝑁௙௨௟௟ = (3𝐷ଶ − 24𝐷 + 64) 64⁄  (21) 

Also, the number of shared clusters at the container border is calculated as: 𝑁௦௛௔௥௘ௗ = (3𝐷)/4 (22) 

Clustering results from Figure 33 are summarized in Table 9, providing the number of the inner 
full clusters packed inside the container and the number of shared clusters at the border, when the 
default 30° cluster orientation is considered. 

(a) D = 8 (b) D = 16 (c) D = 24 

Figure 32. 4-hexagonal H(D) clustering result for container size D = {8, 16, 24} and cluster orientation
30◦ (central cluster position left).

An algebraic expression for calculating the number of inner packed cluster items is as follows:

N f ull =
(
3D2
− 24D + 64

)
/64 (21)
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Also, the number of shared clusters at the container border is calculated as:

Nshared = (3D)/4 (22)

Table 8. The proposed 4-hexagonal H(D) clustering model.

Container Size (D) #Full (Inner) Clusters #Border (Shared) Clusters

8 1 6
16 7 12
24 19 18
32 37 24
40 61 30

Clustering results from Figure 33 are summarized in Table 9, providing the number of the inner
full clusters packed inside the container and the number of shared clusters at the border, when the
default 30◦ cluster orientation is considered.
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Figure 33. 4-hexagonal H(D) clustering result for container size D = {8, 16, 24} and cluster orientation
30◦ (central cluster position up).

Table 9. The proposed 4-hexagonal H(D) clustering model.

Container Size (D) #Full (Inner) Clusters #Border (Shared) Clusters

8 1 4
16 8 8
24 21 12
32 40 16
40 65 20

An algebraic expression for calculating the number of inner packed cluster items is as follows:

N f ull = (3D2
− 16D)/64 (23)

Also, the number of shared clusters at the container border is calculated as:

Nshared = D/2 (24)

Cluster Rotation Invariance: As it can be seen in Figure 28 (for cluster center down), Figure 29
(for cluster center left) and Figure 30 (for cluster center up), the number of clusters N f ull and Nshared is
not the same for all cluster rotations. The rotation invariance is summarized in Table 10.
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Table 10. The cluster rotation invariance for H(D) architectures.

H(D) Moved Down H(D) Moved Left H(D) Moved Up

N f ull, Nshared N f ull, Nshared N f ull, Nshared
α = 30◦ Formula (19), (20) Formula (21), (22) Formula (23), (24)
α = 90◦ Formula (21), (22) Formula (23), (24) Formula (19), (20)
α = 210◦ Formula (21), (22) Formula (19), (20) Formula (19), (20)
α = 270◦ Formula (19), (20) Formula (23), (24) Formula (21), (22)

4.3. The Proposed Non-Uniform Clustering Approach

We propose another clustering model that is non-uniform. Inspired by [31], the orientation of the
tetrahex clusters is rotated by 120◦ on each of the container thirds. The non-uniformity is present in the
cluster plane, as the distance to all NN clusters is not constant (Figure 34a).
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Figure 34. The proposed non-uniform clustering. (a) The model with void areas. The cluster NN 
distances 𝑑ଵ, dଶ, and dଷ are shown; (b) The model without void areas (used in the CMS detector). 

We claim that in this proposed architecture, all clusters are entirely contained inside the 
container with no shared clusters at the border. Again, as already given in Figure 25a, the truncated 
tetrahexes exist in the clustering procedure, which are now present on three edges of the container. 
There are voids on the remaining three container edges, in the form of several cut-out triangles. In 
order to obtain the full benefit of the hexagonal tessellation approach and to eliminate voids inside 
the container, the model shown in Figure 34b will be used in the future CMS HGCAL. Modified 
tetrahex cluster areas at the container vertex are very close to the real tetrahex (≈1% difference in 
average). 

An example of packing clusters with the proposed model 𝐻(𝐷) is given in Figure 35. 

(a) D = 8 (b) D = 16 (c) D = 24

Figure 35. 4-hexagonal H(D) clustering result in 120° cluster plane for D = {8, 16, 24}. 

Clustering results presented in Figure 35 are quantized in Table 11, based on which we derive 
the corresponding algebraic expressions. 

Table 11. The proposed 4-hexagonal 𝐻(𝐷) clustering model. 

Container Size (D) #Full (Inner) Clusters #Border (Shared) Clusters 
8 3 0

16 12 0
24 27 0
32 48 0
40 75 0
48 108 0

In this clustering approach, there are no shared clusters at the container border, since they are 
all contained in the container inner part. Thus, the number of full clusters is calculated with the 
following formula: 

Figure 34. The proposed non-uniform clustering. (a) The model with void areas. The cluster NN
distances d1, d2, and d3 are shown; (b) The model without void areas (used in the CMS detector).

We claim that in this proposed architecture, all clusters are entirely contained inside the container
with no shared clusters at the border. Again, as already given in Figure 25a, the truncated tetrahexes
exist in the clustering procedure, which are now present on three edges of the container. There are
voids on the remaining three container edges, in the form of several cut-out triangles. In order to obtain
the full benefit of the hexagonal tessellation approach and to eliminate voids inside the container,
the model shown in Figure 34b will be used in the future CMS HGCAL. Modified tetrahex cluster areas
at the container vertex are very close to the real tetrahex (≈1% difference in average).

An example of packing clusters with the proposed model H(D) is given in Figure 35.
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8 3 0

16 12 0
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32 48 0
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48 108 0

In this clustering approach, there are no shared clusters at the container border, since they are 
all contained in the container inner part. Thus, the number of full clusters is calculated with the 
following formula: 

Figure 35. 4-hexagonal H(D) clustering result in 120◦ cluster plane for D = {8, 16, 24}.

Clustering results presented in Figure 35 are quantized in Table 11, based on which we derive the
corresponding algebraic expressions.
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Table 11. The proposed 4-hexagonal H(D) clustering model.

Container Size (D) #Full (Inner) Clusters #Border (Shared) Clusters

8 3 0
16 12 0
24 27 0
32 48 0
40 75 0
48 108 0

In this clustering approach, there are no shared clusters at the container border, since they are
all contained in the container inner part. Thus, the number of full clusters is calculated with the
following formula:

N f ull = 3D2/64 (25)

5. Evaluation and Results

5.1. Summary of the Presented Models

We have shown there are different variations of presented models based on container size,
container center position, cluster orientation, or if the void space is allowed or not. We give a brief
summary of the presented models in Table 12, together with the models that we have chosen for
the comparison.

Table 12. The summary of the presented models.

Model Sub-Type Sub-Classes Center
Position Orientations Chosen Model

CA
(n = 3k + r)

CAeven
(n = 2k)

CAeven(0) - no movements
needed

α = 30, 90, 150 α = 30CAeven(1)
CAeven(2)

CAodd
(n = 2k + 1)

CAodd(0) - no movements
needed

α = 30, 90, 150 α = 30CAodd(1)
CAodd(2)

VA
(n = 3k + r)

VAeven
(n = 2k)

VAeven(0) - moved down
- moved left

α = 30, 90, 150,
270, 330

- moved down
α = 30, 90, 270VAeven(1)

VAeven(2)

VAodd
(n = 2k + 1)

VAodd(0) - moved down
- moved left

α = 30, 90, 150,
270, 330

- moved down
α = 30, 90, 270VAodd(1)

VAodd(2)

H(D)
(D = 8k)

uniform
- moved down

- moved left
- moved up

α = 30, 90, 210,
270

- all positions
α = 30

non-uniform - with voids
- no voids

5.2. The Comparison of CA and VA Clustering Architectures

To compare even architectures, we apply Formula (1), Formula (3), Formula (10), Formula (12)
to calculate N f ull and Formula (4), Formula (9), Formula (11) for Nshared. Figures 36 and 37 present
the evaluation of even VA architectures (moved down) compared to CA even, given in the form of
the ratio N f ull(VA)/N f ull(CA) and Nshared(VA)/Nshared(CA). Hence, result ≥ 1 means the measured
parameter is same or larger than CA, while result < 1 means that it is lower. We show that the VA
model for α = 30◦ is the least efficient in clustering, causing the smallest number of full clusters packed,
and the largest number of shared clusters for each container size n. Also, the VA model for α = 90◦ is
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the same as the CA in all measurement cases, and this model is the best for container size n = 3k or
n = 3k + 2. If n = 3k + 1, the VA model α = 270◦ is the most efficient due to the larger number of full
clusters than CA and the lowest number of shared clusters at the border.

The comparison in Figures 36 and 37 is based on even containers, where a single container type N
is present independent of how many rings of containers there are tessellated in the clustering plane.
However, we already concluded that the number of different container types is larger for odd than for
even container sizes. Hence, there will be several container configurations in a single tessellation ring
depending on the container size, and we show them in Figure 38. We approximate the number of full
and shared clusters in a single container ring with the formulas presented, to obtain a fair comparison
of architectures.

To compare odd architectures, we apply configurations based on Formula (6), Formula (7),
Formula (14), Formula (15) to calculate N f ull and Formula (8), Formula (9), Formula (16), Formula (17),
Formula (18) for Nshared. We can see in Figures 39 and 40 that the VA model for α = 30◦ is the worst
among odd clustering architectures since there are the most shared clusters in the container ring for
the lowest number of inner full clusters. On the other hand, VA model α = 270◦ is the most efficient in
all cases for n = 3k and n = 3k + 2, while for n = 3k + 1 the VA model α = 90◦ is the best, as there are
more full clusters than CA in the container ring.

It is shown in Figure 39a that the odd CA is more efficient than any odd VA model for n = 3k,
having the largest number of full clusters in the container ring. If we compare VA models, VA α = 270◦

is the best, being closest to CA efficiency. However, as shown in Figure 40a, VA models α = 90◦ and
α = 270◦ are better to use than CA if the goal is not to maximize the number of clusters packed, but to
minimize the number of shared clusters.

In addition, all odd VA models are less efficient than CA (Figure 40b), causing larger cluster
sharing, even though the number of full clusters is enhanced in the VA case (Figure 39b).
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Figure 36. The number of full clusters compared for CA and VA even models. 
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Figure 36. The number of full clusters compared for CA and VA even models.
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Figure 37. The number of shared clusters compared for CA and VA even models.
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Figure 38. Clustering configurations in a single ring of container tessellation. (a) 3N + 4M;
(b) 3N + 2M + 2E; (c) N + 2M + 4E.

5.3. The Evaluation of the Proposed H(D) Clustering Model

To compare the proposed H(D) models for uniform and non-uniform clustering, we use Formula
(19), Formula (21), Formula (23), Formula (25) for N f ull and Formula (20), Formula (21), Formula (24)
for Nshared. The efficiency result is shown in Figure 41. We use only the default cluster orientation
α = 30◦ for the uniform clustering models (moved left, moved down, and moved up). The maximized
number of full clusters or packed items is obtained for uniform H(D) with the cluster plane moved
down. Also, it has the lowest number of shared clusters among uniform architectures. On the other
hand, H(D) moved left the least efficient, due to the chosen cluster angle. Namely, since sharing
clusters are present at every edge of the container in H(D) moved left and α = 30◦, it has the lowest
occupancy. In order to minimize the number of shared clusters for each uniform model, we need to
choose rotations α = 30◦, 90◦, 210◦ to have shared clusters only at two edges of the container and
higher occupancy for architectures moved down, up and left respectively.

Compared to clustering with the existing CA and VA models, these uniform H(D) architectures
are more efficient. Namely, in terms of shared clusters, sharing is present at each of six edges of the
container with the existing models, while here clusters are shared only at some of the container edges,
where sharing on two edges is the minimal solution which can be obtained. The proposed non-uniform
H(D) model is the most efficient of all since the number of packed items in the container is maximized,
and it requires no cluster sharing.

The usual goal of solving the packing problem is to minimize the void area in the container,
so we define occupancy as the percentage of the container filled with polyhex clusters. It is evaluated
by using the formulas for N f ull. First, we calculate the area of the container based on total number
of hexagonal cells inside (Ntotal = 4 ∗N f ull = 3D2/16 from Formula (25)), and then we calculate the
number of “used” or clustered cells Nclustered cells = 4 ∗N f ull based on Formula (19), Formula (21) and
Formula (23). The occupancy is expressed as ratio between the two: Nclustered cells/Ntotal.
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(a) N = 3k

(b) N = 3k + 1

(c) N = 3k + 2

Figure 39. The number of full clusters compared for CA and VA odd models. 
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Figure 39. The number of full clusters compared for CA and VA odd models.
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We can see in Figure 42 that the occupancy of the non-uniform H(D) container model is maximal,
making it the most efficient than every other architecture. Since sharing is present at every container
edge with the existing models, these shared clusters are unpacked and cause the void areas. There is
no cluster sharing in the non-uniform H(D) structure, and all clusters are completely contained inside
the container border, so the void area is minimal in this type of container. The additional enhancement
is obtained with the model applied for the real CMS detector, so that container occupancy is 100%
(Figure 34b).

It is to note that the efficiency of some uniform H(D) architectures (moved left and moved up) is
less than the existing models (≈48% and ≈66% on average).
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Figure 42. The container occupancy comparison between H(D) models and comparison with the
existing VA and CA architectures.

6. Limitations of the Study

There are a few limitations to the current study. First, clusters are assumed to be homogeneous
in area and shape and composed of the same components forming the uniform cluster plane.
Although several different polyhex types can be constructed, only a single cluster shape is considered
in this paper, when four hexagonal cells are merged together and generating 4-hexagonal or tetrahex
clusters and in our application-driven context of using “bee” tetrahex shape. We examined the cluster
packing of this specific form, which is most common in engineering, and it is suitable for forming
sensor “trigger cells” in CMS detector. Other polyhex structures could have also be formed and
analyzed to obtain a more generic study.

Besides those general features of the current research, there are some other limitations related to
specific sections in the paper. Concerning the evaluation section, for instance, when we compare the
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clustering with the two existing approaches (CA and VA), we consider only VA architectures moved
down. This is done not to add additional complexity to the study, and one can easily derive the results
for VA moved left, with cluster rotation angles 30◦, 150◦, and 330◦. Also, when comparing the number
of full and shared clusters for CAodd and VAodd, we consider a ring of tessellated containers with packed
clusters. We took only a single ring, and one could increase the number of rings depending on the
application. This can influence the conclusions from the obtained results, due to the increased number
of container types with these architectures. Also, the ring configurations for VA are derived for the
default case (moved down, α = 30, 90, 270), and they are not the same when cluster rotation angle is
varied. Similarly, when comparing the proposed H(D) models, we concentrate only on the default
cluster orientation α = 30◦. The additional factor of the varied cluster angle rotation may influence on
the obtained results.

Finally, the limitation of the proposed H(D) models is that the cluster area is not constant for all
packed clusters, since some clusters at the container border will be smaller in the area caused by the
two truncated hexagon pieces. However, this is easily prevailed with the deformed clusters at the
container border, so that all inner clusters are very similar in the area. The only compromise which
can be considered a limitation of the proposed H(D) non-uniform model is the non-uniformity of
the cluster plane. Since the distance from each central cluster to NN clusters is not constant, it could
slightly complicate the NN finder algorithm used in the cluster grouping procedure.

7. Conclusions

In this paper, we revisit a problem of packing symmetric “bee” tetrahex clusters in a regular
hexagonal container. We start from existing container models from the literature (CA and VA). We apply
these models in a new context of clustering the inner hexagonal cells in polyhex clusters and packing
them in the container. We take a single ring of tessellated containers with inner packed clusters, and we
formally describe the geometrical and algebraic properties by using the derived formulas. We analyze
the cluster plane and derive proofs of the geometrical structures. We propose a new vertex-aligned
H(D) model, which is more efficient than the existing approaches.

The packing efficiency is evaluated in terms of five criteria: the total number of the inner packed
items (full clusters), the total number of shared clusters at the container border, the number of
container types, the cluster uniformity, and whether clusters are the same in area. Since the usual goal,
when solving the packing problem is to minimize the void area, we derive the container occupancy
formula to evaluate the efficiency of the proposed model. The following conclusions are obtained from
the study based on the desired objectives:

•Maximal number of packed items

When comparing the even CAeven and VAeven architectures (moved down, α = 30◦, 90◦, 270◦), they
are all very similar, independent on the container size. The container occupancy is, on average, 82%,
while VA (α = 30◦) occupancy is the lowest with ≈ 79%. Similarly, all the existing odd architectures
CAodd and VAodd are almost the same, with the average occupancy in a single ring ≈ 78%. Concerning
the proposed H(D) models (α = 30◦), H(D) moved down is the best, having the average packed
area ≈ 13% and ≈ 32% larger than the moved up and the moved left architectures, respectively. It is
on average ≈ 3% better than the existing models. H(D) architecture moved left the least efficient,
with occupancy ≈ 50%. The proposed non-uniform H(D) is the most efficient, with the maximized
packed area inside the container (the occupancy is ≈ 93.7% on average).

•Minimal number of shared clusters

The existing architectures have larger cluster sharing at the container border, i.e., sharing is
present on each of the six container edges, which increases the non-used or void container space.
These shared clusters only take place in the container and prevent us from packing the whole cluster
inside the container border. The importance of the proposed H(D) models is that their efficiency
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higher. For example, with the uniform H(D) models, we can obtain reduced cluster sharing on only
two container edges. Hence, communication is reduced between boards that are processing data from
each of the neighboring containers separately. This is important in the real CMS detector design so
that a single sensor module (hexagonal container) has all “trigger cells” (tetrahex clusters) packed
inside. Also, the non-uniform H(D) is the most efficient in this sense, as it allows no cluster sharing at
all, so the communication between neighboring containers is avoided. Still, voids are present in the
container (the occupancy is ≈ 93.7%, so the non-used area is ≈ 6.3%), and they are eliminated by
deforming the border clusters, such as in the real CMS detector application.

• Single container type

The existing architectures CAeven and VAeven provide a single container type when a ring of
containers with inner packed clusters is tessellated. Clustering with architectures CAodd and VAodd
causes a larger number of different container types making them less efficient. Also, a single container
type is allowed with the proposed H(D) architectures.

• Uniform clustering model

The uniform clustering is provided by the existing architectures CA and VA and the proposed
uniform H(D) models. However, in the non-uniform H(D) model, the orientation angle of the inner
clusters is not unique, as well as the distance from each central cluster to its NNs.

• All clusters identical in the area

Unlike the existing architectures, the proposed H(D) models do not allow all clusters to be the
same in area. However, the compromise is negligible as the deformed clusters are very close in the
area to a real “bee” tetrahex (≈ 9.1% if the voids are allowed in the container and ≈ 1% if the border
clusters are deformed to eliminate void areas).

The clustering scheme with the proposed non-uniform H(D) model is the most efficient to solve
the polyhex packing problem, since it prevails in four out of five evaluation criteria. Larger container
occupancy is provided compared to the existing architectures, but what is more important, sharing is
completely omitted at the container border. The only compromise is the non-uniformity itself, since the
criteria of all clusters having the same area is easily overcome with the deformed border tetrahex
clusters. Also, there are no voids in the container this way, as the resulting occupancy is 100%. All these
qualities enable the direct application of our study, i.e., the proposed cluster packing scheme of “bee”
tetrahex clusters that will be used to create “trigger cells” in the new CMS HGCAL detector at CERN.

Based on the references cited, we believe that our work has a number of indirect practical
applications, and we provide a view of the future use of our proposed model. For example, polyhex tiling
is considered useful in robotics, and using tetrahex with an objective of maximizing the area coverage is
needed for a coverage path-planning technique in a self-reconfigurable floor cleaning robot. Our model
can be applied for “bee” polyhex-based morphology, but if the robot movement is limited on the
targeted hexagonal ROI. Since the occupancy is the largest, and there are no void areas, the maximal
area coverage can be obtained. Also, our model can be used when the polygonal area is covered with
wireless sensor devices that are hierarchically clustered in “bee” polyhexes to obtain the increased
energy efficiency. It would be interesting to examine the position of the cluster base stations since “bee”
cluster does not have the central cell in one of the centers of the contained hexagonal cells. Our model
can also be extended to consider other polyhex types and container shapes. Hence, a more general
study can be obtained, providing a framework for packing different types of (not necessarily regular)
convex polygons.
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Abbreviations

CA Center Aligned
CERN European Laboratory for Particle Physics
CMS Compact Muon Solenoid
HGCAL High Granularity Calorimeter
LHC Large Hadron Collider
NN Nearest Neighbor
ROI Region of Interest
VA Vertex Aligned
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